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Integrative Genetic and Epigenetic Analysis
Uncovers Regulatory Mechanisms
of Autoimmune Disease

Parisa Shooshtari,1,2 Hailiang Huang,2,3 and Chris Cotsapas1,2,4,*

Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk.

These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites

(DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not

designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molec-

ular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across

samples and connect them to the genes they control through robust re-analysis of public data.We find significant evidence of regulatory

potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, andwe find that individual genes are targeted by

these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive

disease risk.
Introduction

The autoimmune and inflammatory diseases (AIDs) are a

group of more than 80 common, complex diseases driven

by systemic or tissue-specific immunological attack. This

pathology is driven by loss of tolerance to self-antigens

or chronic inflammatory episodes leading to long-term or-

gan and tissue damage. Risk variants identified by genome-

wide association studies (GWASs1,2) are preferentially

located in non-coding regions with tissue-specific chro-

matin accessibility3–6 and in transcriptional enhancer re-

gions active after T cell stimulation.7 Formal analyses

partitioning the heritability of disease risk across different

genomic regions support this enrichment,8 with excess

heritability localizing to tissue-specific DNase I hypersensi-

tive sites (DHSs).9 Cumulatively, these results suggest that

AID pathology is mediated by changes to gene regulation

in specific cell populations but are not designed to identify

individual regulatory regions mediating risk or the genes

under their control. Several fine-mapping efforts have

jointly considered genetic association and epigenetic

modification data as a way to identify causal vari-

ants.10–12 However, these efforts use epigenetic mark infor-

mation to assess whether associated variants are likely to

be causal, rather than to identify the regulatory sequences

that mediate risk and the genes they affect.

We have therefore developed a systematic approach to

identify regulatory regions mediating disease risk and

thereby generate testable mechanistic hypotheses of the

molecular changes that drive disease risk (Figure S1). For

each association, we first calculate posterior probabilities

of association from GWAS data and thence the set of
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markers forming the 99% credible interval (CI).13–15 We

then overlap CI SNPs with DHSs in the region to identify

which regulatory regions may harbor risk, and from these

SNPs calculate the fraction of posterior probability attribut-

able to each DHS. We chose DHSs as they are general

markers of chromatin accessibility and typically only

150–390 base pairs long, compared to other histone mod-

ifications that can span tens to hundreds of kilobasepairs.

Next, we identify genes controlled by each DHS by

correlating chromatin accessibility state to expression

levels of nearby genes.6,16,17 We use the atlas of tissues

available at NIH Roadmap Epigenomics Mapping Con-

sortium (REMC) data,18,19 where both DHSs and gene

expression have been measured in the same samples.

Finally, we combine the posterior probability of disease as-

sociation of each DHS and the correlation between that

DHS and the expression levels of nearby genes to calculate

the probability that each gene is affected by the disease-

mediating regulatory effect. We can thus estimate the

probability that a gene influences disease risk.
Material and Methods

DNase I Hypersensitivity Data Peak-Calling, Clustering,

and Quality Control
We obtained processed DNase I hypersensitivity (BED format)

sequencing reads for 350 NIH Roadmap Epigenomics Mapping

Consortium (REMC) samples18,19 corresponding to 73 cell types

(seeWeb Resources). For each sample, we called 150 bpDNase I hy-

persensitive sites (DHSs) passing a 1% FDR threshold.20 We found

56 tissues with at least two replicates, which our statistical replica-

tion design requires, and limited our analysis to these (Table S1).
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Table 1. Regulatory Fine-Mapping Resolves 78/301 Genome-Wide Significant Associations to Replicable DHSs and 53/78 to Single Genes
across Nine Autoimmune and Inflammatory Diseases

Disease

Risk Loci
Regulatory Potential r at 10%
(5%) FDR

Gene Pathogenicity g at 10%
(5%) FDR

Genome-wide
Significant
Association

R1 Credible
SNP in a
Replicable DHS

Loci with
Significant r

in R1 Cell Type
Number of DHSs
Explaining r

Loci with
Significant g

in R1 Cell Type

Genes with
Significant g

in R1 Cell Type

Autoimmune thyroid disease 8 6 3 (1) 10 (3) 3 (0) 8 (0)

Celiac disease 31 28 2 (2) 7 (7) 2 (1) 8 (4)

Inflammatory bowel disease 125 97 19 (13) 102 (76) 12 (8) 38 (18)

Juvenile idiopathic arthritis 22 17 9 (4) 118 (58) 5 (2) 5 (2)

Multiple sclerosis 54 48 25 (17) 177 (118) 17 (8) 49 (15)

Primary biliary sclerosis 15 12 2 (1) 8 (6) 2 (1) 7 (2)

Psoriasis 24 19 3 (1) 26 (4) 3 (1) 7 (1)

Rheumatoid arthritis 47 40 10 (8) 158 (113) 7 (5) 20 (11)

Type 1 diabetes 45 34 5 (4) 18 (14) 2 (1) 5 (1)

Total 371 301 78 (51) 555 (350) 53 (27) 125 (45)

We tabulated 371 previously reported genome-wide associations in loci densely covered by the Immunochip across nine diseases. From publicly available Immu-
nochip summary statistics, we calculated credible interval SNP sets explaining 99% of the posterior probability of association. In 301/371 cases, we found at least
one CI SNP overlapping a replicable DHS, and significant excess of posterior probability on replicable DHSs (regulatory potential r) in at least one of 22 Roadmap
Epigenomics Project tissues in 78/301 cases. We were able to find significant evidence for individual genes in 53/78 loci. Overall, we prioritize 555 unique repli-
cable DHS and 125 genes across 78 risk loci as likely to mediate disease risk.
Where more than two replicates were available, we chose the two

replicates with the smallest Jaccard distance between their DHS

peaks positions on the genome.

To identify corresponding DHSs across samples, we calculated

the overlap between neighboring peaks across the 112 replicate

samples as:

si;j ¼ Oi;j

�
max

�
li; lj

�

where Oi,j is the number of base pairs shared by DHSs i and j and li
and lj are the length of DHSs i and j, respectively. We then grouped

DHSs with a graph-based approach, the Markov clustering algo-

rithm21 (MCL), using the default parameters, and defined the

coordinates of a DHS cluster as the extreme positions covered by

DHS peaks included in that cluster. Finally, we define each cluster

as accessible in a sample if we observe at least one DHS peak within

its boundaries in that sample (Figure S2).

Both peak calling andMCL clustering are naive to sample labels,

so we can test for evidence that DHS clusters replicate in this

analysis. We expect that DHS clusters representing true regulatory

regions should be consistently accessible or unaccessible in repli-

cate samples. We can thus calculate a replication statistic for

DHS cluster d as:

Sd ¼ �23 ln

�
p2n1 3 ð2pqÞn2 3 q2n3

an1 3 bn2 3 cn3

�
; S � c2

1

where n1 is the number of cell types where DHS cluster d is active

in both replicates; n2 is the number of cell types where the cluster

is active in only one of the two replicates; and n3 is the number of

cell types where the cluster is inactive in both replicates. For

N ¼ 56 tissues in our data, a ¼ n1 / N, b ¼ n2 / N, and c ¼ n3 / N.

Further, if r is the number of samples where DHS cluster is active,

then p ¼ r / (2 3 N) and q is 1 � p. Note that we distinguish be-

tween the number of cell types (N ¼ 56) and number of samples

considered (23 N ¼ 112). We expect Sd to follow a c2
1 distribution,
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and we selected DHS clusters passing a nominal significance

threshold of pd % 0.05, which we term replicable DHS. Overall,

we found that replicable clusters tend to be active in more cell

types and show a much higher level of concordance across repli-

cate samples than those that do not replicate (Figure S3). To assess

whether replicable DHSs capture the majority of disease-relevant

signal, we compared the proportion of disease heritability (h2g) ex-

plained by all DHS-detected peaks in a tissue to that explained by

the active replicable DHSs we annotated.8 For this we used

genome-wide association summary statistics for MS22 and IBD.23

We note that replicable DHSs active in immune tissues cover a

smaller percentage of the autosomal genome than those active

in other tissues (Figure S4).
Credible Interval Mapping for Immunochip Loci
We obtained publicly available summary association statistics

from case/control cohorts profiled on the Immunochip (Immuno-

base, seeWeb Resources; accessedMay 2015) for autoimmune thy-

roid disease (AITD),24 celiac disease (CEL),25 inflammatory bowel

disease (IBD),26 juvenile idiopathic arthritis (JIA),27 multiple scle-

rosis (MS),14 primary biliary cirrhosis (PBC),10 psoriasis (PSO),28

rheumatoid arthritis (RA),29 and type 1 diabetes (T1D)30 (Table 1).

For each of these nine diseases, we compiled a list of genome-

wide significant associations from the largest published

GWASs.14,23–25,27–31 We then pruned this list of lead SNPs to

include only those that overlap densely genotyped regions of

Immunochip data and were present in the 1000 Genomes Euro-

pean ancestry cohorts.32 We excluded the major histocompatibil-

ity complex (MHC) region on chromosome 6, where fine-mapping

has been previously reported.4 As summary statistics for condi-

tional associations are not available, we limited our analyses to pri-

mary reported signals in each disease.

We identified credible interval SNPs explaining 99% of the pos-

terior probability of association for the remaining lead SNPs.13,15



For each lead SNP, we identified SNPs within 2 Mb in linkage

disequilibrium r2 R 0.1 in the non-Finnish European 1000 Ge-

nomes reference panels.32 For each set S of these SNPs, we calcu-

lated posterior probabilities of association as

PPs ¼ ec
2
s=2

�X
i˛S

ec
2
i =2

where c2
i is the Immunochip association chi-square test statistics

of SNP i. We then selected the smallest number of SNPs required

to explain 99% of the posterior probability. We note that this

approach assumes that a single causal variant underlies the associ-

ation and that it has been genotyped or imputed in the samples.

Calculating Regulatory Potential of Disease Loci
We first overlapped credible interval (CI) SNPs with our replicable

DHSs, then computed the posterior probability of association

attributable to each replicable DHS d in tissue t as

rd;t ¼
X
s˛CI

PPs 3OdðsÞ3Ad;t ;

where PPs is the posterior probability of association for SNP s.Od(s)

is equal to 1 if SNP s is located on replicable DHS d or the 100 bp

flanking region each side of replicable DHS d, and it is 0 otherwise.

Ad,t is 1 if DHS d is active in tissue t or 0 otherwise. For SNPs over-

lapping two or more replicable DHSs or their 100 bp flanking

regions, we divided its posterior probability PPs between those

replicable DHSs equally.

We then calculated the tissue-specific regulatory potential of

each disease risk locus over D, the set of replicable DHSs active

in tissue t as rt ¼
P

d˛Drd;t , and used a coordinate-shifting

approach to assess significance empirically.3 In each of 40,000 per-

mutations, we randomly re-assigned genomic coordinates to each

replicable DHS within the locus, preserving its size and recalcu-

lated rd,t, and calculated significance as the proportion of permu-

tations that give values of rd,t greater than the observed. We

corrected for multiple testing in each disease using the false dis-

covery rate.33

Finally, we then calculated the overall regulatory potential of

each disease locus over all tissues as

r ¼
X
d˛D

X
s˛CI

PPs 3OdðsÞ:

To assess the statistical power of our framework, we performed a

series of simulations where we specified either one or two causal

variants in a locus (as previously described in Chun et al.34). In

brief, we selected one REMC cell type, fetal kidney, from which

to draw replicable DHS data for these simulations. We performed

positive simulations where the causal variant is on a replicable

DHS, and negative simulations where it is not. For two variants,

we performed positive simulations where the first causal variant

is on a replicable DHS and the second is not, and negative simula-

tions where neither is on a replicable DHS (Figure S5).

Calculating Pathogenicity Factors of Association for

Each Gene in a Risk Locus
There are 88 NIH Roadmap Epigenomics Mapping Consortium

(REMC) samples corresponding to 27 cell types profiled on the

Affymetrix HuEx-1_0-st-v2 exon array, which we downloaded as

raw CEL files (see Web Resources; accessed September 2013). We

processed these data using standard methods available from the

BioConductor project.35 In brief, we filtered cross-hybridizing
The
probe sets, corrected background intensities with RMA, and quan-

tile normalized the remaining probe set intensities across samples.

We then collapsed probe sets to transcript-level intensities and

mapped transcripts to genes using the current Gencode annota-

tions for human genes (v.12), removing any transcripts without

a single exact match to a gene annotation. We then identified

the 22 tissues with matched DHS data (Table S1), averaged mea-

surements over all replicates of each tissue, and quantile normal-

ized the resulting dataset, comprising 13,822 transcripts mapping

to 13,771 unique gene IDs.

We identified all genes within 1 Mb of the lead SNP for each

locus, and for all replicable DHSs with (rd > 0), computed the cor-

relation between transcript levels and DHS accessibility across the

22 REMC tissues with a two-sided Wilcoxon rank sum test w. To

account for the correlation between gene expression levels, we

assessed the significance of the rank sum test empirically. We

removed the correlation induced both between genes and across

tissues from the matrix of gene expression levels to (WPCA) using

PCA whitening, which results in random variables with the

same distributional characteristics as the original data. We

then re-imposed the correlation structure due to related tissues

on these random data by multiplying by the Cholesky decompo-

sition of the gene expression covariance matrix (L), such that

GNull ¼ L0WPCA. GNull thus reflects the expected values of gene

expression in the REMC tissues we analyzed if no replicable DHS

affects expression. We then computed the Wilcoxon rank sum

test statistic between each replicable DHS d and all genes of GNull.

This formed our null Wilcoxon rank sum test statistics ðWd
NullÞ.

From this null, we computed empirical p values as

Pd;g ¼
23

�
1þ jWd

Null > wd
g j þ jWd

Null ¼ wd
g j

.
2
	

1þ jWd
Null j

;

where wd
g is the Wilcoxon rank sum test statistic between repli-

cable DHS d and gene g, and j: j denotes the number of events satis-

fying the enclosed criterion. This formulation accounts for the

two-sided test and corrects for the inflation in wd
g caused by the

correlation between tissues (Figure S6).

We next calculated per-gene g pathogenicity factor in tissue t as

gg;t ¼
X
d˛D

rd;t 3 e
c2
d;g

�
2
;

where c2
d;g is the chi-square test statistic corresponding to the

empirical correlation p value for replicable DHS d and gene g.

We assess the significance of gg;t by random permutation. In

each locus, we establish how many replicable DHSs harbor CI

SNPs, then construct the null distribution of gg;t by randomly

selecting that number of replicable DHSs across the locus and re-

computing gg;t . We calculated significance as the proportion of

50,000 permutations that give values of gg;t greater than the

observed value, correcting for the number of genes within each

locus with FDR.
Enrichment of Allele-Specific Accessibility, Tissue

Specificity, and Functional Class for Replicable DHSs
We obtained a list of 362,284 SNPs overlapping DHS peaks in the

Roadmap Epigenome Project data, which Maurano et al.36 tested

for allele-specific DHS accessibility (ASA). Those authors found

that 64,597/362,284 (18%) SNPs showed significant differences

in accessibility at 5% FDR, giving us a genome-wide expectation

for ASA. We then calculated whether credible interval SNPs
American Journal of Human Genetics 101, 75–86, July 6, 2017 77
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Figure 1. Regulatory Fine-Mapping Identifies Specific Genes and Regulatory Regions Driving Risk in 301 Loci Associated to One of
Nine Autoimmune Diseases
We combined credible interval (CI) mapping and DNase I hypersensitivity site (DHS) clustering in a statistical framework to identify
GWAS loci where risk is likely to be mediated by variants in gene regulatory regions across nine autoimmune diseases (denoted by
different colors). In those loci we then correlate the accessibility state of replicable DHSs with the expression of nearby genes to identify
pathogenic genes.
(A) Only a subset of CI SNPs in each risk locus (open boxplots) are located on DHSs (filled boxplots).
(B) Only a small fraction of DHSs in each risk locus (open boxplots) harbor CI SNPs (filled boxplots).
(C) Most of the posterior probability of disease risk association (regulatory potential) is located on replicable DHSs, with 78/301 (26%) of
loci showing significant enrichment of risk on DHSs (FDR 10%).
(D) By correlating DHS accessibility and gene expression, we find that only a subset of all genes in each locus (open boxplots) show sig-
nificant probability of being regulated by risk variants (filled boxplots), with individual genes reaching significance in 53/78 (68%) of loci
(FDR 10%).

(legend continued on next page)
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overlapping DHSs from our analysis are more likely to show ASA

than the genome-wide expectation, using Fisher’s exact test.

Because some diseases have only a small number of loci associated

at genome-wide significance, we pooled results across all nine

AIDs for this analysis.

To test whether replicable DHSs harboring credible interval

SNPs (burdened replicable DHSs) are preferentially active in each

tissue, we compared the proportion of active burdened replicable

DHSs to the proportion of all replicable DHSs active in that tissue

with Fisher’s exact test. We used the same approach to determine

enrichment for functional categories defined by ChromHMM37

and identified genomic functions of replicable DHSs through over-

lapping them with annotated ChromHMM regions (Figure S7).
Results

DHS peaks, as all epigenetic marks, are called in each sam-

ple separately.20 We therefore clustered DHS peaks to iden-

tify those corresponding to the same underlying regulatory

site, so we could correlate accessibility state of the same site

to gene expression data (Figure S2). In 56 REMC tissues

with at least two replicate DHS sequencing runs, we called

22,060,505 narrow-sense 150 bp peaks at a false discovery

rate FDR < 1%, which fell into 1,994,675 DHS clusters of

150–390 bp each, covering 14.8% of the autosomal

genome (Figure S8). Of these, 1,079,138 (54.1%) covering

8.5% of the genome passed nominal significance in a sta-

tistical replication test (c2
1 test, p < 0.05). We found that

common variants on this subset of peaks explains essen-

tially all the heritability of both multiple sclerosis and in-

flammatory bowel disease that is captured by variants

residing in the full set of DHS peaks, indicating that they

represent the majority of regulatory regions relevant to

AID risk (Figure S9). Of these 56 REMC tissues, 22 also

have gene expression measurements, from which we

calculated the correlation between accessibility state of

796,747 replicable DHSs active in at least one of these tis-

sues, and transcript levels for 13,771 genes. As these repre-

sent a diverse sampling of organ systems, we avoid limiting

our hypotheses to tissues previously suspected of driving

pathogenesis while maximizing the sources of data we

can utilize. We note our framework can be used with any

regulatory feature and expression dataset and is publicly

available (see Web Resources).

With this framework, we dissected 301 associations to

one of nine AIDs, using publicly available summary associ-

ation statistics from samples genotyped on the Immuno-

chip, a targeted genotyping array from Immunobase38,39

(see Web Resources; Table 1). These associations reside in

loci genotyped at high density on the Immunochip so

that common variants are completely ascertained, and
(E) Immune cell subpopulations have a higher proportion of loci with
systems.
(F) DHSs harboring CI SNPs aremore likely to be accessible in immune
301 (26%) of loci associated to one of nine autoimmune diseases sho
specific regulatory sequences.

The
have been previously reported at genome-wide signifi-

cance.13,14 We excluded the major histocompatibility lo-

cus, where complex LD patterns make credible interval

mapping challenging.40 For each association, we calcu-

lated posterior probabilities of association for all markers

and defined credible interval SNP sets.13,15 We find a me-

dian of 4 (standard deviation, SD ¼ 7.8) replicable DHSs

overlap CI SNPs, out of a median 822 (SD ¼ 205.2) repli-

cable DHSs in each 2 Mb window around an association,

indicating that this data integration step alone vastly

reduces the number of potentially disease-relevant regula-

tory regions (Figure 1).

To establish how likely each association is to bemediated

by variation in regulatory regions, we compute their regu-

latory potential r, as the proportion of the posterior prob-

ability of association localizing to replicable DHSs. We

then assess the significance of r by permutation, randomly

reassigning the positions of all replicable DHSs in the

locus.3 As most regulatory regions are active in only a sub-

set of tissues, we do this for each REMC tissue indepen-

dently, only considering the replicable DHSs active in

that tissue. We find that 78/301 (26%) of loci show signif-

icant r in at least one REMC tissue at a false discovery rate

(FDR) of 10% (51/301 at FDR 5%; Table 1). From simula-

tions, we find that our method has good power to detect

true cases of such regulatory potential, even in cases where

two independent causal variants exist in a locus (Figure S5).

Consistent with previous observations,4,7,41 we find that

risk often localizes to replicable DHSs active in immune

cell subpopulations (Figure 1), though the number of

replicable DHSs active in these subpopulations is small

(Figure S10).We reasoned that if replicable DHSs harboring

CI SNPs actually mediate risk, their accessibility state

should be perturbed by the variants they harbor36 and

they should be accessible in disease-relevant cell popula-

tions. We find that, as a group, CI SNPs on DHSs are

more likely to be associated to allele-specific accessibility

than non-CI SNPs on replicable DHSs (Fisher exact test

p¼ 73 10�6) and that this enrichment is consistent across

minor allele frequency bins (Figure S11). We also found

that replicable DHSs harboring CI SNPs are more likely to

be accessible in immune cell subpopulations (Figure 1).

These results show that our approach identifies regulatory

regions affected by variants likely to influence disease risk,

supporting the view that alteration of gene regulatory re-

gion accessibility is a major mechanism of disease risk.

Having validated that our analysis was identifying

genuine regulatory risk effects, we next turned to identi-

fying specific disease-mediating replicable DHSs and the

genes they control in the 78 loci with significant r

(FDR < 0.1; Tables 1, S2, and S3). We found that a median
risk localizing to active DHSs compared to tissues from other organ

cell subpopulations than in other tissues. Overall, we find that 78/
w significant evidence that risk is mediated by genetic variants on

American Journal of Human Genetics 101, 75–86, July 6, 2017 79
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Figure 2. Regulatory Fine-Mapping Identifies Two Replicable DHSs and Changes to CD58 Regulation in CD3þ T Cells as Mediating
Multiple Sclerosis Risk on Chromosome 1
A genome-wide significant association on chromosome 1 localizes to the CD58 locus (A), and 98.8% of the posterior probability of as-
sociation (orange) localizes to replicable DHSs in the locus (B). Different combinations of replicable DHSs are active in each of the Road-
map Epigenomics Project tissues we examined; the enrichment is most significant in replicable DHSs active in CD3þ T cells (77% of the
overall posterior probability; FDR< 0.1). The expression levels of each gene in the locus can be correlated to the accessibility state of each
replicable DHS (gray lines). By partitioning the posterior probability of association attributable to each replicable DHS by the strength of
this correlation, we find that CD58 shows significant enrichment (purple, FDR< 0.05). The expression level of CD58 is markedly higher
in tissues where the replicable DHSs we identify are accessible (orange) than in tissues where they are inaccessible (blue; C).
of three replicable DHSs (SD ¼ 4.6) account for >90% of

the total association posterior attributable to all replicable

DHSs in these loci, a phenomenon independent of the

total regulatory potential in a locus (Figure S12). This indi-

cates that we can resolve most loci to a small number of

candidate regulators. To identify the genes likely to

mediate pathogenesis in each locus, we correlated the

accessibility state (open or closed) of each replicable DHS

to the expression levels of nearby genes. As we found

wide-spread correlation between replicable DHS accessi-

bility and gene expression (a median of 353/822 replicable

DHSs per locus, at a correlation p < 0.05, Figure S13), we

explicitly tested the evidence that each gene is excessively

correlated to risk-mediating replicable DHSs as the patho-

genicity factor g. As with r, we establish the significance

of g in each tissue by permutation. We find at least one sig-

nificant gene in at least one tissue in 53/78 loci (FDR <

0.1), indicating that we can identify the likely targets of

the regulatory regions represented by these replicable

DHSs (summarized in Figure 1 and Table 1, with detailed

entries in Table S3). Surprisingly, these genes are not the

closest to the most associated variant in 38/53 (72%) of

cases, and in 45/53 (85%) were not the closest gene to

the replicable DHS with the highest regulatory potential,

suggesting that risk-relevant regulatory regions exert influ-

ence over genes at considerable distances (Table S3). The
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replicable DHSs with significant r values are more likely

to be marked as active enhancers of transcription, further

supporting this conclusion (Figure S7). In the 25/73 loci

where we could not identify a gene target, we found that

the replicable DHSs with the highest r are not correlated

to any gene in the REMC data (Figure S14), suggesting

they either affect genes not captured there or represent reg-

ulatory regions with different functions.

In several cases, we found evidence supporting a previ-

ous hypothesis for a causal gene in a locus. For example,

an association to multiple sclerosis (MS) risk on chromo-

some 1 shows significant regulatory potential in T cells

and macrophages. This is driven by CI SNPs on two repli-

cable DHSs, both of which implicate CD58 (Figure 2).

CD58 encodes lymophocyte-function associated antigen

3 (LFA3), a co-stimulatory molecule expressed by anti-

gen-presenting cells, mediating their interaction with

circulating T cells by binding lymophocyte-function asso-

ciated antigen 2 (LFA2).42 The latter is encoded by

the CD2 immediately proximal to CD58 but does not

show strong evidence of control by risk-mediating repli-

cable DHSs. The protective MS effect in this region is asso-

ciated with an increase in CD58 expression, leading to an

up-regulation of the transcription factor FoxP3 via CD2.

This results in enhanced functioning of CD4þCD25high

regulatory T cells, thought to be defective in MS-affected



individuals.42 Similarly, we find significant evidence for

EOMES and SLC4A7 regulation in CD3þ T cells for another

MS association on chromosome 3 (Figure S15) and IRF8

regulation across immune cell subpopulations for a

rheumatoid arthritis (RA) association on chromosome 16

(Figure S16).

Many Immunochip loci harbor associations to multiple

diseases, suggesting that a portion of risk is shared.43,44

Consistent with this observation, we found that 42 Immu-

nochip loci had nominally significant r for at least one cell

type for more than one disease, representing 107 of the

301 initially considered associations. Of these, 25/42 loci

showed regulatory potential in two AIDs, and twelve,

four, and a single locus showed regulatory potential in

three, four, and five AIDs, respectively. Due to the correla-

tion imposed by linkage disequilibrium, it remains chal-

lenging to conclude that associations to different traits in

the same locus represent a true shared effect, where the

same underlying causal variant drives risk for multiple dis-

eases.45 We therefore sought to establish whether associa-

tions to different diseases in these 42 loci identify the

same replicable DHSs and prioritize the same genes, and

we found striking examples of shared and distinct effects

across these 42 loci. For example, five diseases show ge-

netic association to a region of chromosome 6, with the

most significant SNPs residing in the coding region of

BACH2 (Figure 3). We found significant regulatory poten-

tial in T cell subsets for autoimmune thyroid disease

(AITD), MS, and type 1 diabetes (T1D), which indepen-

dently localize to the same replicable DHS in the three dis-

eases. We found weaker evidence for regulatory potential

in both celiac disease (CEL) and IBD across most immune

tissues, with the IBD evidence also supporting a role for

major organs including the intestine. These results are

nominally significant but do not pass our FDR threshold

in either disease. In the first three diseases, we can indepen-

dently prioritize a single gene, MDN1, as the most likely

target gene for these effects, with no significant evidence

for BACH2. In contrast, we found no significant evidence

for any gene in either CEL or IBD, despite the credible in-

tervals for these diseases essentially overlapping those for

AITD, MS, and T1D (Figure 3). We note that the most asso-

ciated SNPs for MS, AITD, and T1D are the same

(rs72928038), and the r2 between this SNP and the most

associated SNPs of IBD (rs1847472) and CEL (rs7753008)

are 0.34 and 0.25, respectively. Similarly, a region on chro-

mosome 1 harbors associations to both IBD and T1D. We

found significant regulatory potential in CD3þ T cells for

both diseases, and independently prioritize a single gene,

IL19, as the most likely target for these effects (Fig-

ure S17).We are thus able to begin resolving associations

across multiple diseases into shared and distinct effects in

the same locus.

To more generally assess how our approach resolves

shared associations, we compared the overlaps between

most associated markers, credible interval sets, replicable

DHSs harboring CI variants, and genes identified across
The
the 42 loci (Table 2).We foundmore overlap than expected

by chance for each comparison (hypergeometric p �
0.001), indicating that both genetic association data and

regulatory region data point toward shared effects. Further-

more, we found that the extent of this overlap increased as

we moved from comparing lead SNPs to prioritized repli-

cable DHSs and genes (Fisher exact test between propor-

tion of lead SNPs and prioritized genes p ¼ 5 3 10�6).

This increase in concordance holds true when we consider

only the 25 loci harboring two disease associations, indi-

cating that our conclusions are not based on biases in a

minority of loci harboring many associations (Table S4).

We found that the rate of prioritized gene overlap is corre-

lated to linkage disequilibrium between lead variants, sug-

gesting that though GWASs may not identify precisely the

same variant in two separate diseases, shared effects can

clearly be identified by considering the likely functional

effects in a locus (Figure S18). Overall, we find significant

evidence for at least one gene across multiple diseases in

17/42 loci, and these are the same genes in 12/17. We

find that this is due to overlapping replicable DHSs identi-

fied across diseases in 11/12 of these cases, suggesting that

the samemechanistic effect drives risk tomultiple diseases.

Thus, our approach can uncover biological pleiotropy46

across diseases even when the identity of the causal variant

remains unknown, beyond the comparison of credible in-

terval sets.
Discussion

Wehavedescribed an approach todetect gene regulatory re-

gions driving disease risk and through them, the genes

likely to mediate pathogenesis, through robust re-analysis

of public data. We find substantial evidence of regulatory

potential in a substantial proportion of loci across nine

AIDs and we resolve these to individual genes in 53/78

(68%) controlled by regulatory regions active in immune

cells. In loci with no substantial evidence of regulatory po-

tential, we suggest that the risk effect is mediated either by

coding variation47 or by regulatory regions in immune cell

subpopulations and physiological contexts not adequately

represented in the REMCdatasets. Thus, as profiles formore

cell types and physiological contexts are collected, we

expect not only thatmoreAID locimay yield to suchdissec-

tion, but that traits and diseases for which data on the rele-

vant tissues are not presently available may also be interro-

gated. Some portion of these loci may also harbor multiple

independent causal variants with equivalent effect sizes,

which erode our power to detect regulatory potential

even when one of these causal variants is located on a reg-

ulatory region. We note that our approach will also apply

to summary statistics from densely imputed genome-wide

genotyping platforms, though care should be taken when

comparing results across studies as we do in the present

report, as differences in imputation strategies may induce

false positives and negatives to such comparisons.
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Figure 3. Regulatory Fine-Mapping on Chromosome 6 Identifies a Single Replicable DHS and Changes to MDN1 Regulations, not
BACH2 , in CD3þ T Cells, as Driving Risk to Autoimmune Thyroid Disease, Multiple Sclerosis, and Type 1 Diabetes
Association to five autoimmune diseases localizes to the coding region of BACH2 (autoimmune thyroid disease in A; others are shown in
Figure S19). We found significant regulatory potential in CD3þ T cell subsets for autoimmune thyroid disease (AITD), multiple sclerosis
(MS), and type 1 diabetes (T1D), which independently localize to the same replicable DHS in the three diseases (B). In each case, we can
independently prioritize a single gene, MDN1, as most likely target gene for these effects, with no significant evidence for BACH2. We
found weaker evidence for regulatory potential in both celiac disease (CEL) and inflammatory bowel disease (IBD) across most immune
tissues, including CD3þ Tcells (C), which stems from two different replicable DHSs than the signal in AITD, MS, and T1D. This evidence
does not pass our FDR threshold in either disease. In neither case do we find any evidence to support either MDN1 or BACH2 in these
diseases. The expression level of MDN1 is markedly higher in tissues where the three replicable DHSs we identify are accessible (orange)
than in tissues where they are inaccessible (blue; D).
Our approach generates specific hypotheses about

pathobiology that are often beyond what is currently

known. Our dissection of the BACH2 locus, for instance,

implicates MDN1 as the likely causal gene. MDN1 encodes
82 The American Journal of Human Genetics 101, 75–86, July 6, 2017
midasin AAA ATPase 1, a nuclear chaperone required for

maturation and export of pre-60S ribosome units. It is

widely expressed in the immune and hematopoietic sys-

tems and elsewhere. Homozygous knockout mice do not



Table 2. Regulatory Fine-Mapping Indicates Risk Variants for Multiple Diseases in the Same Loci Affect the Same Genes

Concordance Discordance Jaccard Coefficient Disease Overlap (Fisher’s Exact p)

Number of most associated SNPs 9 86 0.09 – (p ¼ NA)

Number of CI SNPs (mean) 9.26 41.14 0.2 2.15 (p ¼ 0.0134)

Number of prioritized CI SNPs (mean) 2.67 11.37 0.23 2.25 (p ¼ 0.0104)

Number of prioritized replicable DHSs
(mean)

2.62 9.84 0.24 2.54 (p ¼ 0.0031)

Number of prioritized genes (mean) 1.29 2.32 0.46 5.27 (p ¼ 5 3 10�6)

In loci harboring associations to multiple diseases, we find that the most associated variants are often different (top row). However, the credible interval sets in
these loci overlap significantly (hypergeometric p < 0.001, second row), and this overlap is greater than that of the most associated variants alone (Fisher’s exact
test p shown in the last column). This overlap is also true when comparing the subset of CI SNPs on DHSs and for the number of DHSs harboring a CI SNP across
diseases (third and fourth rows). When we compare prioritized genes, we see further increase in overlap relative to most associated variants and to prioritized DHSs
(bottom row, Fisher’s exact test p ¼ 53 10�6 and p ¼ 4.93 10�4, respectively). Thus, identifying risk-mediating genes partially overcomes the limited resolution
of analyses only focusing on genetic association data.
survive, but heterozygote animals have not been screened

for immune-relevant phenotypes.48 Variation at theMDN1

locus across inbred mouse strains is associated with total

lymphocyte count, CD4þ T cell viability in response to

doxycycline E, and CD4þ T cell levels as a proportion of

total lymphocyte count, suggesting an overall effect on

CD4þ T cell viability.49,50 In humans, the gene is highly

intolerant to mutation51 and particularly to loss-of-

function mutations,52 suggesting a fundamental role. We

therefore suggest that MDN1 may drive pathogenesis by

altering CD4þ T cell homeostasis and viability in adults.

We note that, despite the experimental evidence support-

ing this role, this gene has not yet received significant

consideration in human disease studies, highlighting the

importance of unbiased, data-driven approaches in gene

prioritization.

Another gene we prioritize, IL19, encodes the anti-in-

flammatory cytokine interleukin 19, a member of the

IL10 family. IL19 activates STAT3 signaling in monocytes

and through this drives the production of IL6 and TNFa

to induce apoptosis in T cells. Decreased IL19 expression

exacerbates disease inmurine experimental colitis, amodel

for human IBD where pathology is driven by T helper cell-

mediated immune responses,53,54 and IL19 is overex-

pressed in IBD-affected individuals with active disease.55

Thus, IL19 appears to mediate pathogenesis by decreasing

innate immune dampening of adaptive responses and is of

significant therapeutic interest.56

In the majority of the 53 loci in which we are able to

resolve to a gene, we do not prioritize the gene closest to

the maximally associated marker. This suggests that risk-

mediating regulatory elements act at considerable dis-

tances, either by influencing the overall transcriptional

landscape of the region or by acting on individual genes

at a distance.57 These competing explanations make

different predictions: the former implies that many genes

will be controlled by the risk-mediating regulator, whereas

the latter predicts a limited number of targets. As we find

only a single significant gene in the majority of cases,

our results support the latter scenario, where risk is medi-
The
ated by changes to specific gene regulatory programs

affecting particular genes.

More broadly, the observation that most common, com-

plex disease risk aggregates in gene regulatory regions4,7,9

has made the translation of genetic association results

into molecular and cellular mechanisms challenging.

Fine-mapping is limited in resolution by linkage disequi-

librium,making association data alone insufficient to iden-

tify a causal variant driving risk in a locus. For example, in a

recent Immunochip study of multiple sclerosis,14 we were

able to reduce 14/66 (21%) Immunochip regions to 90%

credible interval sets of fewer than 15 variants, and 5/66

to fewer than 5 variants, though increases in sample size

will raise the resolution of these approaches.15 These

fine-mapping strategies assume that a single causal variant

drives risk in the locus, which conditional analyses in both

the MS and IBD data suggest holds true.14,15 Unlike coding

variants, inferring function of non-coding polymorphisms

remains challenging, though efforts to integrate functional

genomics and population genetics data into composite

functional scores58,59 or integrating genetic and epigenetic

data11 are gaining some traction on this problem. Our own

work complements these efforts by focusing on identifying

individual regulators and the genes they control to

generate testable hypotheses of the molecular basis of dis-

ease mechanism.
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Supplemental Data include 19 figures and 4 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.
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