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SEQSpark: A Complete Analysis Tool for Large-Scale
Rare Variant Association Studies
Using Whole-Genome and Exome Sequence Data

Di Zhang,1 Linhai Zhao,1 Biao Li,1 Zongxiao He,1 Gao T. Wang,2 Dajiang J. Liu,3

and Suzanne M. Leal1,*

Massively parallel sequencing technologies provide great opportunities for discovering rare susceptibility variants involved in complex

disease etiology via large-scale imputation and exome andwhole-genome sequence-based association studies. Due tomodest effect sizes,

large sample sizes of tens to hundreds of thousands of individuals are required for adequately powered studies. Current analytical tools

are obsolete when it comes to handling these large datasets. To facilitate the analysis of large-scale sequence-based studies, we developed

SEQSpark which implements parallel processing based on Spark to increase the speed and efficiency of performing data quality control,

annotation, and association analysis. To demonstrate the versatility and speed of SEQSpark, we analyzed whole-genome sequence data

from the UK10K, testing for associations with waist-to-hip ratios. The analysis, which was completed in 1.5 hr, included loading data,

annotation, principal component analysis, and single variant and rare variant aggregate association analysis of >9 million variants. For

rare variant aggregate analysis, an exome-wide significant association (p < 2.53 10�6) was observed with CCDC62 (SKAT-O [p ¼ 6.893

10�7], combined multivariate collapsing [p ¼ 1.48 3 10�6], and burden of rare variants [p ¼ 1.48 3 10�6]). SEQSpark was also used to

analyze 50,000 simulated exomes and it required 1.75 hr for the analysis of a quantitative trait using several rare variant aggregate as-

sociation methods. Additionally, the performance of SEQSpark was compared to Variant Association Tools and PLINK/SEQ. SEQSpark

was always faster and in some situations computation was reduced to a hundredth of the time. SEQSpark will empower large

sequence-based epidemiological studies to quickly elucidate genetic variation involved in the etiology of complex traits.
Massively parallel sequencing technologies are generating

an unprecedented amount of sequence data on various

kinds of samples including human exomes and genomes.

Many rare variant association methods have been devel-

oped to elucidate the underlying disease etiology using

large-scale population-based sequence datasets.1–5

Although some findings are promising,6 statistical power

analyses performed with simulated data demonstrate that

large sample sizes of tens or even hundreds of thousands

of individuals are required for adequately powered

studies.7,8

Large-scale genetic epidemiological studies are currently

ongoing, including the Trans-Omics for Precision Medi-

cine program (TopMed) (see Web Resources) and UK

BioBank9 studies. Additional large-scale genetic epidemio-

logical studies are emerging that will generate whole-

genome sequence (WGS) data or imputeWGS data into ex-

isting genotype array data to better understand the genetic

etiology of complex traits.

It is problematic to analyze large datasets of massively

parallel sequence data given the limitations of current an-

alytic tools for annotation, data quality control, and asso-

ciation testing.9,10 Analytic tools such as PLINK/SEQ and

Variant Association Tools (VAT)11 are designed to run on

a single computer/processor, with poor support for parallel

computation. For example, PLINK/SEQ is a single threaded

program, and VAT can be multi-threaded on a single server
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for some tasks. None of the existing tools can leverage the

computational resources of a cluster of multiple servers.

Backend database systems for current tools are also obso-

lete, usually relying on a single flat file or a file-based rela-

tional database like SQLite, which is not suitable for high

input/output applications.

To address these issues, we developed SEQSpark, a new

analysis tool for large-scale sequence data quality control,

annotation, and rare variant association analysis.

SEQSpark is based on Spark, a fast engine for large-scale

data processing. The Spark platform was selected because

it has a simple parallel computation model and it has

nearly unlimited scalability, allowing for expanded

computational resources, e.g., number of servers within a

cluster to enhance the performance without modification

of the software. Spark makes use of the Hadoop file system

(HDFS), a distributed file system that allows for data

storage in a cluster environment (Figure 1A). An additional

advantage of Spark is its ability to store data in memory, al-

lowing for many magnitudes faster analysis speeds

compared to software that accesses data from hard drives.

Spark can efficiently make use of today’s servers that

have tens of gigabytes of memory.

SEQSpark splits large datasets into many small blocks

that are stored across an entire cluster of servers. The blocks

(Figure 1A) can then be accessed and processed simulta-

neously, so the speed is enhanced by a factor that is
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Figure 1. Spark Architecture and
SEQSpark Workflow
(A) Interaction of the Spark components—
driver and workers and the Hadoop filesys-
tem (HDFS) components—NameNode and
DataNodes. The NameNode is the master
node and manages the file system’s meta-
data. A file in the HDFS can be split into
several blocks and those blocks are stored
in a set of slave nodes (DataNodes). The
NameNode determines the mapping of
the blocks to the DataNodes, while the
DataNodes performs the read and write
operations within the file system. The
Spark driver talks with the HDFS
NameNode and obtains the meta-data
from NameNode and then distributes the
jobs to the Spark workers.
(B) SEQSpark workflow that begins with
importing data and databases (used for
annotation). The data are loaded into the
internal data structures of Spark. Data
quality control and annotation can be per-
formed followed by association testing.
proportional to the number of blocks. Variants in different

blocks can be analyzed together when necessary. The

enhancement in speed is dependent on the hardware re-

sources in a cluster, i.e., the total number of processors,

size of memory, and number of disks, but is not limited

by the computation power and input/output throughput

of a single server. By carefully implementing algorithms

in the map-reduce form compatible with the processing

engine, we overcome the computational and input/output

bottleneck that is experienced by other tools.

SEQSpark uses the memory caching advantage of Spark

and outperforms PLINK/SEQ and VAT even in a single-

server environment. PLINK/SEQ and VAT both use the

file-based relational database, SQLite, which can consider-

ably reduce computational speed, because it lacks optimi-

zation for large datasets and high-frequency access to

data. SEQSpark also takes advantage of the sparse data

structure of genotype data.6

SEQSpark (Figure 1B) performs data quality control based

ongenotypeandvariant levelmetrics, e.g., readdepth,qual-

ity score.Usingavarietyof databases, annotationandbioin-

formatics evaluation is performed at both variant and gene/

region levels. Allele frequencies and bioinformatics scores

from external databases can be used as weights in subse-
116 The American Journal of Human Genetics 101, 115–122, July 6, 2017
quent association tests. SEQSpark

implements both single variant asso-

ciation tests and rare variant aggregate

association methods, e.g., combined

multivariate collapsing (CMC),1

burden of rare variants (BRV),2,12 vari-

able threshold (VT),4 sequence kernel

association test (SKAT),5 and SKAT-

optimal (SKAT-O).13 All methods are

implemented in a regression frame-

work so that important covariates
can be included in the analysis and gene 3 gene and

gene3 environment interactions can be investigated. Con-

ditional regression can also be performed to tease apart, for

example, associations with susceptibility variants from

those due to linkage disequilibrium. The speed and versa-

tility of SEQSpark make it ideal for the analysis of small- to

large-scale genetic studies of complex traits.

WGS data from theUK10K and 50,000 simulated exomes

were analyzed on a small cluster to demonstrate the versa-

tility and speed of SEQSpark. The cluster consists of eight

servers each with two AMD Opteron 8-core CPUs, 64 GB

memory, and three 4 TB SATA hard drives. For the analysis,

thenumber of blockswas set to 5,120.Whencomparing the

performance of SEQSpark to PLINK/SEQ and VAT, 2,000

simulated exomes were analyzed on a workstation which

consists of two Intel Xeon 8-core CPUs with hyper-thread-

ing turned on (32 virtual cores in total); eight 8 GB DDR3

memory sticks (64 GB in total); and six 1 TB SATA hard

drives. For SEQSpark the number of blocks for the analysis

was set to 1,024. We recommended to set the number of

blocks for an analysis to a value so that each block con-

tains 32–128 megabytes of data. It is preferable to have

more blocks when using a very large cluster with many

CPUs so that each block has fewer megabytes of data. No



Table 1. Benchmarks for SEQSpark Analysis of UK10K Hip-to-
Waist Ratio Data

Variants:
MAF R 0.01a

Rare Variants:
MAF < 0.01b

Load datac 21.75 min 16.25 min

Annotation N/A 1.40 min

Ti/Tv ratio 1.92 min 0.20 min

PCAd 11.65 min N/A

Single variant 16.03 min N/A

CMC N/A 0.22 min

BRV N/A 0.23 min

VT N/A 7.90 min

SKAT N/A 0.18 min

SKAT-O N/A 0.22 min

Quality control was performed using data from 1,927 individuals with WGS
data. PCA was performed using 1,811 individuals who had data on WHRs
and association analysis was performed using 1,798 individuals with WHRs
data who were not outliers in the PC analysis.
aA total of 9,332,772 variants with an MAF R 0.01 analyzed.
bA total of 542,616 rare variants within coding regions were loaded and after
annotation, a total of 163,578 missense, splice-site, frameshift, and nonsense
variants in 18,011 genes were available for analysis.
cThe dataset size is 669.4 GB in LZ4 compression format.
dTen PCs were generated using all variants with an MAF R 0.01.
modifications were made to the workstation’s hardware to

run SEQSpark and it could even be run on a laptop. Cloud

computing canalso beused to analyze data using SEQSpark.

The speed of SEQSpark can be increased not only by adding

additional CPUs but also by increasing the number of hard

drives per server, although increasing the number of CPUs

will have a greater impact on the speed than the number

of hard drives.

Analysis of UK10K data and the 50,000 simulated

exomes were not performed using either PLINK/SEQ or

VAT due to the extended computational time necessary

to perform data analysis. For PLINK/SEQ and VAT, consid-

erable computational time was needed to load these two

datasets; e.g., for the WGS UK10K data it took PLINK/

SEQ 8.5 hr and VAT 9.3 hr to load chromosome 1, and

for the 50,000 simulated exomes PLINK/SEQ took 6.6 hr

and VAT 26.3 hr to load the chromosome 1 data. The

loading time depends not only on the size of the file but

also the number of variant sites and genotypes. Although

the simulated exome data contains 33 the number of ge-

notypes of the UK10K, PLINK/SEQ can load this dataset

quicker because there are fewer variant sites, where the

loading time for VAT is impacted by the number of geno-

types. In contrast to the loading times for VAT and

PLINK/SEQ, it took SEQSpark 2.3 and 5.0 min to load the

chromosome 1 data for the UK10K and 50,000 simulated

exomes, respectively. Therefore, to compare the three pro-

grams in a reasonable time frame, 2,000 exomes were

generated and analyzed.

Analysis of waist-to-hip ratio was performed using WGS

data from the Avon Longitudinal Study of Parents and
The Am
Children (ALSPAC) cohort which was included in the

UK10K. This study includes 1,927 individuals of which

1,811 individuals had waist-to-hip ratio (WHR) data avail-

able for analysis. The generation of theWGS data as well as

the quality control, which was performed before distribu-

tion, has been previously described.14 Functional annota-

tion was performed to determine gene boundaries and

to classify coding variants, i.e., splice sites, nonsense,

missense, and frameshift indels. Ti/Tv ratio was calculated

for variants with anMAF < 0.01 andR 0.01. It took 12 s to

calculate Ti/Tv ratios and 1.4 min to annotate the rare var-

iants (MAF < 0.01). Table 1 contains the benchmark times

to complete each step of the analysis including benchmark

times for each association method.

To determine whether there were outliers and to control

for population substructure in the analysis, the first ten

principal components (PCs) were generated for the 1,811

samples with WHR phenotype data using variants with

an MAFR 0.01. Individuals with a first or second PC value

that was more than 4 standard deviations (SDs) from the

mean were removed before analysis. Although for the first

PC, all values were within 4 SDs of the mean, 13 individ-

uals had a second PC value that was >4 SDs from the

mean and therefore were removed from further analysis

(Figure 2A). Stepwise regression was used to determine

which covariates should be adjusted for in the analysis. Co-

variates age (p ¼ 0.0362), sex (p < 2.0 3 10�16), and body

mass index (BMI) (p < 2.0 3 10�16) were significant.

Residuals were generated for analysis adjusting for these

covariates. To evaluate whether inclusion of PCs aided in

controlling for population substructure, analysis was

performed without including any PCs, including the first

PC, including the first and second PCs, and lastly

including the first, second, and third PCs. When analysis

was performed without inclusion of PCs, the lambda

values were as follows: single variant (l ¼ 0.9991), CMC

(l ¼ 1.0267), BRV (l ¼ 1.0302), VT (l ¼ 1.0096), SKAT

(l ¼ 1.0669), and SKAT-0 (l ¼ 0.9603). Although for

some tests, l is slightly inflated, inclusion of additional

PCs did not reduce the l values and therefore the analysis

was performed without inclusion of any PCs. It can be

observed from the quantile-quantile plots that type one er-

ror is well controlled (Figure 2B).

Single variant analysis was performed using the score

test assuming an additive model for all variants with an

MAF > 0.01. It took 16.3 min to perform the analysis for

9,332,772 variant sites. None of the single variant analyses

reached the genome-wide significance level of p < 5.0 3

10�8. This is not surprising given the modest sample size

of 1,798 study subjects used for the analysis.

For each gene region, missense, nonsense, splice-site, or

frameshift variants with an MAF < 0.01 were selected to

perform aggregate rare variant association analysis using

CMC, BRV, VT, SKAT, and SKAT-O. For CMC and BRV, a

score test was performed. For gene-based aggregate rare

variant association analysis of 15,937 genes, each with

two or more variant sites and at least three alternative
erican Journal of Human Genetics 101, 115–122, July 6, 2017 117



Figure 2. UK10K Waist-to-Hip Ratio Data Scatterplot of the First Two Principal Components and Quantile-Quantile Plots for the As-
sociation Analyses
(A) First two PCs for the WGS data from 1,811 UK10K study subjects with WHR data. The PCs were constructed using variants with an
MAF R 0.01. For the first PC, m ¼ �0.0228 and STD ¼ 9.8292 3 10�5 while for second PC, m ¼ �0.0021 and STD ¼ 0.0073. The dashes
outline the 4 STDs for the first and second PCs. 13 individuals which are shown in red fall outside of 4 STDs for the second PC and were
removed from additional analysis.
(B) Quantile-quantile plots for each association analysis performed: single variants, CMC, BRV, VT, SKAT, and SKAT-O.
alleles, it took 14 s to perform the fixed effect BRV test and

11 s to perform the random effects SKAT.

For the gene-based rare variant aggregate analysis, an as-

sociation was observed with CCDC62 (MIM: 613481) that

met exome-wide significance (p< 2.53 10�6) with SKAT-O

(p ¼ 6.89 3 10�7), CMC (p ¼ 1.48 3 10�6), and BRV(p ¼
1.48 3 10�6) and suggestive evidence of association with

VT (p ¼ 2.15 3 10�5) and SKAT (p ¼ 5.50 3 10�6). To vali-

date the results obtained from SEQSpark, the analysis of

rare variants in CCDC62 was also performed using VAT

and PLINK/SEQ. The results were the same, except for

CMC and BRV, because VAT implements the Wald test

instead of the score test. When analysis was performed us-

ing the Wald test in SEQSpark, identical results were ob-

tained for VAT and SEQSpark (CMC [p ¼ 1.39 3 10�6];

BRV [p ¼ 1.39 3 10�6]). PLINK/SEQ produced results

only for SKAT, sinceWHR is a quantitative trait. The results

for SKAT were identical for the three programs. There have

been no previous reports of common or rare variants in

CCDC62 being associated with WHR or obesity. There are

also no functional studies that demonstrate the involve-

ment of CCDC62 in metabolism. It is important that this

association is replicated in an independent sample to

determine whether rare variants in CCDC62 are truly asso-

ciated with WHR.

To benchmark and evaluate the performance of PLINK/

SEQ, VAT, and SEQSpark, we simulated exome data using

non-Finnish European allele frequencies obtained from

33,370 individuals from ExAC. Two samples were gener-

ated, one with 50,000 exomes to demonstrate the capabil-

ities of SEQSpark and the other with 2,000 exomes

to compare the performance and benchmark SEQSpark,
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PLINK/SEQ, and VAT. Genotype data were generated

assumingHardy-Weinberg equilibrium (HWE) andmissing

genotypes were introduced using a probability of 1%. In all

a total of 3,681,143 variants in 18,295 geneswere generated

for the 22 autosomes for the 50,000 exomes and 872,218

variants and 18,295 genes for the sample of 2,000 exomes.

To generate realistic sequence data to analyze and perform

data quality control, we generated sequence data with vari-

able read depths as well as genotype quality scores. For each

genotype, read depth information was generated by draw-

ing from a negative binomial (r,p) where r ¼ 7 is the number

of failures until the experiment is stopped and p¼ 0.2 is the

probability of failure, that led to �2% of the genotypes

having a read depth of<83. GQ scores were also generated

using a two-step sampling procedure: first for 95%of the ge-

notypes the GQ was set to 99; for the remaining genotypes

the GQ scores is obtained by drawing from a uniform (a,b)

distribution where a ¼ 0 is the starting value and b ¼ 100

is the ending value, leading to �1% of the GQ scores being

less than 20.

None of the phenotype data were generated to be in as-

sociation with the genotypes, i.e., data are generated under

the null hypothesis of no association. For each sample that

exome data were generated, age, sex, a quantitative trait,

and a dichotomous trait were assigned. Age was generated

using a negative binomial (r,p) distribution where r ¼ 20 and

p ¼ 0.3, while the quantitative trait was simulated using a

normal (m,s2) distribution where the mean m ¼ 25 and the

variance s2 ¼ 3. Of the samples, 50% were assigned to be

male. For the qualitative trait, 50% of the samples were as-

signed to be case subjects and the other half control sub-

jects. When the quantitative trait was analyzed, three
017



Table 2. Benchmarks for SEQSpark Analysis of 50,000 Simulated
Exomes

Analysis Times for Rare Variantsa

Load datab 44.63 min

Annotation 12.00 min

Quantitative Case-Control

CMC 14.40 min 12.72 min

BRV 3.82 min 2.97 min

SKAT 6.25 min 5.92 min

SKAT-O 24.12 min 51.13 min

aA total of 3,681,143 variants were loaded and after annotation, a total of
1,420,128 missense, splice-site, and nonsense variants with a MAF of < 0.01
in 18,219 genes withR2 variant sites andR3 alternative alleles were available
for analysis.
bThe dataset size is 659.6 GB in LZ4 compression format.
covariates (sex, age, and the binary trait) were included in

the analysis, while for the analysis of the qualitative trait,

the three covariates that were included in the analysis are

sex, age, and the quantitative trait.

First the 50,000 simulated exomes were loaded

(44.6 min) and annotated (12.0 min) using SEQSpark

on a small cluster. The simulated case-control and quanti-

tative trait data were analyzed in a regression framework

including covariates using several rare variant aggregate as-

sociation tests (CMC, BRV, SKAT, and SKAT-O), obtaining

p values analytically. A total of 18,219 genes, with at least

two missense, nonsense, or splice site variants sites with

an MAF < 0.01 and at least three alternative alleles, were

analyzed. The analysis times varied for the same test de-

pending on whether a binary or quantitative trait was

analyzed. SKAT-O tookmore than twice the time to analyze

the case-control data than the quantitative trait data. On

the other hand, analysis of the case-control data was

quicker for fixed-effect tests CMC and BRVand the random

effects test SKAT than the analysis of the quantitative trait

data. The analysis time for CMC, BRV, SKAT, and SKAT-O

combined for the quantitative trait was 48.4 min and for

the qualitative trait 72.4 min. Table 2 displays the bench-

marks for the analysis of the 50,000 simulated exomes.

The first step in analysis was to load the data into each of

the software packages. This process was most lengthy for

VAT, taking slightly more than 1 hr to perform, was faster

for PLINK/SEQ taking almost 40 min, and the quickest

for SEQSpark run on a cluster taking slightly over 4 min.

Performing quality control of the genotype data, i.e.,

removal of genotypes with a read depth <83 and/or geno-

type quality score (GQ) < 20, took 48 min using PLINK/

SEQ, 37min for VAT, 7min for SEQSpark on a single server,

and 3 min when SEQSpark was run on a cluster. For calcu-

lation of Ti/Tv ratios, it took PLINK/SEQ 57 min, VAT

11min, and SEQSpark run on a cluster 8 s. The calculations

of allele frequencies took more than 1 hr for PLINK/SEQ,

41 min for VAT, and 5 min for SEQSpark on the server

and 1 min on the cluster. Table 3 displays benchmark
The Am
times for loading, annotation, quality control, and data

exploration.

Association testing of the 2,000 exomes was performed

using several commonly used aggregate rare variant associ-

ation tests, i.e., CMC,VT, SKAT, SKAT-O, BRV, ‘‘BurdenTest’’

for both quantitative and qualitative traits controlling for

confounders. For the BRV and CMC, SEQSpark imple-

mented the score test to perform gene-based rare variant as-

sociation testing.Missense, nonsense, or splice-site with an

MAF< 0.01were analyzed using RefSeq gene boundaries to

determine which variants to analyze in aggregate. The

p values for the tests were obtained either analytically or

empirically using adaptive permutation (Table 4). For adap-

tive permutation, the number of permutations each pro-

gramuses arenot equivalent; PLINK/SEQperforms far fewer

permutations than either VAT or SEQSpark which can

reduce the accuracy of empirical p values (Table 4). For

example, for case-control data for the Burden Test, PLINK/

SEQ ran 912K permutations while SEQSpark performed

38,203K permutations. PLINK/SEQ is more limited in the

analyses that it can perform compared to VAT and

SEQSpark. For PLINK/SEQ, quantitative trait analysis is

limited to SKAT and for qualitative trait fixed effect tests

p values can be obtained only using adaptive permutation.

When analysis was performed with SKAT for a quantitative

trait obtaining analytical p values, it takes 70 min for

PLINK/SEQ, 36 min for VAT, and 44 s for SEQSpark run on

a server and 12 s when analysis with SEQSpark was per-

formed on a cluster. SKAT-O was also used to perform anal-

ysis and PLINK/SEQ failed to produce results, while VAT

took 46 min and SEQSpark run on a cluster took 21 s. To

performtheBurdenTest for case control data implementing

adaptive permutation using PLINK/SEQ took more than

100min,VAT tookmore than24hr, andSEQSparkona clus-

ter took 39 min. It should be noted that PLINK/SEQ per-

forms a ‘‘BurdenTest’’ which like the BRVanalyzes the allele

counts within a genomic region. In addition to running

quicker than PLINK/SEQ, SEQSpark performed many

more permutations. The analytic BRV took 23 min to run

on VAT and 1 min and 12 s to perform analysis with

SEQSpark on a server and cluster, respectively (Table 4).

For the benchmarking of SEQSpark, PLINK/SEQ, and

VAT, we used a server with 32 virtual cores, 64 gigabytes

of memory, and 6 hard drives. Increasing the number of

cores will not impact the speed of PLINK/SEQ since it

uses only a single core, and it cannot make use of addi-

tional memory. Increasing the number of hard drives will

impact the time that is needed to load the data and thus

reduce computational time. For VAT, increasing the num-

ber of hard drives will also decrease the time which is

needed to load the data and increasing the numbers of

cores and memory will reduce the time needed to perform

association testing. For SEQSpark, increasing the number

of cores, memory, and hard drives will have a greater

impact on the speed to load data and perform quality con-

trol, annotation, and association analysis compared to

either PLINK/SEQ or VAT (data not shown). Using the
erican Journal of Human Genetics 101, 115–122, July 6, 2017 119



Table 3. Benchmark for Performing Quality Control

PLINK/SEQa VATa SEQSpark Single Servera SEQSpark Custerb

Load data 38.75 min 61.75 min 5.67 min 4.35 min

Annotation N/Ac 3.32 min 1.42 min 1.38 min

Genotype and variant removald 48.43 min 36.67 min 6.75 min 2.57 min

Calculation of Ti/Tv ratios 56.54 min 10.83 min 1.48 min 0.13 min

Calculation of allele frequencies 62.5 min 40.43 min 5.03 min 1.30 min

Exome variant data were generated for a total of 2,000 samples using ExAC non-Finnish European allele frequencies. A total of 872,218 variants were generated
with genotype-specific read depths and quality scores.
aAll software, PLINK/SEQ, VAT, and SEQSpark were run on a single server.
bSEQSpark was also run on a cluster and is the only software which has this capability.
cPLINK/SEQ does not have a separate annotation step.
dThose genotypes with a read depth of <83 and/or GQ score <20 were removed.
available resources on the server, SEQSpark was faster for

each benchmark than PLINK/SEQ or VAT. For example,

to calculate allele frequencies SEQSpark was 48 times faster

than PLINK/SEQ and 31 times faster than VAT (Table 4).

For performing association analysis using SKAT for quanti-

tative trait data, SEQSpark was 350 times faster then

PLINK/SEQ and 182 times faster than VAT (Table 4). For

both PLINK/SEQ and VAT, analysis is limited to a single

server, but for SEQSpark analysis can be performed on a

cluster. We selected a very small cluster of multiple servers

to perform the benchmarks to demonstrate that even

research groups with limited computational resources

can use SEQSpark to increase computational speeds. It

can be observed that even when a small cluster is used,

there is a great reduction in the time required to perform

the analysis compared to when SEQSpark is run on a server.

For example, when SKAT-O was used to analyze quantita-

tive trait data, analysis using SEQSpark on a cluster was

4.6 times faster than performing the analysis on the server.

Naturally if a cluster is used with additional resources, e.g.,

cores, memory, hard drives, analysis can be performed

much faster, making it possible to analyze large datasets

of tens to hundreds of thousands of individuals in a short

time span.

Through the analysis of the WHR UK10K WGS data

and the analysis of the simulated exome data, we demon-

strated the versatility of SEQSpark, but the data analysis

and benchmarks do not demonstrate all capabilities of

SEQSpark. To perform annotation, the program is distrib-

uted with many commonly used databases such as dbSNP,

ExAC, gnomAD, and dbNSFP which provides functional

evaluation using a variety of conservation and bioinfor-

matics tools.15–17 SEQSpark also allows users to upload

additional databases from either the public domain or

those they created. Data quality control can be performed

using all matrices which are annotated in the user’s variant

call format (VCF) file or computed from the data. For all

matrices summary statistics including HWE can be calcu-

lated on the entire dataset or data subsets and the user

can specify which samples, genotype, and variant sites to

remove from the analysis. Variants can be pruned to re-

move or greatly reduce inter-marker linkage disequilibrium
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to generate a set of variants which can be used for a variety

of purposes including PCA. Duplicate samples and related

individuals can be identified using the KING algorithm.18

Genomic sex can be used to verify that the correct sex

was specified for each sample. PCA can be performed for

data quality control to detect samples which are outliers

due to problems with sequence data quality or member-

ship in another population.

For association analyses, the user can select a subset of

variants to analyze, e.g., based upon regions, frequency,

or functional annotations. Often information on covari-

ates is missing for a subset of individuals and instead of

removing these samples from the analysis, the missing

quantitative covariate can be replaced by the mean value

for the sample. Outliers can be winsorized and for traits

that violate normality, quantile normalization can be per-

formed. For quantitative traits residuals are generated for

analysis.

Statistical association testing is performed within the

regression framework. This allows for easy control of po-

tential confounders, testing for interactions and perform-

ing conditional analysis. Additionally, when performing

association analysis, components from PCA19 can be

included in the regression model to control for population

substructure and admixture. Two versions of SKAT and

SKAT-O can be used to perform the analysis either using

‘‘Liu modified method’’ or the ‘‘Davies method’’ to

generate the cumulative distribution function of the null

distribution. For single variant and aggregate rare variant

association fixed effect tests, i.e., CMC, BRV, either the

score or Wald tests can be used in a regression framework.

Analysis can be performed by obtaining either analytical

p values or empirical p values using adaptive permutation.

Except for the CMC, a weighted rare variant association

analysis can be performed using weights obtained from

allele frequencies from the sample, e.g., controls3 or entire

samples20 or allele frequencies obtained from external

sources such as ExAC or gnomAD.16 Additionally, func-

tional annotation can be used to weight variants, e.g.,

c-scores from CADD.21 For missing data, to avoid increased

type I error rates for aggregate rare variant association tests,

missing genotypes are replaced by dosages obtained from
017



Table 4. Benchmarks for Performing Aggregate Rare Variant Association Analysis

PLINK/SEQa VATa SEQSpark Single Servera SEQSpark Clusterb

Quantitative Trait - Analytical P Values

CMC N/Ac 19.17 min 0.73 min 0.25 min

Burden Test N/Ac 19.65 min 0.75 min 0.23 min

SKAT 70 min 36.43 min 0.73 min 0.20 min

SKAT-O failedd 45.52 min 1.27 min 0.35 min

Case-Control - Analytical P Values

CMC N/Ac 21.90 min 0.67 min 0.23 min

Burden test N/Ac 22.99 min 1.05 min 0.20 min

SKAT 70 min 46.71 min 0.70 min 0.23 min

SKAT-O failedd 49.49 min 1.18 min 0.45 min

Quantitative Trait – Empirical P Values

CMC N/Ac 81.89 min 38,793 ke 13.08 min 30,942 ke 5.33 min 3,0675 ke

Burden test N/Ac 81.65 min 38,769 ke 12.88 min 29,097 ke 4.98 min 28,902 ke

VT N/Ac 46.95 min 19,853 ke 25.23 min 3,0171 ke 12.62 min 3,0278 ke

Case-Control - Empirical P Values

CMC N/Ac >24 hr 96.18 min 37,846Ke 38.90 min 37,522Ke

Burden testf 100.9 min 912Ke >24 hr 97.23 min 38,224Ke 39.25 min 38,203Ke

VT 62 min not reportede failedd 81.82 min 2,7043Ke 34.72 min 26,852Ke

A total of 2,000 samples were analyzed for both quantitative and binary traits. Using allele frequencies from ExAC non-Finnish European, 760,133 rare
variants were generated (MAF < 0.05) in autosomal 18,295 genes. All splice-site, missense, and nonsense variants were analyzed. For all tests, variants with
an MAF of < 0.01 in genes with R2 variant sites and R3 alternative alleles were analyzed (n ¼ 17,322 genes) except for the VT where an MAF < 0.05 was
used to select variants for analysis and 17,517 genes with R2 variant sites and R3 alternative alleles were analyzed. Abbreviation: k, thousand.
aAll software, PLINK/SEQ, VAT, and SEQSpark were run on a single server.
bSEQSpark was also run on a cluster and is the only software that has this capability.
cThe program cannot perform this test/analysis.
dProgram unable to complete analysis.
eTotal number of permutations in the thousands (k) performed to obtain empirical p values.
fFor PLINK/SEQ there are two versions of the burden test (burden and burden 1), the analysis time and number of permutations shown here are for ‘‘burden’’ for
VAT and SEQSpark the BRV test was performed. PLINK/SEQ can only perform the Burden Tests for case-control data obtaining empirical p values.
observed allele frequencies.12 In addition to analyzing ge-

notypes, dosages22 from imputed data can also be analyzed

either as single variants or in an aggregate rare variant asso-

ciation analysis. Meta-analysis can also be performed to

combine results from different studies or populations.23

SEQSpark is ideal to use for the analysis of large-scale ge-

netic epidemiological studies. It has higher computational

efficiency for data quality control, annotation, and associ-

ation analysis than other available software. The computa-

tional speed of SEQSpark is greater even when run on the

same hardware as other programs. However, unlike other

genetic association software programs which are limited

to performing analysis on a single server, SEQSpark is scal-

able and can be run in a multiple-server environment,

greatly increasing its computational speed and ability to

handle large genetic datasets consisting of tens to hun-

dreds of thousands of individuals. Due to its versatility

and speed, SEQSpark will meet the demands of data anal-

ysis for emerging large-scale studies of imputed and

massively parallel sequence data. The SEQSpark software

package and documentation are publicly available online.
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Web Resources

ALSPAC, http://www.bristol.ac.uk/alspac/

CADD, http://cadd.gs.washington.edu/

dbNSFP v.2.0, https://sites.google.com/site/jpopgen/dbNSFP

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/

ExAC Browser, http://exac.broadinstitute.org/

gnomAD Browser, http://gnomad.broadinstitute.org/

Hadoop, http://hadoop.apache.org/

OMIM, http://www.omim.org/

PLINK/SEQ, https://atgu.mgh.harvard.edu/plinkseq/ /

SEQSpark, https://github.com/statgenetics/seqspark.git
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Spark, http://spark.apache.org/

TopMed, https://www.nhlbi.nih.gov/research/resources/nhlbi-

precision-medicine-initiative/topmed

UK10K Consortium, http://www.uk10k.org/

Variant Association Tools (VAT), http://varianttools.sourceforge.

net/Association/HomePage
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