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Abstract

In the context of an organism, epithelial cells by nature are designed to be the defining barrier 

between self and the outside world. This is especially true for the epithelial cells that form the 

lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful 

substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, 

mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From 

a cell biology perspective, this type of exposure would directly impact the plasma membrane, 

which consists of a myriad of complex lipids and proteins. The plasma membrane not only 

functions as a barrier but also as the medium in which cellular signaling complexes form and 

function. This property is mediated by the organization of the plasma membrane, which is 

exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) 

regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact 

with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane 

organization underlies the chemoprotective effect of select membrane targeted dietary bioactives 

(MTDBs).
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Introduction

Chronic diseases and conditions such as heart disease, stroke, cancer, type 2 diabetes, 

obesity and arthritis account for the vast majority of health spending in the U.S. While 

today’s situation is grave, the chronic disease crisis looms even larger in the future. This is 

supported by claims that if the current trends continue, by 2025, chronic diseases will affect 

an estimated nearly half of the U.S. population[1]. In addition, the number of cancer cases 

diagnosed annually by 2050 is likely to double as a result of population aging. Therefore, if 

the healthcare community hopes to head off the coming storm, we need to expand efforts in 

chronic disease prevention soon[2]. Heading off this escalating burden of age-related 

illnesses requires an emphasis on primary (cancer) prevention research and training in 

cancer-related lifestyle decisions, including diet and exercise[2]. Unfortunately, less than 

1.5% of total biomedical research funding is targeted to early detection and prevention of 

chronic disease[3]. As an example, colorectal cancer (CRC) is the third most common type 

of cancer in the U.S., accounting for roughly 8% of new cancer cases and 9% of cancer 

deaths in 2014[4]. Overall, CRC incidence and mortality rates have decreased in the past 20 

years, attributed largely to use of CRC screening and polypectomy in adults over 50 years of 

age. However, among adults younger than 50 years, for whom screening is not 

recommended if at average risk, CRC incidence rates have been increasing by ~2% per year 

since 1994 in both men and women[4]. While genetic factors account for some of the CRC 

risk, environmental factors account for the majority of risk[5]. Here, we describe the future 

challenges to the cancer field regarding the identification of additional molecular 

mechanisms that can be targeted as part of novel prevention strategies.

1. Dietary chemoprevention and CRC risk

CRC risk could be greatly reduced through dietary modification, including increased dietary 

fiber intake and reduced fat intake[6]. With respect to dietary fat intake, in observational 

studies, the evidence is mixed for associations between total dietary fat, specific types of fat, 

and CRC[7]. Omega 3 (n-3; α-linolenic acid, ALA) and omega 6 (n-6; linoleic acid, LA) 

polyunsaturated fatty acids (PUFA) are essential nutrients that are incorporated into tissue 

membranes, and modulate a variety of physiologic roles, including production of 

eicosanoids[8] and pro-resolving lipid mediators[9,10]. Most noteworthy are the long-chain 

n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are found 

in fish oils[11]. Although long chain n-3 PUFA can be metabolically generated from ALA, 

the process is not very efficient in humans[12]. Additionally, there is competition with long-

chain n-6 PUFA synthesis, di-homo-gamma-linolenic acid, and arachidonic acid (AA), 

which are produced from LA, and are found in much greater abundance in a typical Western 

diet[13]. In general, n-6 PUFA are pro-inflammatory whereas mediators produced from n-3 

PUFA tend to have opposing effects and exhibit anti-inflammatory properties[14,15]. 

However, cases of n-3 PUFA exhibiting immune enhancing properties do exist[16,17]. Given 

the strong association between inflammation and CRC[18], higher intakes of n-3 PUFA 

provide biological plausibility for a chemoprotective effect[8,19]. Indeed, experimental 

preclinical models consistently show reduced CRC risk with n-3 PUFA[20–24]; however, 

epidemiologic data are inconsistent and the majority of studies did not include PUFA intake 

from supplemental fish oil[25–29]. Two meta-analyses have concluded that fish intake is 
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associated with decreased risk of CRC[30,31]; however, two systematic reviews of n-3 

PUFA on cancer risk qualitatively concluded that there is inadequate[32] or limited[28] 

evidence to suggest an association between long-chain n-3 PUFA intake and CRC risk. In 

contrast to the epidemiologic literature, in an endoscopy-based case-control study on 

colorectal adenomas, serum n-3 PUFA levels were inversely associated with colorectal 

adenoma risk [33]. Recently, in the VITamins And Lifestyle (VITAL) cohort, it was noted 

that persons using fish oil supplements on 4+ days per week for 3+ years experienced 49% 

lower CRC risk than nonusers [34].

With respect to clinical studies, mounting evidence suggests that the consumption of fish oil 

may reduce colon cancer risk in humans[35–41]. EPA and DHA appear to be ideally suited 

to work either alone or in combination with chemoprotective drugs[42]. Recently, it was 

demonstrated that EPA reduced rectal polyp number and size in patients with familial 

adenomatous polyposis (FAP)[19,43]. Most impressive was the fact that fish oil derived n-3 

PUFA suppressed FAP to a degree similar to the selective COX-2 inhibitor celecoxib. 

Ongoing clinical trials (Clinical Trials.gov) are currently examining the effects of EPA on 

subjects at high risk of CRC (NCT02069561); the combinatory role of EPA and DHA in 

reducing rectal cancer risk (NCT02534389), and the combinatory role of EPA and NSAIDs 

on polyp recurrence in the colon (NCT01070355; ISRCTN05926847)[44,45]. Collectively, 

these data indicate that n-3 PUFA hold promise as chemoprevention agents. Hence, 

establishing a causal role of n-3 PUFA in colon cancer prevention would have a major 

translational impact because these dietary nutrients are safe, well tolerated[46], relatively 

inexpensive and provide additional health benefits[47–49]. In addition, the ingestion of n-3 

PUFA in combination with other agents with complementary anti-tumor action, e.g., 

curcumin[50–55] and drugs[56],may improve their efficacy in colon cancer prevention/

therapy. However, before a drug-nutrient combination approach can be adopted, it is 

imperative that we fully elucidate the molecular mechanisms of action.

Polyphenolic and terpenoid phytochemicals have become increasingly popular with 

consumers in part because of their putative health benefits. Of these, turmeric (Curcuma 
longa Linn) extracts, including curcumin (diferuloylmethane), a yellow color pigment of 

turmeric, have been shown to suppress colitis and colon cancer development in experimental 

models and placebo controlled clinical trials[56–63]. Ongoing clinical trials (Clinical 

Trials.gov) are currently examining the role of curcumin with respect to aberrant crypt foci 

(NCT00365209), cell proliferation and apoptosis in colonic mucosa (NCT00118989), drug 

combination therapy (NCT00745134), and treatment of FAP (NCT00927485, 

NCT00641147)[64]. Recent data from one of these Phase IIa clinical trials indicates that 

consumption of curcumin at 4 g per day for 30 days significantly (by 40%) reduces aberrant 

crypt foci (ACF) number in men and women, >40 years of age with a history of smoking 

and 8 or more rectal ACF by magnification chromoendoscopy[65]. Importantly, several 

studies have confirmed that curcumin is well tolerated in humans and is directly 

incorporated into colonic mucosa[65,66].

n-3 PUFA and curcumin paradoxically increase injury scores in an inflamed animal model 

[52], while the same n-3 PUFA dose has beneficial effects in a colon cancer model [67]. 

Along these lines, it has been demonstrated that fish oil feeding increases colon 
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inflammation in a genetically susceptible mouse model [68], while exhibiting a chemo-

protective tumor suppressing effect in an inflamed colon cancer animal model [69]. These 

findings suggest that adverse effects associated with preclinical studies may depend on the 

animal model and treatment dose/duration. In contrast, the majority of n-3 PUFA and 

curcumin associated clinical studies have reported beneficial outcomes (Table 1). For 

example, n-3 PUFA reduce rectal polyp number and size in FAP [43] and curcumin reduces 

aberrant crypt foci formation [65]. No adverse effects were reported following high dose n-3 

PUFA [70] and curcumin [71] treatment.

As a major component of the Mediterranean diet[72], walnuts (Juglans regia L.) contain a 

number of nutritional bioactive compounds, including PUFA, tocopherols, and membrane 

targeted dietary bioactive (MTDB)-like phenolic compounds, e.g., procyanidins[73–78]. 

Although intact procyanidins have some systemic biological activity, they are poorly 

absorbed and pass into the distal intestine (colon) where they are further metabolized by gut 

microbes to generate monomeric catechin and epicatechin compounds along with other 

dimers-hexamer species[79–81]. These microbial metabolites can interact with the apical 

membranes of colonic epithelial cells (Figure 1). Recent evidence from our lab and others 

suggest that the phenolic compound (+)-catechin, and its dimeric form procyanidin B2 can 

alter the biophysical properties of cell plasma membranes[82,83] (Figure 2), similar to what 

has been observed with other MTDB’s such as n-3 PUFA and curcumin[8,84–86]. 

Interestingly, walnuts have been shown to inhibit the growth of human cancer cell 

lines[87,88], and colon cancer in mouse models[89–91], similar to what has been 

demonstrated with other MTDB’s such as n-3 PUFA[8,23,69,92–95]. In addition, a meta-

analysis concluded that nut consumption is associated with decreased risk of cancer 

mortality, further supporting the inclusion of nut consumption for cancer prevention[96]. 

However, the properties of procyanidins that contribute to a reduction in cancer risk have not 

been well characterized. In comparison, tocopherols exert beneficial properties by promoting 

plasma membrane repair[97], and attenuate oxidation of polyunsaturated 

phospholipids[98,99].

2. Putative mechanisms of MTDB action: Importance of nanoclustering as a dominant 
feature of plasma membrane organization

One of the criticisms facing the dietary chemoprevention field is the fact the dietary 

bioactives, i.e., constituents in foods or dietary supplements other than those needed to meet 

basic human nutritional needs [100], appear to be pleiotropic and affect diverse 

physiological processes including cell membrane structure/function, eicosanoid signaling, 

nuclear receptor activation, and inflammatory responses. Investigators are challenged to 

explain and unify these apparently disconnected signaling nodes. We propose a unifying 

mechanistic hypothesis to explain the function of these bioactives. Specifically, we postulate 

that n-3 PUFA and curcumin / curcuminoids / procyanidins fall into a unique class of 

MTDB’s which, because of their unique amphiphilic properties, are capable of modulating 

plasma membrane hierarchical organization, leading to the disruption of oncogenic 

signaling, and thereby ultimately reduce tumor growth.
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With respect to membrane structure, the plasma membrane is composed of a heterogeneous 

mixture of lipids and proteins, whose distinct order maintains efficient signal transduction. 

Membrane lipids can undergo phase separations and interact selectively with membrane 

proteins and sub-membrane cytoskeletal elements[101]. Although, still controversial in 

nature, lipid rafts are believed to be dynamic and small (10–200 nm) membrane 

microdomains enriched in sphingolipids and/or cholesterol, which function as sorting 

platforms for many membrane-associated proteins[102–106]. Stabilization of these domains 

is generally thought to be maintained by lipid and cytoskeletal influences[107,108]. Recent 

evidence suggests that lipid rafts may modulate the malignant transformation process. For 

example, the levels of lipid rafts are increased in many types of cancer[109–111]. There is 

also evidence suggesting that disruption of lipid rafts in cancer can lead to increased 

responsiveness to anti-cancer therapies[112,113]. Additionally, some anti-cancer drugs have 

beneficial effects through alteration of the protein content of lipid rafts[114,115]. In colon 

cancer, lipid rafts have been shown to function in cell death-mediated signaling[116,117], 

cell entry/bioavailability of bioactive compounds[118], and localization of key proteins 

involved in immune response[119]. These findings indicate that lipids can no longer be 

ignored in the structures of membrane complexes, due to their ability to fine-tune and 

stabilize different signaling interfaces[120–122].

Highly relevant to the cancer biology field, it is now recognized that the geometry of 

biological membranes is tightly intertwined with signal processing capability[123]. 

According to this emerging picture, protein and lipid nanoclusters can be organized to form 

domains that are capable of facilitating signaling events[124–126]. The formation of dimers/

nanoclusters is believed to be driven by cortical actin and/or proximal transmembrane 

proteins[124]. Currently, protein-protein, lipid-lipid and protein-lipid nanoclusters are 

considered a predominant feature of the plasma membrane and appear to mediate critical 

signaling processes[126], including signal integration and cross talk of the transduction of 

oncogenic Ras and the epidermal growth factor receptor (EGFR)[126–128] regulated 

pathways. This is noteworthy, because there is emerging evidence that drugs and MTDB’s 

can attenuate Ras and EGFR[126,129] activity by modulating nanocluster organization. In 

accordance with these findings, we hypothesize that MTDB’s are capable of disrupting 

clustering/dimerization of membrane associated proteins, leading to attenuation of 

downstream oncogenic signaling and the suppression of tumor growth (Figure 3).

3. Effects of MTDB’s on membrane organization and signaling

There is a growing body of in vitro and in vivo evidence indicating that MTDB’s reshape 

plasma membrane domains. For example, EPA and DHA, whose levels are readily 

influenced by diet in general [130], affect diverse physiological processes including cell 

membrane structure/function and signaling[8,84]. n–3 PUFA are rapidly incorporated into 

cells, primarily into membrane phospholipids at the sn-2 position[131,132]. Specificaly, 

DHA is known to influence membrane fluidity, ion permeability, fatty acid exchange, and 

resident protein function [133,134], including the inhibition of EGFR signaling in tumor 

bearing mice by reducing localization of EGFR to lipid rafts [69]. The presence of long 

chain n-3 PUFA in membrane phospholipids imparts unique physicochemical properties 

which have been linked to alterations in plasma membrane structure and function and its 
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pleiotropic chemoprotective effects[122,132,135–138]. Interestingly, other MTDB’s known 

to reshape membrane domains, e.g., curcumin, capsaicin, and glycyrrhizin, exhibit similar 

properties[139–145]. For example, curcumin inserts deep into the membrane in a trans-

bilayer orientation, anchored by hydrogen bonding to the phosphate group of lipids in a 

manner analogous to cholesterol. Similar to cholesterol, curcumin induces segmental 

ordering in the membrane [139,146,147]. These properties may explain why curcumin can 

suppress EGFR localization to lipid rafts decreasing EGF stimulation in cells [148]. 

Although intact procyanidins have some systemic biological activity, they are poorly 

absorbed and pass into the distal intestine (colon) where they are further metabolized by gut 

microbes to generate monomeric, dimers-hexamer species[79–81]. These microbial 

metabolites interact with the apical membranes of colonic epithelial cells (Figure 1). Recent 

evidence from our lab and others suggest that the phenolic compound (+)-catechin, and its 

dimeric form procyanidin B2 can alter the biophysical properties of cell plasma 

membranes[82,83] (Figure 2), similar to what has been observed with other MTDB’s such 

as n-3 PUFA and curcumin[8,84–86]. These findings are consistent with previous 

observations that procyanidins have the ability to modulate membrane biophysical 

properties[82,83].

To further evaluate the effects of procyanidins compounds on plasma membrane 

organization, we utilized the polarity sensitive dye di-4-ANEPPDHQ (Di4). We utilized Di4 

over the commonly used dye, laurdan, because Di4 exhibits slower internalization kinetics in 

live cells[149,150]. This provides a more representative measure of plasma membrane 

organization. In addition, although laurdan and Di4 are both used to quantify membrane 

order[151], recent findings highlight the fact that they probe different properties of the 

membrane, with Di4 being more sensitive to cholesterol status[152]. Di4 excites at 488 nm 

and its emission maximum emits at 565 nm or 605 nm in ordered and disordered 

membranes, respectively[149,151]. We chose the in vitro young adult mouse colonocyte 

(YAMC) cell model expressing oncogenic HRasG12V[153] as a representation of normal 

colonocytes on the route to malignancy[154]. These cells typically exhibit upregulated 

macropinocytosis[155], which is the cellular process of nonselective endocytic uptake of 

extracellular lipids and proteins driven by membrane-lipid and cytoskeletal 

remodeling[156,157]. Macropinocytosis provides the fuel for Ras-driven tumor growth 

resulting in altered metabolism[155,158], which creates a dependency that can be exploited 

as a pharmacological target[159,160]. To specifically further assess how exogenous 

treatments affect the plasma membrane, we generated giant plasma membrane vesicles 

(GPMVs) which retain most of the full diversity of native membrane components, but lack 

cytoskeletal attachment[161]. This type of reductionist approach allows us to probe specific 

questions regarding the interaction between diet-derived bioactives and lipid membranes 

without the complication of compensatory mechanisms imparted by the live cell such as 

membrane tension[162] and cytoskeletal remodeling[108]. GPMVs were isolated from 

YAMC-HRasG12V cells pre-labeled with Di4 and incubated with varying doses of (+)-

catechin and procyanidin B2 (Figure 2C&D). We utilized a wide range of doses (1–10 uM) 

which have been associated with circulating levels in vivo (0.1–3 uM) [163–168], and higher 

doses (100 uM) that are present in the lumen of the colon[79,169–172]. A short incubation 

time frame (30 min) was used to mimic the passage of these compounds through the colon, 
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and avoid large changes in gene or protein expression that may occur during longer 

incubation periods. Membrane order of GPMVs was then determined using imaging based 

flow-cytometry. Interestingly, (+)-catechin dose-dependently reduced membrane rigidity 

while procyanidin B2 increased rigidity. We subsequently used confocal microscopy to 

determine if the same effects would occur in live cells (Figures 2E&F), which are generally 

more refractive to plasma membrane changes[173,174]. Surprisingly, both compounds 

decreased membrane rigidity in intact cells. Internalization of fluorescently labeled dextran 

was used as an indicator of macropinocytosis[175], which was quantified by image based 

flow-cytometry. Incubation of cells with low doses of these compounds attenuated epidermal 

growth factor (EGF) stimulated macropinocytosis, with procyanidin B2 exhibiting greater 

inhibitory activity (Figure 2G&H). These proof of principle experiments demonstrate how 

procyanidin based MTDBs can modulate cellular processes including plasma membrane 

organization in both a cytoskeletal dependent and independent manner.

4. Potential effects of MTDB’s on cancer development and stem cells

It is noteworthy that many proteins involved in colon cancer cell signaling, including 

transmembrane receptors and G proteins, localize to lipid rafts[109] and nanocluster[176]. 

For example, the EGFR, a tyrosine kinase that plays a critical role in cell proliferation and 

resistance to cancer therapy[177], requires lipid raft localization and nanoclustering for 

efficient signaling[112,176,178]. n-3 PUFA in part through a reduction in lipid raft 

cholesterol composition, displace EGFR from rafts, leading to an altered phosphorylated 

state[179–181]. This in turn has been linked to the suppression of colonocyte downstream 

signaling events involving EGFR, such as phosphorylation of ERK1/2, STAT3, Akt and 

activation of H- and KRas[92,136,181].

As mentioned above, since changes in plasma membrane structure alter receptor-mediated 

cell signaling[182], there is mounting interest regarding the use MTDB’s to modulate 

membrane-mediated signaling pathways and their target genes. Consistent with the fact that 

DHA has been shown to significantly alter plasma membrane lipid raft composition 

[136,138], our lab recently demonstrated that n-3 PUFA alter EGFR lipid raft localization 

and HRAS, KRAS and NRAS activation [181]. These findings can be attributed to the fact 

that prolonged intake of dietary lipids modifies membrane order[183]. Interestingly, other 

MTDB’s, e.g., curcumin, have been shown to alter localization of α6β4/EGFR to lipid 

rafts[184]. It is noteworthy that the ordering effect of curcumin is strongest in the head 

group region of the phospholipid bilayer[139,185], whereas n-3 PUFA acyl chains impact 

the organization of the tail group region within rafts[186–188] implying that these bioactives 

may act synergistically at the membrane.

Wnt signaling is important for the maintenance of stem cells of various lineages. A classic 

example is in the digestive tract, where in the crypt of the colon the loss of transcription 

factor TCF4 leads to depletion of stem cells[189]. Dysregulation of Wnt/β-catenin signaling 

via genetic alterations of APC, β-catenin or Axin2 drives stem cell hyperproliferation which 

promotes colorectal cancer[190–192]. In contrast, neonatal mice lacking TCF4 exhibit 

reduced proliferation in the crypt [189]. These findings are consistent with the fact that 

chronic upregulation of Wnt signaling in Lgr5 positive stem cells drives colon cancer[193]. 
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Interestingly, from a membrane perspective, Wnt signaling components, e.g., Lypd6 and 

CK1γ, have been shown to mainly localize to lipid rafts in the plasma membrane[194]. This 

is noteworthy, because lipid rafts play a fundamental role in mediating multiple cell 

functions, including signal transduction[195]. LRP6 is localized to both raft and non-raft 

fractions but its phosphorylation by GSK-3 and CK1γ, essential for the Wnt-dependent 

accumulation of β-catenin, resides primarily in lipid rafts, not in the non-lipid raft[196]. 

Thus, it has been proposed that the localization of these proteins to lipid rafts actively 

contributes to the stabilization of β-catenin[197,198]. Based on these findings, we propose 

that MTDB’s may modulate the Wnt signaling pathway.

5. Summary

With respect to all human malignancies, 35% are linked directly to diet and an additional 

14-20% to obesity[5]. Consistent with these data, cancer risk can be lowered by 36% when 

humans adhere to healthy dietary principles, e.g., high intake of fruits, vegetables, and whole 

grains and low meat consumption[199]. Therefore, it is imperative that health professionals 

make sound dietary/lifestyle recommendations. However, even though there are many 

observational / epidemiological studies linking diet and cancer risk, the association cannot 

be easily explained mechanistically. Therefore, establishing a causal role for cancer dietary 

chemoprevention approaches that are generally free of safety problems intrinsic to drugs 

administered over long periods of time would have a major translational impact in cancer 

prevention and patient survivorship[46,199]. In view of this need, our long-term goal is to 

better understand the molecular mechanisms modulating cell responses to MTDB’s. 

Specifically, we propose that by altering cell membrane nanoscale assemblies, and possibly 

protein spatial localization and signaling, that select amphiphilic dietary agents, e.g., n-3 

PUFA, curcumin, procyanidins, will reduce oncogenic signaling and cancer risk.
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Diet-derived polyphenolic compounds disrupt oncogenic Ras-driven dependencies
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Figure 1. Putative role of microbial metabolites of procyanidin based dietary bioactives as 
modulators of colonocyte membrane-dependent oncogene signaling and cancer risk
We hypothesize that select poorly digestible dietary-microbial derived bioactives can 

promote a chemoprotective cell membrane microenvironment in the colon.
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Figure 2. Procyanidins modulate colonocyte plasma membrane organization
In order to determine if microbial metabolites of procyanidins directly modulate plasma 

membrane biophysical properties (membrane order), immortalized young adult mouse 

colonocyte (YAMC) cells expressing oncogenic HRasG12V were incubated with a 

membrane order sensitive dye Di-4-ANEPPDHQ (5 uM) for 30 min prior to generation of 

giant plasma membrane vesicles (GPMVs). GPMVs were incubated with, (A) (+)-Catechin, 

or (B) Procyanidin B2, for at least 30 min, followed by determination of GPMV generalized 

polarization (GP) by (C) imaged based flow cytometry using an Amnis FlowSight system. 

Emission wavelengths of 480-560 and 640–745 were used for ordered (Green) and 

disordered (Red) channels, respectively. (D) GP was defined as the integrated fluorescence 

intensity from the ordered channel minus that of the disordered channel normalized by the 

total intensity (sum of the two channels). Quantification of membrane order is represented as 

mean GP, normalized to the untreated control for at least 4000 individual vesicles from two 

separate experiments. Statistical significance between untreated control and treatments 

(*P<0.05) was determined using 1-way ANOVA and Dunnett’s multiple comparisons test. 

(E) To determine if microbe derived metabolites indirectly modify plasma membrane 

biophysical properties, membrane order was also determined in live YAMC-HRasG12V 

cells, where cytoskeletal influences contribute to membrane biophysical properties. 

Experiments were performed by confocal microscopy using a Zeiss 780 system, after 

incubation with compounds for at least 30 min. Emission wavelengths of 508–544 and 651–

695 were used for ordered and disordered channels, respectively. Scale bar, 50 μM. (F) 

Quantification of membrane order is represented as mean GP normalized to the untreated 

control for at least 10 fields of view containing approximately 100 cells. Statistical 

significance between untreated control and treatments (*P<0.05) was determined using 1-

way ANOVA and Dunnett’s multiple comparisons test. (G) To assess effects on cytoskeletal-

membrane dependent macropinocytosis, YAMC-HRasG12V cells were serum starved (0.5% 

FBS) for 18 h, then incubated with a macropinocytosis inhibitor (EIPA) or procyanidin 

metabolites for 30 min prior to EGF (25 ng/mL) stimulation for 5 min in the presence of 

fluorescently (FITC) labeled dextran (70 kDa, 1 mg/ml). (H) Quantification of 

macropinocytosis, normalized to non-stimulated control, for at least 13,000 cells from two 

separate experiments. Statistical significance between EGF stimulated control and 
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treatments (*P<0.05) was determined using 1-way ANOVA and Dunnett’s multiple 

comparisons test.
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Figure 3. 
Proposed mechanism describing the role of MTDB’s as modulators of colonocyte 

membrane-dependent oncogene signaling and cancer risk. 1) Procyanidins remodel plasma 

membrane organization. 2) Membrane remodeling disrupts Ras nanocluster/dimerization. 3) 

MTDB’s suppress Ras nanocluster/dimerization and attenuate oncogenic signaling. 4) This 

results in a reduction in tumor initiation/growth.
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