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SUMMARY

Pancreatic beta-cell mass for appropriate blood glucose control is established during early 

postnatal life. Beta-cell proliferative capacity declines postnatally but the extrinsic cues and 

intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of 

beta-cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of beta-cells 

from multiple postnatal time points and ordered cells based on transcriptional similarity using a 

new analytical tool. This analysis captured signatures of immature, proliferative beta-cells and 

established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription 

factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in 

immature beta-cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in 

driving postnatal beta-cell proliferation and mass expansion. Our work provides the first high-
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resolution molecular characterization of state changes in postnatal beta-cells and paves the way for 

the identification of novel therapeutic targets to stimulate beta-cell regeneration.

Graphical Abstract

INTRODUCTION

Pancreatic beta-cells maintain blood glucose homeostasis by secreting insulin in response to 

nutrients, such as glucose, amino acids, and lipids. Defects in beta-cell function and reduced 

beta-cell mass cause diabetes mellitus. The early postnatal period is important for 

establishing appropriate beta-cell mass as well as responsiveness to nutrient cues (Jermendy 

et al., 2011). During this period, beta-cell mass expands substantially in both mice and 

humans owing to a neonatal burst in beta-cell proliferation (Finegood et al., 1995; Gregg et 

al., 2012). This burst is followed by a sharp proliferative decline early postnatally and a 

more gradual decline during aging. The molecular pathways governing postnatal beta-cell 

growth have been under intense investigation in hopes of identifying therapeutic approaches 

for stimulating human beta-cell regeneration.

Studies have identified cyclin-dependent kinase 4 (Cdk4) and D-type cyclins as important 

regulators of postnatal beta-cell proliferation (Georgia and Bhushan, 2004; Kushner et al., 

2005; Rane et al., 1999). Upstream of the basic cell cycle machinery, neonatal beta-cell 

proliferation is driven by Pdgf receptor-mediated signaling acting via the Ras/MAPK 

pathway (Chen et al., 2011) and calcineurin signaling through the transcription factor (TF) 

NFAT (Goodyer et al., 2012). Although several regulators of beta-cell proliferation have 

been identified, the upstream signals that cause cell cycle arrest of most beta-cells during 

early postnatal life remain unknown.

A major obstacle in defining the pathways and mechanisms that drive postnatal cell cycle 

arrest is the heterogeneity among individual beta-cells. Proliferative beta-cells are rare, and 
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beta-cells may change their features asynchronously during early postnatal life. Hence, at a 

given time point, the beta-cell population may contain proliferative, quiescent, functionally 

mature, and immature beta-cells. This concept is supported by studies in adult mice showing 

heterogeneity of beta-cells with regard to their molecular features, proliferative capacity, and 

responsiveness to nutrient cues (Bader et al., 2016; Dorrell et al., 2016; Johnston et al., 

2016).

Population-based gene expression profiling generates average measurements and masks the 

variation across individual cells, thus limiting insight into different cell states. By providing 

gene expression profiles of individual cells, single-cell RNA-seq can overcome this problem, 

as subpopulations of cells can be identified based on transcriptional similarity. In several 

contexts, this approach has revealed molecular profiles of distinct cell types not recognized 

at the population level (Macosko et al., 2015; Treutlein et al., 2014). Furthermore, in 

samples throughout a developmental time course, single-cell expression profiles can be used 

to order cells along a “pseudotemporal” developmental continuum; a method that has helped 

resolve cellular transitions (Bendall et al., 2014; Trapnell et al., 2014). However, this 

approach has not yet been applied to a maturation time course of a single cell type, where 

insight into cell state changes could be gained.

Here, we applied single-cell RNA-seq to reconstruct the postnatal developmental trajectory 

of pancreatic beta-cells. We isolated beta-cells at five different time points between birth and 

post-weaning and generated single-cell transcriptomes. We then developed a one-

dimensional (1D) projection-based algorithm to construct a “pseudotemporal” trajectory of 

postnatal beta-cell development by ordering all profiled beta-cells based on transcriptional 

similarity. This analysis revealed remarkable changes in beta-cell metabolism during early 

postnatal life. We show that postnatal beta-cell development is associated with amino acid 

deprivation and decreasing production of mitochondrial reactive oxygen species (ROS), and 

demonstrate a role for amino acids and ROS in postnatal beta-cell proliferation and mass 

expansion.

RESULTS

Transcriptional Heterogeneity of Postnatal Beta-Cells

Pancreatic beta-cells acquire a fully differentiated phenotype after completion of a postnatal 

maturation process (Jermendy et al., 2011). To probe this process in vivo, we performed 

single-cell RNA-seq on sorted beta-cells from mIns1-H2B-mCherry mice (Benner et al., 

2014) at postnatal day (P)1, P7, P14, P21, and P28 (Fig. 1A). As a control, population (bulk) 

cDNA libraries of the corresponding time points were also generated. To obtain reliable 

single-cell libraries, we applied several quality control criteria (see “Methods” and Fig. 

S1A,B). RNA-seq libraries from single cells and bulk samples were sequenced to an average 

depth of 4.3 million reads. Saturation analysis confirmed that this sequencing depth was 

sufficient to detect most genes represented in the single-cell libraries (Fig. S1C). On average, 

6298 genes per library were detected. Libraries that contained fewer than 1 million unique 

reads and for which more than 15% of fragments mapped to mitochondrial protein coding 

genes were excluded (Table S1). Based on these criteria, we retained data from 14 bulk 

samples and 387 single cells (84 cells from P1, 87 cells from P7, 88 cells from P14, 68 cells 
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from P21, and 60 cells from P28). To minimize technical noise and artifacts such as batch 

effects, we applied “Surrogate Variable Analysis” for sequencing experiments (SVA-seq) 

(Leek, 2014).

To assess single-cell data quality, we compared the correlation between average transcript 

profiles of single cells and bulk cells of the same age. At all ages, the average profiles of 

single cells correlated highly with the bulk cell profile (r= 0.83-0.87; Fig. 1B). We then 

compared expression patterns of select genes. Average expression levels of Ucn3 and Mafb, 

two genes known to be regulated during postnatal beta-cell development (Blum et al., 2012; 

van der Meulen et al., 2012), showed temporal regulation similar to bulk experiments (Fig. 

1C). Notably, Ucn3 and Mafb exhibited high variability in cell-to-cell gene expression, 

whereas the housekeeping gene Calm1 did not (Fig. 1C). This implies that the observed 

transcriptional heterogeneity reflects true biology and is not a technical artifact. At an 

individual cell level, Ucn3 and Mafb expression were negatively correlated (Fig. S1D), 

suggesting that declining expression of Mafb is accompanied by increasing expression of 

Ucn3 across individual cells. Globally, the genome-wide correlation of transcript expression 

between single cells at each time point showed only moderate correlation (r=0.3-0.7; Fig. 

1D), indicating considerable gene expression heterogeneity between age-matched cells. To 

visualize the degree of similarity among all beta-cells from different time points, we 

employed multidimensional scaling analysis. The analysis showed progression of most cells 

along a single trajectory, implying a continuous beta-cell maturation process. While the 

majority of beta-cells grouped together by age collected, there was no clear separation 

between stages and cells from one age often crossed into the transcriptional space of other 

ages (Fig. 1E). This shows that a significant fraction of beta-cells from late postnatal time 

points bears higher similarity with cells from earlier than from age-matched time points and 

vice versa.

Reconstructing a Trajectory for Beta-Cell Maturation

Given the heterogeneity of beta-cells at each stage, we reasoned that ordering beta-cells by 

transcriptional similarity rather than time of collection could provide insight into the 

transcriptional dynamics associated with beta-cell maturation not captured when evaluating 

bulk gene expression data across the time course. With the recent growth in single-cell 

transcriptome data, numerous methods have been reported to computationally order 

individual cells according to the gradual transition of their transcriptomes (Campbell et al., 

2015; Ji and Ji, 2016; Reid and Wernisch, 2016; Trapnell et al., 2014). The process of 

ordering cells in silico is called pseudotime reconstruction because it places individual cells 

on a virtual time axis along which the cells are presumed to travel as they differentiate or 

mature. We postulated that such de novo predicted developmental path could expose 

previously unrecognized transcriptional dynamics of postnatal beta-cell maturation. To 

construct a pseudotemporal time course of maturing beta-cells, we adapted a previously 

developed 1D-principle component analysis (PCA) method (Zagar et al., 2011). The method 

establishes a pseudotemporal trajectory by ordering single-cell profiles based on 

transcriptional similarity along a linear ruler, allowing for exploration of gene patterns over 

the reconstructed developmental trajectory of continuously placed cells. We observed 
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minimal branching in our data (see Suppl. Information), suggesting adequacy of a linear 

trajectory for our data.

To construct a pseudotemporal trajectory, we considered the most variant genes ranked by 

median absolute deviation (MAD) (Table S2A). Genes in the upper quartile of the MAD 

distribution (n=4313) were used to place cells along a 1D trajectory that represents each 

cell’s likely placement along a continuum of beta-cell maturation (Fig. 2A). To assess the 

performance of our 1D-PCA-based cell ordering method, we conducted comparisons to 

other ordering methods, namely Monocle (Trapnell et al., 2014), TSCAN (Ji and Ji, 2016), 

Embeddr (Campbell et al., 2015), and DeLorean (Reid and Wernisch, 2016). The analysis 

revealed higher predicted accuracy of revealing the correct order of cells and smoother 

transition of gene expression through the cells with 1D-PCA (Suppl. Information). As 

further validation, we calculated similarity of the cell ordering with DeLorean and 1D-PCA 

and found similar placement of cells obtained with the two methods (Suppl. Information).

The projection of beta-cells along the 1D-PCA-based trajectory revealed a median 

placement of samples from each stage that agreed with the temporal order of the maturation 

time course from P1 to P28 (Fig. 2B). To further validate the time ordering method, we 

projected published RNA-seq data from single beta-cells of 3-month-old mice (Xin et al., 

2016) onto our pseudotemporal trajectory and found that the median of these cells correctly 

projected at the end of the pseudotime spectrum (see Suppl. Information). Thus, our analysis 

generated a refined order of discrete beta-cell states independent of, but consistent with, 

prior knowledge.

Notably, single cells from an individual stage spanned a large spectrum of the 

pseudotemporal developmental scale, indicating significant transcriptional heterogeneity of 

beta-cells at each time point. To allow for comparison of gene expression trajectories 

between pseudotemporally ordered cells and collection time point averages, we created five 

“pseudo-time points” (= “pseudo-binned” cells) by selecting an equal number of cells for the 

pseudo-binned point as collected at a given time point. For example, 84 cells were collected 

at P1 and 87 cells at P7. Hence, we considered the first 84 cells along the pseudotemporal 

trajectory (Fig. 2B) as “pseudo-P1” and the next 87 cells as “pseudo-P7” (Fig. 2C). 

Illustrating the transcriptional heterogeneity of beta-cells at each stage, the pseudo-binning 

revealed beta-cells from multiple postnatal stages contributing to each pseudo-binned time 

point (Fig. S2A).

To validate that the pseudotemporal trajectory accurately captures transcriptional changes of 

postnatal beta-cell development, we analyzed expression profiles of genes known to be 

regulated during beta-cell maturation in our averaged collection time-specific, pseudo-

binned, and pseudotime-ordered single-cell RNA-seq data. Consistent with previous bulk 

transcriptome data (Artner et al., 2010; Blum et al., 2012; van der Meulen et al., 2012), 

expression of Mafb decreased in both our collection time-based bulk data between P1 and 

P28 and the reconstructed pseudotemporal single-cell-based trajectories, while expression of 

Ucn3 and the regulator of insulin secretion G6pc2 increased (Fig. 2D; Fig. S2B). These 

results indicate that the primary phenotypic landmarks of beta-cell maturation were correctly 

reconstructed by our pseudotemporal ordering method.
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Ordering of Cells Reveals Novel Maturation-Associated Changes in Gene Expression

We reasoned that the pseudotemporal ordering of cells could reveal transcriptional 

characteristics of rare cells within the beta-cell population, such as proliferating beta-cells. 

Although numbers of proliferating beta-cells are known to decline postnatally (Teta et al., 

2005), mRNA levels of the proliferation markers Ki67, Cdk4, Rfc2, and Mcm3 showed little 

change in bulk samples between P1 and P28 (Fig. 2D; Fig. S2B), likely owing to the small 

contribution of these cells to the overall transcriptional profile of the bulk samples. By 

contrast, in the pseudotemporally-ordered time course, these proliferation genes exhibited 

declining expression during beta-cell maturation (Fig. 2D; Fig. S2B), suggesting that our 

pseudotemporal cell ordering method can resolve transcriptional features of immature 

proliferative beta-cells. In addition to proliferation genes, we observed decreasing expression 

of the mitochondrial respiratory chain component, Ndufv1, as well as the amino acid 

transporter Slc7a2 and amino acid sensing and mTOR signaling regulator Lamtor5 (Fig. 2D; 

Fig. S2B). These expression changes were not observed in bulk sample averages, indicating 

that our time ordering method can reveal novel molecular features associated with beta-cell 

maturation. To more globally assess to which extent gene expression patterns differ between 

collection-time- and pseudotime-ordered cells, we compared gene expression profiles from 

collection time averages to pseudo-binned averages (Fig. 2C). Analysis of increasing and 

decreasing genes in the transitions between two consecutive points confirmed that numerous 

patterns could be identified only by considering pseudotime-ordered cells (Fig. S3; Table 

S3A,B). Together, these findings provide evidence that 1D-PCA-based ordering of single 

beta-cells accurately reflects the transcriptional dynamics of beta-cell maturation and allows 

for de novo discovery of gene expression changes not revealed by population averages.

Metabolic Pathways Are Regulated during the Reconstructed Maturation Time Course

To identify groups of genes significantly regulated in the pseudotemporal trajectory, we 

examined gene sets, including MSigDB annotated pathways as well as clusters of 

transcriptionally correlated genes found in our data (de novo gene sets) (Fig. 3A). Briefly, 

continuous Gene Set Enrichment Analysis (GSEA) was performed with the aim of testing 

whether the genes in each set show coordinated increasing or decreasing expression during 

the pseudotemporal trajectory of postnatal beta-cell development. Gene sets showing a 

significant positive or negative correlation with the pseudotime coordinates, representing 

increasing and decreasing groups of genes, respectively, were selected (FDR < 0.25, Table 

S4). Analysis of annotated pathways revealed negative correlation with genes involved in 

cell cycle control and proliferation with the pseudotemporal time course (Fig. 3B; Table 

S4A), confirming the ability of our time ordering method to resolve transcriptomes of 

immature, proliferative beta-cells. In addition, there was overrepresentation of Gene 

Ontology (GO) categories associated with metabolic pathways, such as amino acid 

metabolism and mitochondrial respiration, as well as enrichment of hypoxia and reactive 

oxygen species (ROS) pathway GO-annotated gene sets. Combined, this suggests that beta-

cells undergo fundamental changes in metabolism during early postnatal development.

In addition to analyzing a priori known gene sets, we also sought to capture molecular 

features distinguishing immature and mature beta-cells that might be poorly represented by 

annotated pathways. For this, we applied a clustering method to perform de novo gene set 
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discovery (Fan et al., 2016). Hierarchical clustering was first applied to all genes expressed 

(RPKM > 1 in at least 2 cells; n=13899). In total, 78 groups of genes were found and were 

scored for significant correlation with pseudotime coordinates, using the same approach as 

for annotated pathways (Table S4B). From this, we identified nine clusters (C1-C9) that 

showed significant correlation with the reconstructed trajectory of beta-cell maturation (Fig. 

3C; Table S4B). Each of the nine clusters contained genes that increased and decreased 

during the pseudotime course (Fig. S4). Cluster C1 contained predominantly upregulated 

genes and was enriched for regulators of insulin synthesis and secretion, such as Ins1/2, 
G6pc2, Iapp, and Ucn3 (Fig. 3C,D; Table S4C). Consistent with the observation that 

proliferative beta-cells can be resolved with our time ordering method (Fig. 2D), clusters C2 

and C3 were enriched for genes encoding proteins involved in cell cycle control, comprising 

DNA replication, mitotic spindle assembly, and mitotic checkpoint proteins in cluster C2 

and proteins with functions in the p53 and MAPK pathways in cluster C3 (Fig. 3D; Table 

S4C). Cluster C4 was enriched for immediate early genes (i.e. Fos, Jun, Atf3, Srf), which are 

regulators of cell growth signals (Mina et al., 2015). This cluster also contained the known 

regulator of postnatal beta-cell proliferation Pdgfa (Chen et al., 2011). A striking observation 

was the downregulation of numerous genes encoding proteins regulating mitochondrial 

function and ROS in cluster C5, including mitochondrial transporters (Slc25a3, Slc25a39), 

respiratory chain components (Ndufa5, Cox6a1, Uqcrb), and enzymes for ROS clearance 

and protection from oxidative damage (i.e. Prdx2, Sod1, Gpx4) (Fig. 3D; Table S4C). These 

findings suggest that mitochondrial respiration and ROS levels are highly regulated during 

postnatal beta-cell development. We further observed concordant regulation of multiple 

genes involved in amino acid metabolism in cluster C6 (Fig. 3D; Table S4C), namely a 

progressive decrease in the expression of the transmembrane amino acid transporters Slc7a2 
and Slc38a5 as well as Gls and Glud1, which convert glutamine into glutamate and α-

ketogluterate (αKG), respectively. Combined, these findings show that beta-cell maturation 

is associated with fundamental changes in the expression of genes associated with amino 

acid uptake and metabolism, as well as mitochondrial respiration and ROS production.

Amino Acid Availability Regulates Beta-Cell Proliferation

Amino acids promote cell proliferation by providing building blocks for protein and 

nucleotide synthesis. Based on the observed decrease in expression of multiple amino acid 

transporter and metabolism genes during maturation (Fig. 4A) and their co-variation with 

proliferation genes at the single-cell level (Fig. 4B), we hypothesized that amino acid 

deprivation could contribute to the postnatal decline in beta-cell proliferation. First, to assess 

whether amino acid availability to beta-cells changes during the early postnatal period, we 

measured levels of various amino acids in plasma from mice at P1 and P28. Plasma levels of 

most proteinogenic amino acids decreased between P1 and P28 (Fig. 4C), indicating 

environmental changes in beta-cell amino acid availability. Next, to determine whether 

amino acid and nucleotide availability is limiting for beta-cell proliferation, we 

supplemented cultures of islets from mice at P28 with nucleotides or individual amino acids. 

Addition of serine or tyrosine, or nucleotides, significantly increased proliferation rates of 

beta-cells at P28 (Fig. 4D); an effect that was not observed for non-beta islet cells (Fig. 4E). 

The results show that amino acid supplementation can, at least partially, restore beta-cell 

proliferation at a time point when proliferative rates have already declined. Accordingly, 
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supplementation of serine, tyrosine or nucleotides increased expression of several 

proliferation genes, which are down-regulated in the pseudotemporal maturation time course 

(Fig. 4F). Notably, glutamine supplementation failed to enhance beta-cell proliferation (Fig. 

4D), which could be because glutamine uptake rates were significantly lower in islets from 

mice at P28 compared to P1 (Fig. 4G). Combined, these findings suggest that changes in 

plasma amino acid levels as well as beta-cell amino acid uptake and metabolism could cause 

an amino acid-deprived state that contributes to the postnatal decline in beta-cell 

proliferation (Fig. 4H).

Mitochondrial ROS Promotes Beta-Cell Proliferation

In addition to amino acid metabolic genes, numerous mitochondrial genes exhibited a 

significant decrease in expression during pseudotemporal maturation (Fig. 3D). Therefore, 

we postulated that beta-cell mitochondrial membrane potential might decrease postnatally. 

Indeed, islets at P28 exhibited lower mitochondrial membrane potential than at P1 (Fig. 5A; 

Fig. S5A). The mitochondrial to nuclear DNA ratio was similar in P1 and P28 islets (Fig. 

S5B), indicating that the overall number of mitochondria does not change postnatally. These 

results suggest that the early postnatal period is associated with a decline in mitochondrial 

respiration.

Mitochondrial activity is an important source of ROS production. The abundance of ROS is 

determined by the balance between ROS production and ROS clearance through multiple 

antioxidant enzymes (Fig. 5B). Genes encoding antioxidant enzymes decreased during the 

pseudotemporal beta-cell maturation time course (Fig. 5C). To determine how the 

combination of decreased mitochondrial membrane potential and reduced expression of 

ROS eliminating enzymes affects overall beta-cell mitochondrial ROS abundance, we 

measured mitochondrial superoxide levels in islets from P1 and P28 mice. Despite reduced 

expression of antioxidant enzymes, mitochondrial superoxide levels were significantly lower 

at P28 (Fig. 5D).

ROS can enhance cell proliferation, but highly elevated ROS levels can also induce G2/M 

cell cycle arrest and reduce cell proliferation (Boonstra and Post, 2004). To determine how 

ROS affects beta-cell proliferation, we utilized a genetic model to stably overexpress the 

radical scavenger catalase specifically in beta-cell mitochondria. We generated mice 

carrying the RIP-Cre transgene, Cre recombinase-inducible human catalase (mCAT) inserted 

in the ubiquitously active GAPDH locus, and a conditional YFP reporter gene targeted to the 

Rosa-26 locus (R26YFP) (hereinafter called mCAT mice) (Fig. 5E). The insertion of mCAT 
in the GAPDH locus did not affect glucose homeostasis, as determined by glucose tolerance 

testing (Fig. S5C). Immunofluorescence analysis of YFP in pancreata from mCAT mice at 6 

weeks revealed recombination in ~90% of beta-cells (Fig. S5D). Quantitative RT-PCR 

confirmed expression of human CAT mRNA in islets from mCAT mice (Fig. S5E). By 

staining islets with MitosoxRed, we further confirmed that mCAT mice exhibit lower levels 

of ROS than RIP-Cre control mice (Fig. S5F). Analysis of BrdU incorporation and Ki67 

staining revealed a significant reduction in the percentage of proliferating beta-cells in 

mCAT mice compared to controls (Fig. 5F,G; Fig. S5G). Accordingly, total beta-cell mass in 

mCAT mice was significantly reduced (Fig. 5H). mCAT expression did not affect beta-cell 
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identity and did not lead to conversion of beta-cells into other islet cell types 

(Glucagon+GFP+ cells = 1.3% in mCAT mice vs. 0.91% in control mice; no 

somatostatin+GFP+ cells were observed) (Fig. S5H). Beta-cell apoptosis and glucose-

stimulated insulin secretion (GSIS) in islets were similar in mCAT and control mice (Fig. 

S5I,J). These results identify a specific role for mitochondrial ROS in promoting beta-cell 

proliferation and establishment of normal beta-cell mass.

Nutrient-Responsive Transcription Factors Mediate Maturation-Associated Gene 
Expression Changes

Having identified roles for amino acid availability and ROS in postnatal beta-cell 

proliferation, we next sought to identify the TFs that mediate maturation-associated gene 

expression changes and regulate beta-cell proliferation. First, to identify the most highly 

regulated genes during beta-cell maturation, we generated a list of genes positively and 

negatively correlating with the pseudotemporal trajectory (P <0.01; Fig. 6A; Table S5A). 

These criteria were met by 54 genes that increased and 3279 genes that decreased in 

expression during pseudotime. Second, to determine which TFs regulate these genes, we 

performed cis-regulatory analysis, focusing on enhancers identified by the presence of distal 

H3K27ac ChIP-seq signals in mouse islets, and annotated TF binding motifs at these 

enhancers (Fig. 6A). This analysis revealed binding site enrichment for TFs of the ETS and 

basic leucine zipper (bZIP) families at enhancers of both up- and down-regulated genes 

during beta-cell maturation (Fig. 6B,C; Table S5B). In addition, zinc finger (SP1 and Klf 

TFs), helix turn helix (Rfx TFs), and CCAAT motifs were among the twenty most highly 

enriched motifs at enhancer regions of downregulated genes (Fig. 6C; Table S5B). Binding 

sites for the previously identified regulators of beta-cell maturation, Neurod1 (Gu et al., 

2010) and Mafa (Aguayo-Mazzucato et al., 2011), were also enriched at enhancers of 

downregulated genes (Table S5B); however, fewer target sequences contained Neurod1 and 

Mafa binding sites when compared to ETS, bZIP, and zinc finger motifs.

To identify candidate TFs that could mediate the postnatal changes in beta-cell gene 

expression, we ordered TFs based on positive and negative correlation of their expression 

profiles with the pseudotemporal trajectory. This analysis revealed 202 significantly 

downregulated and two upregulated TFs (P < 0.01). Consistent with the motif analysis, the 

top thirty downregulated TFs comprised multiple members of the ETS (Etv1, Fev), bZIP 

(Atf3, Fosb, Fos, Jun, Maff, Junb, Atf4), and zinc finger (Klf10, Egr1, Klf4, Zfp868, 

Zfp655, Zbtb10, Egr2) families (Fig. 6D).

These ETS, bZIP and zinc finger TFs are core constituents of a TF network regulated in 

response to cellular stress (Espinosa-Diez et al., 2015). ROS abundance, Ras/MAPK and 

mTOR signaling, which we found to be regulated during postnatal beta-cell development 

(Fig. 3B; Fig. 5D; Table S4A), are potent inducers of Srf, Atf3, Atf4, Fosb, Fosl2, Fos, and 

Jun (Espinosa-Diez et al., 2015). By forming both homo- and heterodimers, these TFs 

regulate the expression of anti-oxidant genes and cellular responses to nutrient state, 

including cell proliferation. To understand the role of these TFs in postnatal beta-cell gene 

regulation, we performed network analyses using the STRING database to reveal 

connections of the TFs with other genes regulated during the pseudotemporal beta-cell 
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maturation trajectory. We then applied a network propagation algorithm that prioritizes 

genes in the network based on the strength of their connections to a starting set of genes 

(Mulas et al., 2013). Using the TFs in the network as a starting set (Table S6A), the interest 

propagation algorithm retrieved an additional set of genes mostly related to cell proliferation 

(P = 0.0001, Fisher test) and mRNA processing (P = 1.85*10-7) as their most connected 

neighbors (Fig. 6E). Proliferation genes with high connectivity to the TFs Atf3/Atf4, Jun/

JunB, Fos/Fosb, Egr1, and Srf included the regulator of postnatal beta-cell expansion Cdk4 
(Rane et al., 1999), several components of the pre-replication complex (Mcm2/3/4/5), and 

Gsk3b, an important signaling hub in the regulation of beta-cell replication (Liu et al., 

2010). When the most relevant connections of genes related to oxidative phosphorylation 

were searched through the network (Table S6B), we retrieved the TFs Jun and Fos (Fig. S6). 

Thus, our motif and network propagation analyses lend support to the model that changes in 

metabolic activity regulate postnatal beta-cell proliferation through nutrient-responsive TFs 

of the Jun/Fos family.

Srf Regulates Proliferation Genes in Primary Islets

Based on this model, expression levels of oxidative phosphorylation genes, Jun/Fos family 

TFs and proliferation genes should exhibit positive correlation at the single-cell level. To test 

this prediction, we selected the cell proliferation, oxidative phosphorylation, and TF genes 

most highly regulated in the pseudotemporal trajectory and calculated pairwise correlation 

coefficients considering all 387 beta-cells. The analysis revealed significant co-variation (P 

< 0.001) of both oxidative phosphorylation and TF genes with proliferation genes (Fig. 7A).

We next sought to test whether these TFs could regulate proliferation genes in beta-cells. 

Previous studies have shown that Srf is an upstream activator of Fos, Fosb, Egr1, and Nr4a1 
(Mina et al., 2015). We found that Srf itself and its downstream targets are downregulated 

during maturation (Fig. 6D), suggesting that Srf could be responsible for the regulation of a 

large portion of the maturation-dependent TFs. Moreover, Srf promotes recruitment of ETS 

TFs to DNA (Hassler and Richmond, 2001), and ETS TF motifs were highly enriched in 

genes regulated during maturation (Fig. 6B,C). To determine the role of Srf in beta-cell gene 

regulation, we overexpressed Srf via lentiviral delivery in primary mouse islets and 

performed RNA-seq (Fig. 7B). Quantitative RT-PCR analysis confirmed a significant 

increase of Srf mRNA (Fig. S7A). To determine whether proliferation genes are 

overrepresented among the genes regulated by Srf, we employed GSEA. Confirming a role 

for Srf in maintaining high expression of proliferative genes, proliferation-associated genes 

were expressed at significantly higher levels after Srf overexpression (Fig. 7C). Furthermore, 

mRNAs decreasing in expression during the pseudotemporal trajectory were enriched in Srf-
overexpressing islets (Fig. 7C). Among the genes significantly induced by Srf were Fos, 
Junb and Egr1 (Fig. 7D; Table S7), demonstrating that Srf acts as an upstream regulator of 

these TFs also in islets. The induction of proliferation genes did not impair insulin secretion, 

as shown in GSIS assays of Srf overexpressing islets (Fig. S7B). These experiments identify 

Srf as a regulator of maturation-associated genes in beta-cells and suggest that declining Srf 

levels postnatally could contribute to decreasing beta-cell proliferation.
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DISCUSSION

Here we have used single-cell transcriptomics to obtain a comprehensive view of 

transcriptional changes associated with mammalian postnatal beta-cell development. By 

quantifying gene expression in single beta-cells from different time points, we ordered cells 

along a continuous linear molecular trajectory to resolve the cellular heterogeneity of beta-

cells. This analysis revealed hitherto unknown transcriptional dynamics associated with the 

declining proliferative capacity of beta-cells during postnatal development. Features we 

found to be associated with immature, proliferative beta-cells are high expression of 

regulators of amino acid metabolism and high ROS production as well as a network of 

nutrient-responsive TFs (Fig. 7E).

The analysis of single-cell RNA-seq data poses unique computational challenges that 

necessitate adaptation of existing workflows and development of new analytical strategies. 

Here we show that 1D-PCA-based ordering can be applied to single-cell data to accurately 

predict temporal dynamics of in vivo biology, as indicated by validation of known markers 

and higher accuracy in reconstructing the collection time of samples than achieved by other 

methods, including the unsupervised methods Monocle (Trapnell et al., 2014), TSCAN (Ji 

and Ji, 2016), and Embeddr (Campbell et al., 2015), and the supervised method DeLorean 

(Reid and Wernisch, 2016). PCA-based pseudotemporal ordering provides an intuitive 

representation with a single path traversing all cells and unlike minimum spanning tree-

based methods, allows for the addition of new samples to the scale without changing the 

established path. Employing this feature, we show that previously published single beta-cell 

RNA-seq data from 3-month-old mice correctly projected onto the constructed 

pseudotemporal trajectory (see Suppl. Information). Projection of these external data onto 

our trajectory demonstrated that single beta-cells from 3-month-old mice exhibit a degree of 

heterogeneity comparable to very young mice. Our analysis implies that 1D-PCA-based 

ordering is well-suited for examining the trajectory of a single cell type along a continuous 

course of cell state changes.

Recently, markers unique to subpopulations of beta-cells have been identified and molecular 

characterization of these subpopulations has revealed gene expression differences (Bader et 

al., 2016; Dorrell et al., 2016). Consistent with these studies, we observed significant 

molecular heterogeneity among beta-cells at each analyzed time point. Dor and colleagues 

sorted replicating beta-cells based on a marker for S/G2/M phase and compared their 

transcriptome to beta-cells in G0/G1 (Klochendler et al., 2016). Some features enriched in 

replicating beta-cells, including high expression of components of the mitochondrial 

respiratory chain (Klochendler et al., 2016), were similar to the features of immature beta-

cells identified by our study. However, there were also differences. For example, the TF 

genes Pdx1 and Nkx6.1 were expressed at lower levels in replicating beta-cells but not 

regulated in our trajectory of beta-cell maturation. The differences are not surprising because 

our cell ordering method does not group cells solely based on cell cycle characteristics, but 

associates a given cell with multiple, potentially independent aspects of transcriptional 

heterogeneity.
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To place our data into the context of findings from recently published single-cell data of 

beta-cells from juvenile and adult humans (Wang et al., 2016) as well as young and aged 

mice (Xin et al., 2016), we compared gene signatures identified in these studies to genes 

regulated in our pseudotemporal trajectory. Wang et al. reported higher expression of alpha-

cell lineage markers in juvenile compared to adult human beta-cells. We determined whether 

these alpha-cell signature genes decrease in expression during the pseudotemporal trajectory, 

but found no correlation (P = 0.07). This could indicate differences between rodent and 

human beta-cells, but could also be due to the specific time window covered in our study. 

We found that 34 genes with significantly lower expression in beta-cells from very old mice 

compared to 3-month-old mice (Xin et al., 2016) also decreased in expression in our 

maturation time course. Among these shared genes were the TFs Srf, Jun, Fos, Nr4a1, Fosl2, 

and Fosb, suggesting that expression of these TFs continues to decrease as beta-cells age. 

Previous studies have shown that Fos overexpression in islets stimulates beta-cell 

proliferation (Ray et al., 2016). Given our finding that Srf induces Fos and proliferation 

genes, decreasing Srf/Fos levels could be an important contributor to declining beta-cell 

proliferation rates early postnatally and during aging.

Two novel features revealed by the pseudotemporal ordering of beta-cells were declining 

expression of amino acid transporters and metabolizing enzymes as well as mitochondrial 

respiratory chain components during maturation. Our finding that mitochondrial gene 

expression decreases during beta-cell maturation appears, at first, to contradict a recent study 

reporting mRNA increases of oxidative phosphorylation and respiratory chain components 

when bulk islet samples of two- and six-week-old mice were compared (Yoshihara et al., 

2016). The discrepancy could be explained by the different time window studied by 

Yoshihara and colleagues. Alternatively, it could be due to the increased ability to detect 

signatures of rare immature, proliferative beta-cells due to single-cell ordering in our study. 

The latter view is supported by the lack in regulation of cell cycle regulators and 

mitochondrial genes when we considered collection time averages of transcript levels (Fig. 

2D; S2B). Thus, we propose that the here-identified subpopulation of beta-cells with high 

mitochondrial membrane potential represents a rare immature population with high 

proliferative capacity, whereas beta-cells that upregulate oxidative phosphorylation genes 

later postnatally represent cells with a mature insulin secretory response (Yoshihara et al., 

2016).

We identified ROS as an important driver of early postnatal beta-cell proliferation and 

establishment of beta-cell mass. ROS has multiple roles in beta-cells. Discrete and transient 

increases in beta-cell ROS provide an important metabolic signal for GSIS (Supale et al., 

2012). It is possible that decreasing levels ROS eliminating enzymes during maturation help 

enable the characteristic stimulus secretion-coupling of mature beta-cells. While transient 

increases in ROS provide an important signal for insulin secretion, oxidative stress caused 

by direct exposure to oxidants or glucotoxicity impairs beta-cell function (Supale et al., 

2012). Obesity and insulin resistance are often associated with elevated plasma glucose 

levels, which through increased beta-cell mitochondrial metabolism could stimulate ROS 

production. In the insulin-resistant state, beta-cell proliferation is increased to help the 

organism adapt to higher insulin demand. An interesting question for future investigation is 

whether ROS drives beta-cell proliferation during metabolic adaptation.

Zeng et al. Page 12

Cell Metab. Author manuscript; available in PMC 2018 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Atf4, C/EBP and Ddit3 (Chop), which are downregulated during the maturation time course 

(Table S5A), are also downstream effectors of the ER stress pathway. Mild ER stress has 

been shown to promote beta-cell proliferation (Sharma et al., 2015), an observation that is 

consistent with the pro-proliferative gene regulatory network identified in this study. It has 

also been shown that reducing insulin expression promotes beta-cell proliferation (Szabat et 

al., 2016), suggesting that the observed increase in insulin expression during maturation 

could further contribute to the proliferative decline of beta-cells. However, different from 

Szabat et al. who observed reduced ER stress with low insulin expression, low insulin levels 

in our data were associated with high expression of ER stress markers. How ER stress-

related signals are integrated in beta-cells to control proliferative responses clearly warrants 

further studies. The here-reported RNA-seq data sets provide a resource for further 

exploration of molecular signatures that define different beta-cell states. The ability to 

examine the connectivity between genes in unique beta-cell states will facilitate the 

discovery of targets for therapeutic intervention in diabetes.

STAR★Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Maike Sander M.D. (masander@ucsd.edu).

Experimental Model and Subject Details

Cell lines—HEK293T cell were maintained in medium A (DMEM containing 100 

units/mL penicillin and 100 mg/mL streptomycin sulfate) supplemented with 10% fetal 

bovine serum (FBS).

Animals—Male and female mIns1-H2B-mCherry mice were used to sort beta-cells at P1, 

P7, P14, P21, and P28 (P1, n=15 mice; P7, n=14; P14, n=10; P21, n=4; P28, n=4). Male and 

female C57BL/6 mice at P1 and P28 were used to perform glutamine uptake experiment and 

mitochondrial function-related experiments. Male and female C57BL/6 mice at 4-6 weeks 

were used to perform amino acid supplementation experiment and lentiviral transduction 

experiment. C57BL/6.mCAT mice are kindly provided by Dr. Peter Rabinovitch. Beta-cell-

specific mCAT overexpression was generated by crossing C57BL/6.mCAT mice with RIP-
Cre mice and R26YFP mice. Studies were conducted in animals 6 weeks of age and included 

age- and sex-matched littermate control mice, which are RIP-Cre mice. To label 

proliferating beta-cells, 0.8mg/ml BrdU was supplied in the drinking water to 5-week-old 

mice for 7 days. All animal experiments were approved by the Institutional Animal Care and 

Use Committees of the University of California, San Diego. The numbers of animals studied 

per genotype are indicated within each experiment.

Mouse islet culture—Mouse islets were cultured in RPMI 1640 medium containing 10% 

FBS, 8.3 mM glucose, 2 mM glutamine, and 1% penicillin-streptomycin.
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Method Details

Islet isolation and FACS sorting—Pancreata of mIns1-H2B-mCherry reporter mice at 

P1, P7, and P14 were dissected wholly without perfusion and digested with 1mg/ml 

Collagenase Type IV (Sigma). P21 and P28 pancreata were perfused through the common 

bile duct with 125 μg/ml Liberase TL (Roche). Islets were purified by density gradient 

centrifugation using Histopaque (Sigma), dissociated with Accumax (Life Technologies) and 

sorted by FACS on a FACSAria II (BD Biosciences). After excluding dead or damaged beta-

cells and doublets, cells expressing mCherry were sorted (49.3%, 40.5%, 39.5%, 41.4%, and 

40% of pre-gated cells were captured based on mCherry at P1, P7, P14, P21, and P28, 

respectively).

Single-cell and bulk RNA-seq library preparation—Single sorted beta-cells were 

captured on medium-sized (10–17 μm cell diameter) microfluidic RNAseq chips (Fluidigm) 

using the FluidigmC1 system according to the Fluidigm protocol (PN 100-5950). For each 

C1 experiment, two bulk RNA controls (approximately 250 cells/sample) and a no-cell 

negative control were processed in parallel PCR tubes, using the same reagent mixes as used 

on chip. Multiplexed libraries were prepared using the Nextera XT DNA sample preparation 

kit (Illumina), and sequenced across 10 lanes of a HiSeq 2500 (Illumina) using 50-bp single-

end sequencing.

RNA-seq data processing of single cell and bulk libraries—Single-end 50-bp 

reads were mapped to the UCSC mouse transcriptome (mm9) by STAR allowing for up to 

10 mismatches (which is the default by STAR). Only the reads aligned uniquely to one 

genomic location were retained for subsequent analysis. Reads per kilobase of transcript per 

million fragments mapped (RPKM) expression levels of all genes were estimated by 

Cufflink using only the reads with exact matches. Libraries that contained fewer than 1 

million reads or for which more than 15% of fragments mapped to mitochondrial reads were 

excluded. Single-cell samples with full values for number and fraction of aligned reads are 

provided in Table S1. Downstream analysis of RPKM values from both bulk and single cells 

RNA-Seq data sets was performed with custom scripts developed using the programming 

languages Python and R. Several software libraries from Orange and Bioconductor were 

adopted for data pre-processing, cell ordering and gene sets analysis. First, a moderated log-

transformation was applied to both bulk and single-cell data sets. Specifically, the function 

log(dij + 1) was applied to the expression values, dij representing the RPKM estimate of the 

i-th gene in the j-th sample.

To remove unwanted variation, single-cell data was normalized with SVA-seq (Leek, 2014) 

using a set of “negative control” genes with low variation in the bulk data. Briefly, the top 

5th percentile of expressed genes ranked by increasing values of Median Absolute Deviation 

(MAD) with high expression levels (average log-transformed RPKM > 5) were first selected 

as negative controls from the bulk data. The list was further filtered for genes with high 

expression levels in the single-cell data set (log-transformed RPKM > 5 in at least 2 cells). 

Genes used as negative controls, including known housekeeping genes, are listed in Table 

S2B.
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The biological model was defined as the global average change in gene expression, with no 

explicit information on the stage of each cell provided to SVA-seq. The data corrected for 

unwanted variations was filtered by selecting the top quartile most variant genes (n=4313), 

ranked according to MAD, whose expression was considered for the inference of cell 

ordering models.

Saturation analysis—To identify the required sequencing depth, we subsampled raw data 

from bulk cell and individual single-cell libraries. To generate a single-cell ensemble data 

set, raw reads from all the single-cell RNA-seq libraries were bioinformatically pooled to 

mimic a bulk RNA-seq experiment. From these three data sets, saturation plots were 

generated by calculating the number of detected genes (RPKM > 0) as the number of reads 

sampled increased.

Cell ordering—To infer an ordered trajectory of single cells, we adapted a 1D-PCA-based 

unsupervised algorithm originally designed to build a differentiation scale, representing 

transcriptomic progression of bulk samples, as previously described (Mulas et al., 2012) and 

implemented in the Orange software. Briefly, we applied PCA to the pre-processed data 

matrix D= (dj,i) with dj,i representing the expression value of the i-th selected gene in the j-th 
cell. A real number p(dj ) was assigned to each cell j by projecting its expression profile to 

the first principal component:

(1)

wi being the elements of the first eigenvector of the covariance matrix DTD and i ranging 

from 1 to the total number of selected genes (m=4313). Projections p(dj ), j ranging from 1 

to the total number of cells considered (n=387), were set as pseudotime coordinates and used 

to determine the order of cells, so that:

(2)

Ordering evaluation and comparison with other methods—The 1D pseudotime 

trajectory was compared with orderings obtained by applying other methods, using the same 

set of selected genes and all parameters set to default values, unless specified. To evaluate 

the accuracy of unsupervised algorithms, which do not use the sample collection time point 

to infer ordering, Pseudotemporal Ordering Score (POS) was used to count the number of 

cells ordered as expected from their true data collection time:

(3)

where Ti and Tj are sets of cells from time point i and j, p(x) and p(y) represents the 

pseudotime coordinates assigned to samples x and y, and δ equals to 0 or to (j – i)/D, if Ti = 
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Tj or if Ti ≠ Tj, respectively. The constant D is computed to rescale POS values in the range 

[-1, 1].

To compare the 1D Pseudotime coordinates with orderings inferred with supervised 

methods, which use sample collection time to infer pseudotime coordinates, we relied on the 

“Roughness” of consecutively-placed cells (Reid and Wernisch, 2016). The Roughness score 

R was computed as a sum of distances of gene expression values between consecutive cells, 

from the beginning to the end of the trajectory, as ordered according to their pseudotime 

coordinates. Distance between a pair of consecutive cells j and j+1 was defined as the 

difference of their gene expression measurements dj+1 and dj:

(4)

dj,i being the expression value of the i-th selected gene in the j-th cell, as described above.

Ordering evaluation and comparison with other methods—The 1D 

pseudotemporal trajectory was compared with four additional methods, including 

unsupervised algorithms, namely TSCAN (Ji and Ji, 2016), Monocle (Trapnell et al., 2014), 

and Embeddr (Campbell et al., 2015), and a supervised method based on Gaussian processes 

that was recently added to the “DeLorean” R package, hereafter named as DeLorean (Reid 

and Wernisch, 2016).

The results of the pseudotemporal ordering score (POS) calculations used to evaluate the 

accuracy of unsupervised algorithms are reported below.

A confidence interval of the POS score of the PCA-based ordering was estimated with a 

bootstrap procedure, whereby random sets of cells were sampled with replacement by 

maintaining the same proportion of cells from the different stages. These samples were used 

as a training set, i.e. to determine weights wi, which were used to project the remaining 

samples, considered as a test set. A bootstrap sample contained about 63% of the cells in the 

original samples, whereas a test set was on average composed of the 37% of the cells. The 

procedure was iterated for 1000 times, obtaining an estimate of the POS statistic on the test 

sets. The 90% confidence interval is shown below and indicates a robust performance of the 

1D-PCA as a pseudotime ordering method on our data set.

Evaluation of unsupervised methods on our single-cell 
data

POS score obtained using TSCAN, Monocle and Embeddr. POS score obtained on the 1D 

Pseudotime Scale based on PCA and its corresponding 90% confidence interval [0.6015 - 

0.7028].

POS

TSCAN 0.17
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POS

Monocle 0.41

Embeddr 0.59

1D Pseudotime Scale 0.65

As the sample collection time point is used by supervised methods to infer pseudotime 

coordinates, this information could not be used to evaluate the model generated by 

DeLorean with POS. For this reason, we evaluated the method by measuring the 

“Roughness” of gene expression values of consecutively-placed cells in the inferred 

trajectory. Using the top 20 genes selected with ANOVA, we obtained a Roughness value of 

72.9 for DeLorean, while PCA-based ordering scored 72.5, indicating a slightly smoother 

transition of gene expression through the cells as projected with PCA. The same conclusion 

was obtained by applying different distance measures in place of Roughness to measure the 

total trajectory distance, namely Euclidean distance, cosine and correlation-based distances 

(data not shown). A null distribution was obtained computing the R score on sets of 

randomly ordered cells. After 1000 iterations, R scores obtained with DeLorean and 1D 

Pseudotime Scale were compared to the null distribution and p-values estimated as 

cumulative probabilities for each predicted path. Both 1D Pseudotime Scale and DeLorean 

orderings indicated a significant accuracy in reconstructing a smooth transition of 

transcriptomic values (P < 0.001 for both the approaches), with the PCA score being placed 

as more extreme compared to the left tail of the null distribution (see figure below). A 

measure of the similarity of the two orderings, as implemented in the TSCAN package and 

described in (Ji and Ji, 2016), indicated a similar placement of cells obtained with the two 

methods (similarity = 0.72).

Null distribution of Roughness obtained with random ordering
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Red and green arrows depict the Roughness values obtained by the 1D Pseudotime Scale 

and DeLorean, respectively.

Assessment of branching trajectories—The Wishbone method (Setty et al., 2016) 

was applied to explore bifurcating developmental trajectories, with the first three non-trivial 

diffusion components used to define a branched trajectory. As a starting point of the 

trajectory is required by the tool, we selected the first cell as projected by 1D-PCA. As 

shown with the dimensionality reduction method tSNE (t-distributed stochastic neighbor 

embedding), a branch was observed using Wishbone, with a limited number of cells 

deviating from the main trajectory. Similar results were obtained by choosing the cell with 

the lowest value of Insulin (Ins2) as a starting point, assuming that insulin levels increase 

during postnatal maturation, as well as by using different diffusion components (data not 

shown). By analyzing patterns of interest, we confirmed an increase in Ins2 and a decreasing 

pattern in Atf3 and Srf expression. As shown in the figure below, both branches identified by 

Wishbone showed these patterns, with slightly different dynamics in the two.

Cell association to different branches detected by Wishbone
tSNE map: cells belonging to the main trajectory are depicted in blue, cells deviating into 

two different branches are shown in green and red.
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Expression values of Ins2, Atf3 and Srf scaled in a (0-1) range and displayed across the cell 
trajectory identified by Wishbone
Following a bifurcation point, two cell trajectories belonging to different branches are 

depicted with dotted and dashed lines.

Comparison to external data sets—Bioinformatic comparison with published gene 

signatures from mouse and human studies was performed using Gene Set Enrichment 

Analysis (GSEA). A signature of alpha-cell signature genes found to be highly expressed in 

beta-cells from juvenile human donors (Wang et al., 2016) was analyzed for correlation with 

pseudotime coordinates, using GSEA as described in detail in the section “Pseudotime 

analysis of gene sets”. The same approach was used for a signature of differentially 

expressed genes between beta-cells from 3-month-old and 26-month-old mice (Xin et al., 

2016). Data from Xin et al. (Xin et al., 2016), including single-cell samples from 3-month-

old mice (P90), was normalized with SVA-seq to allow for comparison of samples from 

different laboratories, with the same set of negative control genes used for our single-cell 

data. The PCA model described in Equation 1 was used to project expression values of 

genes selected to infer the model, corresponding to the top quartile most variant genes in our 

single-cell data set (n=4313). The 1D Pseudotime Scale including projections of these 

additional samples is shown below. A quantitative measure of the heterogeneity of single 

cells was computed as the range R spanned of pseudotime coordinates for both P28 

(R=90.1) and P90 (R=91.5).

Projection of external data on the Pseudotime Scale
Cells from 3-month-old mice (P90) and their corresponding median projection are depicted 

in pink.
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Analysis of time-ordered and pseudo-binned time expression profiles—Genes 

with log-transformed RPKM > 1 in at least 2 cells, used in all subsequent analysis, were 

considered to construct time-ordered and pseudobinned-time expression profiles. The 

average of samples from each of the five time points was considered for each gene to obtain 

time-ordered profiles. Pseudotime profiles were constructed by assigning pseudotime-

ordered cells to five bins, each of them with size equal to the number of cells collected at the 

corresponding time point.

Pseudotime analysis of gene sets—Hallmarks and curated gene sets from KEGG, 

REACTOME and BioCarta part of the MSigDB compendium (http://

software.broadinstitute.org/gsea/msigdb/index.jsp) were used as annotated gene sets. Genes 

with log-transformed RPKM > 1 in at least 2 cells were clustered (Hierarchical clustering 

based on absolute values of Pearson correlation, Ward method) to obtain de novo gene sets. 

The Dynamic Tree Cutting method (R package ‘cutreeDynamic’ with minimum cluster size 

= 10, method = “hybrid”, deepSplit = 4) was used to obtain clusters. The GSEA tool (http://

www.broad.mit.edu/gsea) for continuous phenotypes was used to identify annotated and de 

novo genes with expression profiles correlated with the pseudotime trajectory. GSEA was 

run with the vector of pseudotime coordinates p = p(d1), … , p(d387) set as the “continuous 

phenotype” and significant gene sets with coordinated increasing or decreasing activity were 

selected with corrected P value < 0.25.

Pseudotime analysis of individual genes—Genes with log-transformed RPKM > 1 in 

at least 2 cells were ranked based on their correlation with pseudotime coordinates. 

Significance of correlation values was assessed on a set of 1000 randomly permuted gene 

expression profiles.

Identification of enhancer regions and motif analysis—To identify enhancer 

regions, we used previously published H3K27ac ChIP-seq datasets (GSM1677162 and 

GSM1677164). ChIP-seq peak identification, quality control, and motif analysis were 

performed using HOMER. Briefly, genome enriched regions of H3K27ac were identified 

using the ‘findPeaks’ command in HOMER with settings of ‘–style histone’: 500 bp peaks 

with 3-fold enrichment and 0.01 FDR significance over local tags. To identify active 

enhancers of target genes, enhancer sites defined by ChIP-seq enrichment of H3K27ac were 

filtered by the following criteria: (1) regions were at least 3 kb away from annotated TSSs; 

(2) regions were within 200 kb from annotated target gene TSSs. For motif analysis, 

transcription factor motif finding was performed on ± 200 bp relative to the peak center 

defined by ChIP-seq analysis using HOMER. Peak sequences were compared to random 

genomic fragments of the same size and G/C content was normalized to identify motifs 

enriched in the ChIP-seq targeted sequence.

Gene correlation analysis—To identify co-variation of proliferation-related genes with 

other selected genes, we measured Pearson correlation for each pair of pseudotime-ordered 

gene expression profiles in the selected categories. Proliferation-related genes retrieved from 

previous annotation (Buettner et al., 2015) were ranked by correlation with pseudotime 

coordinates and the 30 most down-regulated were compared with genes involved in amino 
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acid metabolism of interest, identified from the pseudotime analysis of individual genes. 

Similarly, the top 30 regulated among transcription factors (AnimalTFDB database, http://

www.bioguo.org/AnimalTFDB/) and oxidative phosphorylation-related genes (Gene 

Ontology database, http://amigo.geneontology.org/amigo/term/GO:0006119) were compared 

to proliferation genes. For each comparison, statistical significance of the global correlation 

of each category with proliferation genes was assessed by referring the average correlation 

of genes in the two groups to a null distribution obtained with random sampling, as 

described in the Statistics section.

Network analysis—Links between the top 90th percentile of pseudotime-regulated genes 

(n = 1389) were retrieved through the STRING repository (version 10.0, http://string-

db.org/). Only the most reliable protein associations were retained (combined confidence 

score > 0.7) and used to assign weights to each network link. Genes with annotation in the 

STRING database (n=1356) were prioritized using an interest propagation algorithm 

described previously (Mulas et al., 2013). Briefly, given a set of nodes of interest Gint, the 

method assigns ‘propagation scores’ to all the other nodes, with values proportional to their 

connectivity to Gint in the network. Transcription factors selected from the AnimalTFDB 

database (http://www.bioguo.org/AnimalTFDB/) and oxidative phosphorylation-related 

genes from the GO database (http://amigo.geneontology.org/amigo/term/GO:0006119) were 

used separately as initial nodes of interest and the top 90th percentile of the distribution of 

propagation scores obtained was used as a threshold to select the most relevant genes. 

Proliferation-related genes included in the network were retrieved from previous annotation 

(Buettner et al., 2015) and genes involved in mRNA processing were identified from their 

correspondent GO category (http://amigo.geneontology.org/amigo/term/GO:0006397).

Serum amino acid detection—Serum glutamine concentrations from P1 and P28 mice 

(n=4) were measured using a YSI 2950 enzymatic analyzer. To measure other amino acids, 5 

μl serum was mixed by vortexing first with 200 μl methanol (50% v/v in water with 20 μM 

L-norvaline as internal standard) and second with 100 μl of chloroform before centrifugation 

for 10 min at 13,000 rpm. The upper (polar) phase was dried, derivatized, and analyzed. 

Amino acids in samples were quantified against varied amounts of standards run in parallel 

using MetaQuant.

Glutamine uptake measurements—Overnight recovered P1 and P28 islets were 

washed in PBS, and then plated (50 islets/time point in triplicate) into 96 well plates in 100 

μl culture medium containing 2mM glutamine. After 24 hrs, supernatant and islets were 

collected separately. Wells without cells containing only media served as controls. 

Supernatants were centrifuged (10000 rpm for 10min, 4°C) and then stored at -80°C until 

analysis. Islets were lysed in RIPA buffer and protein concentrations for each well 

containing supernatant were measured. Glutamine concentrations in supernatants were 

measured using a YSI 2950 enzymatic analyzer. Glutamine uptake rates were calculated by 

subtracting experimental glutamine concentrations from control sample glutamine 

concentrations and expressed as pmol of glutamine per hour per microgram of cell protein. 

Three independent experiments were performed.
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Measurement of beta-cell proliferation with amino acid or nucleotide 
supplementation—Isolated islets from 4 to 6-week-old C57BL6 mice were cultured 

overnight, and then supplied with fresh medium supplemented with 1 mM of proline, serine, 

lysine, tyrosine (Sigma), glutamine for a total of 3 mM (Life Technologies), or nucleotides 

(1X GS Media Supplement, Millipore). Islets were then cultured for an additional 48 hours 

with the thymidine analogue EdU, which was added to the medium for the last 24 hours. 

Cell proliferation was detected with Click-iT EdU Alexa Fluor 488 (Life Technologies) and 

rabbit Alexa-Fluor-647-conjugated insulin mAb (Cell Signaling Technology) using BD 

FACSCanto II, and analyzed by Flowjo 8.7. Three independent experiments were performed.

Mitochondrial membrane potential and mitochondrial ROS detection by FACS 
analysis—P1 and P28 islets were allowed to recover overnight, dissociated with trypsin-

EDTA treatment for 5 min at 37 °C, and washed twice with Krebs solution containing 4 mM 

glucose. For detection of mitochondrial membrane potential, dissociated islet cells were 

incubated with 10 nM of the fluorescent probe TMRM (Life Technologies) and 200 nM 

MitoTracker Green (Life Technologies) for 1 h at 37°C in Krebs solution containing 4 mM 

glucose with or without 50 μM FCCP (Sigma). For detection of mitochondrial ROS, 

dissociated islet cells were incubated with 5 μM MitosoxRed (Life Technologies) and 200 

nM MitoTracker Green (Life Technologies) for 1 hour at 37 °C in Krebs solution containing 

4 mM glucose. Cells were washed with PBS once, scored by FACS using BD FACSCanto II, 

and analyzed by Flowjo 8.7. TMRM and MitosoxRed levels were normalized to 

MitoTracker Green. Three independent experiments were performed.

ΔΨm analysis—P1 and P28 islets were dispersed with accutase (Life Technology 

A1110501) for 10 min, plated on Greiner Cellview glass bottom 10 mm 4-compartment 

confocal dishes, and cultured overnight for recovery. The following day, dispersed cells were 

stained for 45 min with 15 nM TMRE (Life Technologies) and 200 nM MitoTracker Green 

in Krebs buffer under 4 mM glucose concentration after which they were washed twice with 

buffer containing 15 nM TMRE and 4 mM glucose. The cells were imaged on a Zeiss 

LSM880 confocal microscope. Then glucose was supplemented for a total of 16 mM 

glucose and cells were imaged at 30 min. Subsequently, 50 μM FCCP was added and cells 

were imaged at 10 min. The resulting images were quantified for fluorescence intensity in 

the red and green channels (TMRE and MitoTracker Green, respectively). Live cells were 

defined as having an at least 10% increase in the TMRE/MitoTracker Green ratio in 4 mM 

glucose compared with FCCP treatment. Relative change in ΔΨm was calculated by the fold 

change of TMRE/MitoTracker Green ratio in 16 mM glucose over 4 mM glucose.

Mitochondrial DNA quantification—To measure mitochondrial DNA copy number, 

total DNA from mCherry-sorted beta-cells from P1 and P28 mice was isolated using 

DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s instructions. 

Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) content were determined by real-

time PCR using specific primers for the mitochondrial cytochrome c oxidase subunit II 

(Cox2) gene and the nuclear gene Rsp18. The ratio of mtDNA to nDNA content was 

calculated for each time point. Experiments were performed four times.
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Immunohistochemistry, beta-cell mass measurements, and TUNEL assay—
Mouse pancreata were analyzed by immunostaining using the following primary antibodies: 

guinea pig anti-insulin (Dako), 1:1000; rabbit anti-Ki67 (Thermo Fisher Scientific), 1:200; 

rat anti-BrdU (Novus Biologicals), 1:250; goat-anti-GFP (Abcam), 1:1000; rabbit-anti-

MafA (Bethyl Labs), 1:1000; rabbit-anti-Pdx1 (Abcam), 1:500; rabbit-anti-Nkx6.1 

(LifeSpan BioSciences), 1:250; mouse-anti-glucagon (Sigma), 1:100; mouse-anti-

somatostatin (BCBC), 1:2000. Primary antibodies were detected with donkey-raised 

secondary antibodies conjugated to Cy3 or Cy5, (Jackson ImmunoResearch), and nuclei 

were counterstained with DAPI (Sigma) at 0.1 μg/ml. Images were captured on a Zeiss Axio 

Observer Z1 microscope with an ApoTome module and processed with Zeiss AxioVision 

4.8 software. For beta-cell mass measurements, images covering an entire pancreas section 

were tiled using a Zeiss Axio Oberver Z1 microscope with the Zeiss ApoTome module. The 

insulin+ and total pancreas areas were measured using ImageJ and beta-cell mass was 

calculated as follows: Insulin+ area/total pancreatic area. For examination of apoptosis, 

TUNEL analysis was performed using ApopTag Red In Situ Apoptosis Kit as specified by 

the manufacturer (Thermo Fisher Scientific).

GSIS assays—Islets were allowed to recover overnight, washed and pre-incubated for 1 

hour in Krebs solution containing 2.8 mM glucose. Afterwards, groups of 10 islets were 

transferred to a 96 well dish into solutions of 2.8 mM glucose or 16.8 mM glucose. After 

incubation for 1 hour, supernatant was collected and islets were lysed overnight in a 2% 

acid:80% ethanol solution. Insulin was then measured in supernatants and lysates using a 

mouse insulin ELISA kit (ALPCO). Secreted insulin was calculated as percentage of total 

insulin content.

Glucose tolerance tests—Mice were fasted for 6 hours after the onset of the light phase. 

Basal blood glucose was sampled at 0 min, and glucose administered by intraperitoneal 

injection at a dose of 1.5mg/kg of 10% glucose. Blood samples were taken at 20, 40, 60, 90, 

and 120 min after glucose administration.

Lentivirus production and transduction—GFP-tagged lentiviral plasmid (Origene 

PS100071) or GFP-tagged Srf lentiviral plasmid (Origene MR208120L2) was transfected 

with pCMV-R8.74 (Addgene 22036) and pMD2.G expression plasmid into HEK293T cells. 

Transfection was performed using PEIsolution (1 mg/ml) and lentiviral supernatants were 

collected at 48 hours and 72 hours after transfection. The lentivirus was further concentrated 

by ultracentrifugation at 4 °C. The titer ranged from 5x108 to 1x109 TU/ml.

Lentiviral transduction was carried out as follows: after isolation, islets were cultured 

overnight and treated with accutase for 10 min. 5x103 dispersed cells were seeded per well 

in a 96 v-bottom plate (Fisher Scientific, 12565481) and transduced with lentivirus at MOI 

5-6 in the presence of 0.8 ng/ml polybrene. Single cells were re-aggregated by centrifugation 

at 365 g for 5 min, and medium was changed after overnight culture.

RNA-seq analysis of lentiviral transduced islets—Cells were collected 72 hours 

after transduction and RNA was extracted using RNeasy Micro Kit (Qiagen). Three 

biological replicates of RNA-seq libraries were generated with SMART-Seq® v4 Ultra® 
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Low Input RNA Kit for Sequencing (Clontech) and Illumina Nextera XT DNA sample 

preparation kit (Illumina), multiplexed and sequenced on the HiSeq 4000 system (Illumina) 

using 50 bp single-end sequencing. On average, 25 million reads were generated from each 

library. Reads were mapped as described above by Cufflink. Differential gene expression in 

Srf-overexpressing and control samples was assessed by Cuffdiff. Gene sets for GSEA were 

defined as: i) genes up- or down-regulated along pseudotime (P < 0.05); ii) proliferation-

related genes regulated during pseudotime (P < 0.05).

Quantitative PCR analysis—DNA or cDNA from islets were mixed with SYBR 

GreenERTM qPCR Supermix Universal (Thermo Fisher Scientific) according to 

manufacturer’s protocol. Reactions were performed in a 96-well format using Biorad PCR 

system. Relative mRNA levels were calculated using the comparative CT method and 

normalized to Calm1 mRNA. A complete list of primers and sequences can be found below.

Primer Name Sequence

ms-Calm1-F GCTGCAGGATATGATCAACG

ms-Calm1-R GCTGCAGGATATGATCAACG

ms-Srf-F CTGACAGCAGTGGGGAAAC

ms-Srf-R GCTGGGTGCTGTCTGGAT

ms-Cox2-F ATAACCGAGTCGTTCTGCCAAT

ms-Cox2-R TTTCAGAGCATTGGCCATAGAA

ms-Rsp18-F TGTGTTAGGGGACTGGTGGACA

ms-Rsp18-R CATCACCCACTTACCCCCAAAA

ms-Pim2-F GAGGCCGAATACCGACTTG

ms-Pim2-R CCGGGAGATTACTTTGATGG

ms-Pim3-F ACATGGTGTGTGGGGACAT

ms-Pim3-R ATAAGCTGCTGGCACTCTGG

ms-Sik1-F GACGGAGAGCGTCTGATACC

ms-Sik1-R GGTCCTCGCATTTTTCCTC

ms-Plk2-F TGAAGGTGGGAGACTTTGGT

ms-Plk2-R TGGGGTTCCACATATTGTTCT

ms-Apitd1-F CCGCAGGAGTTCTCTCACC

ms-Apitd1-R GAGACAGCCGACCGTGTAGT

hu-Catalase-F TCATCAGGGATCCCATATTGTT

hu-Catalase-R CCTTCAGATGTGTCTGAGGATTT

Quantification and Statistical Analysis

Quantification—For beta-cell mass measurements, four to six sections, at least 100 μm 

apart, from each pancreas were tiled using a Zeiss Axio Oberver Z1 microscope with the 

Zeiss ApoTome module. The insulin+ and total pancreas areas were measured using ImageJ 

and beta-cell mass was calculated as follows: Insulin+area/total pancreatic area. For all 
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quantifications of proliferation, apoptosis and markers, at least 500 beta-cells per mouse 

were examined.

Statistical Analysis

Experimental comparisons: All experiments were independently repeated at least three 

times. Results are shown as means ± SEM. Statistical analyses were conducted using Prism 

5 software (GraphPad Software). Statistical comparisons between groups were analyzed for 

significance by an unpaired two-tailed Student’s t test or paired two-tailed Student’s t test. 

Glucose tolerance testing significance was determined by one-way ANOVA. Differences are 

considered significant at p < 0.05. The exact values of n, statistical measures (mean ± SEM) 

and statistical significance are reported in the figures and in the figure legends.

GSEA significance: Significance for GSEA results was assessed with 1000 permutations 

and FDR was used to correct for multiple testing. The exact thresholds used for FDR-based 

selection are specified in the Results.

Permutation-based significance: Random sampling and bootstrap approaches were used to 

obtain null distributions and confidence intervals, respectively, with the number of iteration 

set to 1000. Null distributions of different scores, including Roughness, fold change of 

consecutive time (and pseudo-) time points and gene correlations with pseudotime, were 

obtained by computing the scores on randomly ordered samples. Null distributions for 

average correlations of gene groups were obtained by randomly sampling sets of genes from 

the data, with sizes equal to the number of genes in each group under study. For each score 

tested, a P value was estimated as a cumulative probability from the corresponding null 

distribution. The confidence interval of the POS score for the PCA-based ordering was 

estimated with a bootstrap procedure, whereby random sets of cells were sampled with 

replacement by maintaining the same proportion of cells from the different stages.

Significance of proportions: Significance of overlaps between lists of genes resulting from 

the network propagation analyses with proliferation- or mRNA processing-related genes was 

assessed through a one-tailed Fisher Exact test, as implemented in the Python library 

scipy.stats.

Data and Software Availability

Data—The accession number for the RNA-seq data reported in this manuscript is NCBI 

GEO: GSE86479. The accession number for the H3K27ac ChIP-seq and input datasets is 

GSM1677162 and GSM1677164, respectively, and available in NCBI GEO: GSE68618

Software—Custom R and Python scripts are provided as Data S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single-cell RNA-sequencing of beta-cells during postnatal development
A. Experimental overview. B. Correlation between average transcript levels of all genes 

detected in single cells and bulk cells. For single cells, gene expression was averaged across 

individual cells collected at different time points. Points are colored by postnatal (P) day 

collected (P1, red; P7, green; P14, blue; P21, orange; and P28, black). The same color-

coding for groups was used across all figures. Pearson correlation coefficients r are given. C. 
Expression analysis of select genes showing variability in gene expression among single 

cells of the same age. Each point represents the gene expression level of an individual cell. 

Black bars represent the average of pooled single cells. D. Pairwise correlation of single-cell 

gene expression showing biological variation among single cells of the same age. The 

distribution of the pairwise Pearson’s correlation coefficients between single cells is plotted. 

E. Multidimensional scaling of single cell transcriptomes. The distance between any two 

cells reflects the similarity of their expression profiles. See also Figure S1 and Table S1.
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Figure 2. 1D-PCA orders beta-cells by maturation progression
A. Workflow to generate a 1D-PCA-based pseudotemporal trajectory. Raw gene expression 

data was normalized by SVA-seq and processed using Median Absolute Deviation (MAD) to 

obtain the most variant genes. Cells were placed along a 1D trajectory that represents each 

cell’s likely placement along a continuum of maturation. B. Pseudotime ordering of single 

cells using 1D-PCA. Each data point represents a single cell colored by age collected. 

Median placement of cells from each age is marked on the pseudotime axis (black arrow). 

C. Samples were assigned to five groups based on time collected (left) or pseudotime 

ordering (right, pseudo-binned time). Each pseudo-binned time-ordered group contained an 

equal number of cells to that of the corresponding time-ordered point. D. Expression profiles 

of selected genes ordered by time collected (top panels), pseudo-binned time (middle 

panels), or pseudotime (bottom panels). See also Figure S2; S3 and Table S2, S3.
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Figure 3. Postnatal beta-cell development is associated with expression changes of genes 
regulating amino acid uptake and metabolism, mitochondrial respiration, and ROS production
A. Schematic of workflow. To identify genes regulated during pseudotime, continuous 

GSEA was performed on annotated gene sets and de novo gene sets obtained by hierarchical 

clustering. B. Molecular pathways regulated in pseudotime from annotated gene sets. C. 
Heatmap showing average transcript expression of all genes within de novo gene sets 

showing significant correlation with pseudotime ordering (C1-C9). Number of genes in each 

set is shown on the right. D. Heatmaps for each de novo gene set showing expression of 

selected genes involved in cell proliferation (red), insulin secretion (green), regulation of 
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ROS (black), mitochondrial function (orange), immediate early genes (purple), and amino 

acid metabolism (blue) with pseudotime. See also Figure S4 and Table S4.
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Figure 4. Amino acid supplementation increases beta-cell proliferation
A. Amino acid transporter and metabolism genes downregulated with pseudotime with 

Pearson correlation coefficients. B. Heatmap showing Pearson correlation of gene 

expression in all 387 beta-cells comparing proliferation genes with genes encoding amino 

acid transporters and metabolizing enzymes downregulated with pseudotime. Proliferation 

genes are depicted in rows and amino acid transporters and metabolizing enzymes in 

columns. C. Plasma concentration of individual amino acids in mice at P1 (blue) and P28 

(red). Data shown as mean ± SEM (n= 4 mice per group). D, E. Percentage of EdU+ beta-

cells (D) and non-beta-cells (E) in islets from mice at P28 supplemented with nucleotides or 

amino acids. F. Quantitative RT-PCR analysis of proliferation genes after supplementation 

with serine, tyrosine or nucleotides. mRNA levels in control islets were set as 1. G. 
Glutamine uptake in mice at P1 (blue) and P28 (red). H. Schematic summarizing the 

observed gene expression changes during beta-cell maturation and effects on proliferation. 

In E-G, data are shown as mean ± SEM of three independent experiments. TCA, 

tricarboxylic acid cycle; Gls, glutaminase; Slc, solute carrier. * P < 0.05, ** P < 0.01, *** P 
< 0.001.
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Figure 5. Mitochondrial ROS production promotes beta-cell proliferation
A. FACS analysis of TMRM fluorescence intensity. Blue: postnatal day (P) 1 without FCCP; 

Green: P1 with FCCP; Red: P28 without FCCP; Purple: P28 with FCCP. Mitochondrial 

TMRE/MitoTracker Green uptake ratio is shown on the right. B. Schematic of pathways 

regulating ROS clearance by antioxidant enzymes. C. Downregulated genes with 

pseudotime involved in ROS regulation with their Pearson correlation coefficient. D. FACS 

analysis of MitosoxRed fluorescence intensity at P1 (blue) and P28 (red). Mitochondrial 

MitosoxRed/MitoTracker Green ratios are shown on the right. E. Schematic of alleles in 

RIP-Cre;mCAT;R26YFP mice (mCAT mice). Red triangles indicate loxP sites. F, G. 
Representative immunofluorescence staining for insulin (green), BrdU (red), and DAPI 

(blue) (F) and quantification of the percentage of beta-cells expressing BrdU (G) in 6-week-

old control (RIP-Cre) and mCAT mice. White arrows indicate Ins+Ki67+ cells in (F). H. 
Quantification of the beta-cell area relative to total pancreatic area in 6-week-old mCAT and 

control mice. Data shown as mean ± SEM of three independent experiments (A,D) or three 

mice per group (G,H). Scale bar= 20 μm. SOD, superoxide dismutase; GR, glutamate 

receptor; GSH, glutathione; GSSG, glutathione disulfide; GPX, glutathione peroxidase; 

CAT, catalase; TRX, thioredoxin; PRX, peroxidase. * P < 0.05, ** P < 0.01. See also Figure 

S5.
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Figure 6. Transcription factors and target genes regulated during postnatal beta-cell 
development
A. Workflow to identify TFs driving gene expression changes during pseudotime. Cis-

regulatory analysis was performed on the most significant genes positively and negatively 

correlating with pseudotime (P <0.01) followed by annotation of TF binding motifs at their 

enhancers. B, C. Top TF binding motifs for up-regulated genes (B) and down-regulated 

genes (C) during pseudotime. Enrichment P values are shown. D. The top 2 up-regulated 

(red) and top 30 down-regulated (blue) TFs regulated with pseudotime with their Pearson 

correlation coefficient. E. Network of interactomic connections of TFs regulated during 

pseudotime with other pseudotemporally regulated genes. Green nodes represent TFs while 

light blue nodes represent pseudotemporally regulated genes. The size of the nodes is 

adjusted proportionally to the correlation coefficient of the gene expression level with 

pseudotime coordinates. Genes in red are associated with cell proliferation. See also Figure 

S6 and Table S5; S6.
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Figure 7. Srf regulates proliferation genes in beta-cells
A. Heatmap showing Pearson correlation of gene expression profiles in all 387 beta-cells 

comparing proliferation genes with top pseudotemporally-regulated oxidative 

phosphorylation genes and TFs. Proliferation genes are depicted in red, oxidative 

phosphorylation genes in orange and TFs in black. B. Overview of RNA-seq analysis of 

lentiviral Srf overexpression in islets at P28. C. GSEA plots showing enrichment of 

proliferation genes regulated during pseudotime (left) and genes down-regulated during 

pseudotime (right) as an effect of Srf overexpression. RNA-seq data are from three 

independent transduction experiments. D. RPKM values of TFs Fos, Junb and Egr1 (top 

panel) and proliferation genes Mki67, Pcna and Ccne1 (bottom panel) in RNA-seq data from 

control and Srf-overexpressing islets. Data shown as mean ± SEM. E. Summary of 

metabolic regulators and effector TFs driving early neonatal beta-cell proliferation as 

revealed by reconstructing a pseudotemporal time course of beta-cell maturation, 

experimental validation, and prior literature. ** P < 0.01, *** P < 0.001. See also Figure S7 

and Table S7.
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