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Detection of Zak phases and topological invariants
in a chiral quantum walk of twisted photons
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Pietro Massignan2

Topological insulators are fascinating states of matter exhibiting protected edge states and

robust quantized features in their bulk. Here we propose and validate experimentally a

method to detect topological properties in the bulk of one-dimensional chiral systems. We

first introduce the mean chiral displacement, an observable that rapidly approaches a value

proportional to the Zak phase during the free evolution of the system. Then we measure the

Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral

displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent

timeframe and combine the two windings to characterize the full phase diagram of this

Floquet system. Finally, we prove the robustness of the measure by introducing dynamical

disorder in the system. This detection method is extremely general and readily applicable to

all present one-dimensional platforms simulating static or Floquet chiral systems.

DOI: 10.1038/ncomms15516 OPEN
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T
opological phases of matter escape the canonical char-
acterization of states dictated by the Ginzburg–Landau
theory of phase transitions. These phases emerge without

breaking symmetries and are not characterized by a long-range
order nor a local order parameter but rather by a global
topological order. Historically, topology was first proven to have a
key role in explaining algebraically decaying order, transport and
coherence of two-dimensional Bose liquids, XY models and
crystals1. Shortly after, the quantization of Hall conductance2 was
shown to be rooted in current-carrying edge states, protected by
the topology of the bulk3–5. Being associated with a global order,
these phases are robust against local perturbations and promise
important applications in metrology, spintronics and quantum
computation (see, for example, refs 6–8).

Intense studies9 followed the early discoveries, and topological
insulators have by now been engineered in a variety of physical
architectures, such as superconducting10, mechanical11,
optomechanical12, photonic13, atomic14 and acoustic
platforms15. Such diverse systems have been exposed to either
real or synthetic magnetic fields, and their topological properties
have been studied by scattering at the interface between different
domains15,16 or imaging edge states17–26. Direct detection of
topological invariants in the bulk of the system (with no need of
edges) has been reported so far by very few experiments27–29.

Topological insulators are classified in terms of dimensionality
and discrete symmetries30. One-dimensional (1D) systems with
chiral symmetry are characterized by the Zak phase, that is, the
Berry phase accumulated by an eigenstate during its parallel
transport through the whole Brillouin zone31. The Zak phase is
closely related to the electric polarization in solids and plays a key
role in the modern theory of insulators32,33.

Periodically driven (Floquet) systems are attracting an
increasing interest, as these show richer topological features than
their static counterparts17,24–26,34–44. Particularly promising
Floquet topological systems are discrete-time quantum walks
(QWs)16,17,29,45–47, and recent works have reported the
observation of topological invariants16,29, quantum phase
transitions46 and edge states17 in these systems. In its simplest
version, a QW is the discrete time evolution of a particle (the
walker) on a 1D lattice48. At each step, the walker moves to
neighbouring sites, with the direction of the shift depending on
the state of an internal two-level degree of freedom (the coin).
Between consecutive steps, a rotation modifies the coin state,
univoquely determining the following evolution.

Here we demonstrate that, in chiral 1D static and Floquet
systems with spin 1/2 (that is, a two-state coin), the mean chiral
displacement of a particle’s wavepacket becomes quantized and
proportional to the Zak phase in the long-time limit. Remarkably,
this occurs during the free evolution of the system, in absence of any
external force or loss mechanism, with the only requirement that
the initial wavefunction is localized. We validate experimentally this
finding in a photonic discrete-time QW based on the orbital angular
momentum (OAM) of a light beam. We implement the same QW
in a shifted inequivalent timeframe and measure a second Zak
phase. Combining the two windings, we extract the complete set of
topological invariants characterizing the system. Finally, we prove
the robustness of our detection by adding dynamical disorder.
These measurements provide therefore a bulk measurement of the
Zak phases and complete topological invariants of a 1D chiral QW.
Our proposal may be straightforwardly applied to general driven
Floquet systems.

Results
Zak phase detection in the bulk of a QW. In one dimension,
discrete-time QWs with chiral symmetry display a quantized Zak

phase and have been extensively studied in the past years. Among
these implementations, we focus on the photonic platform pro-
posed in ref. 46. Here the walk takes place on a lattice whose sites
xj i are associated with photonics states mj i, corresponding to

light beams that carry m: units of OAM per photon along the
propagation axis and show a twisted wavefront49. The two coin
states are instead mapped onto the left and right circular
polarizations of the beam, carrying ±: units of spin angular
momentum per photon along the propagation axis. Once the
system is prepared in an initial state c0j i, its state after t timesteps
is given by

cðtÞj i¼U t c0j i; ð1Þ
where the single-step operator U is obtained by cascading suitable
combinations of quarter-wave plates and q-plates46,50,51. In
Fig. 1a, we show a pictorial representation of our setup that
realizes a seven-step QW with U implemented specifically as
U � Q �W46. The action of a quarter-wave plate oriented at 90�
with respect to the horizontal direction is described by the local
operator W, rotating the polarization states as

W¼ 1ffiffiffi
2
p
X

m

cym s0� isxð Þcm: ð2Þ

Here cym¼ cym;L; cym;R
� �

creates a particle on site m with
polarization L/R and si are Pauli matrices acting in the coin
(polarization) space. The translation operator Q is implemented
by a q-plate, a liquid crystal device that yields an effective spin–
orbit interaction in the light beam. This couples neighbouring
sites and polarization states as

QðdÞ¼
X

m

cos
d
2

cymcmþ i sin
d
2

cymþ 1s� cmþ h:c:
� �

ð3Þ

where s�¼ sx � isy
� �

=2 are the operators that flip the coin states
Lj i and Rj i, d is the optical retardation of the q-plate and h.c.

stands for Hermitian conjugate. Further details on the q-plates
and on the complete experimental setup are provided in the
Methods section and Supplementary Fig. 1.

Very generally, QWs are generated by the repeated application
of a unitary operator U , and therefore the system can be described
in the framework of Floquet theory. As a consequence of
translational invariance in space, the effective Hamiltonian
associated with a full period is diagonal in momentum space
and may be written as

HðkÞ¼i lnUðkÞ¼EðkÞnðkÞ � r; ð4Þ
with E(k) the quasi-energy dispersion, r¼ sx; sy; sz

� �
and we

have set the period T and : to unity. The point on the Bloch
sphere identified by the unit vector n(k) represents the coin part
of the system eigenstates, while their spatial part is a plane wave
with quasi-momentum k46. The function ln(x) denotes the
principal branch of the natural (matrix) logarithm, so that the
quasi-energy is a periodic function, with �p and þp identified.

The class of QWs we are considering features chiral symmetry,
since there exists a unitary operator G such that G2¼ I and
GHG¼�H. These conditions imply that G is Hermitian and that
G¼ vG � r, with vG a vector labelling a point on the Bloch sphere.
In this case, the unit vector n is bound to rotate around the origin
in a plane orthogonal to vG, and the Zak phase equals

g¼ 1
2

Z p

� p
dk n� @n

@k

� �
� vG: ð5Þ

The winding number g/p assumes strictly integer values and
counts the number of times the unit vector n rotates around the
unit vector vG as k traverses the whole Brillouin zone. In Fig. 1b,
we show the winding of the vector n of the operator U, for two
values of d in different topological sectors. The Zak phase is
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therefore a bulk property; although it has strong influences in
properties of systems where it arises, its detection in current
experimental architectures remains challenging.

In the following, we show that information on such topological
invariant is hidden in the subleading terms of the mean
displacement mh i, when the initial wavepacket is localized on a
single site. This extends a previous result showing that, in the same
conditions, the ballistic terms of higher moments of the walker’s
displacement feature discontinuities at topological phase transi-
tions46. Let us consider the evolution of a wavepacket c0j i initially
localized at site m¼ 0, and whose polarization is characterized
by the expectation values of the three Pauli matrices,
s¼ c0h jr c0j i¼ rh ic0

. The mean displacement of the wavepacket
after t timesteps is given by (see Supplementary Note 1 for details)

mðtÞh i¼
Z p

�p

dk
2p
U � t i@kð ÞU th ic0

¼ G?h ic0
LðtÞþ SðtÞ½ � � Gh ic0

SGðtÞ:
ð6Þ

The term in square brackets in equation (6) is proportional to
G?h ic0

, the projection of the initial polarization on a direction
orthogonal to vG, and contains a ballistic term L(t) (which grows
linearly with t) and a subleading part S(t).

The vector identifying the specific direction of G? in the plane
orthogonal to vG, and the explicit functional forms of L(t) and
S(t), are non-universal features that depend on the specific
protocol (or timeframe) and have no particular relevance for our
discussion. The second term in equation (6), which is weighted by
Gh ic0

(the projection of the initial polarization along vG), is the
subleading chiral term SG that may be written as (see
Supplementary Note 1 for details)

SGðtÞ¼
g

2p
�
Z p

� p

dk
2p

cosð2tEÞ
2

n� @n
@k

� �
� vG: ð7Þ

In the limit t-N, SG becomes proportional to the Zak phase, as
the oscillatory correction quickly averages to zero (see Fig. 1c).

The above analysis shows that information on the Zak phase is
contained in the mean displacement of the walker, and it may be
extracted by fitting mh i at long times, isolating in turn the second
term of equation (6). A related result for the case of a non-
Hermitian QW initialized on a chiral eigenstate (that is, an initial

condition such that G?h ic0
¼0) was demonstrated theoretically in

ref. 52 and verified experimentally in ref. 29. However, this
measurement would not be robust. Indeed, even if one prepared
the initial polarization in an eigenstate of the chiral operator G, so
that G?h ic0

¼ 0, disorder during the propagation of the beam
would introduce polarization components orthogonal to vG.
These would give rise to ballistic contributions, which in the
long-time limit would dramatically affect the result.

An alternative and more convenient approach consists in
measuring the mean chiral displacement

CðtÞ � GmðtÞh i¼SGðtÞ; ð8Þ
which quantifies the relative shift between the two projections of
the state onto the eigenstates of the chiral operator (see
Supplementary Note 1 for a concise derivation of this equality).
Importantly, the result contained in equation (8) is (i)
independent of the initial polarization and (ii) robust against
disorder. We probe the chiral displacement in our photonic
platform by performing a seven-step QW of the protocol
U¼Q �W, as depicted in Fig. 1a. The chiral eigenstates
correspond to two specific orthogonal polarization states, which
depend explicitly on the protocol, and which we detect at the end
of the QW (see Methods section). In Fig. 1c, we report the
measured values of C for two different initial polarization states.
Experimental points closely follow the theory curve for seven time
steps (blue solid line), and no significant differences can be
observed between the two different initial states, proving that this
measurement is insensitive to the choice of the polarization of the
photons. For completeness, we also show results predicted for 33
steps, and the asymptotic long-time limit, which coincides with
the Zak phase (over 2p). We note here that, although both theory
and data oscillate, as few as seven steps are enough to have a clear
detection of the Zak phase.

Zak phase in a shifted timeframe. In static systems, bulk topo-
logical invariants such as the Zak phase or the Chern number are
uniquely defined by integrals over the whole Brillouin zone and
are in one-to-one correspondence with the presence of edge
states, thus providing a full classification in terms of the periodic
table of topological insulators30. The situation is very different in
periodically driven (Floquet) systems in D dimensions, where the
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Figure 1 | Zak phase detection through the mean chiral displacement. (a) Sketch of the setup implementing the protocol U¼Q �W. A light beam, exiting

a single-mode fibre depicted on the left, performs a QW by propagating through a sequence of quarter-wave plates (purple disks) and q-plates (turquoise

disks). (b) The unit vector n(k) winds either 1 or 0 times around the chiral axis, as k traverses the whole Brillouin zone, depending on the value of the optical

retardation d. (c) Mean chiral displacement C after a 7-step QW of protocol U, versus the optical retardation d. Each datapoint is an average over 10

different measurements (error bars are the associated s.e.). Purple and red dots refer, respectively, to different input polarizations, Lj i and Lj i þ Rj ið Þ=
ffiffiffi
2
p

.

The lines represent the function SG(t) given in equation (7), for different values of the time t. In the long-time limit, SG(t) converges to (a multiple of) the

Zak phase g of protocol U.
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integral determining the topological invariants needs to be
performed over a Dþ 1 dimensional torus constituted by the
Brillouin zone and an extra periodic dimension, the quasi-
energy42.

Moreover, a gauge freedom is introduced by the choice of
the timeframe, that is, the origin of time of the periodic cycle
(see Fig. 2a). While the dispersion E(k) is equal in all timeframes,
the effective Hamiltonian, its eigenstates and symmetries and the
resulting dynamics crucially depend on the timeframe40. As an
example, the operator ~U �

ffiffiffiffi
Q
p
�W �

ffiffiffiffi
Q
p

defines a timeframe
that is inequivalent to the one introduced by U. In particular, the
unit vector ~n(k) defined by iln ~UðkÞ¼EðkÞ~nðkÞ � r may wind twice
around the chiral axis as k traverses the Brillouin zone (see
Fig. 2c), and its Zak phase ~g (dashed line in Fig. 2d) differs from
the Zak phase g of protocol U (dashed line in Fig. 1c).

We realize experimentally protocol ~U by the setup shown
schematically in Fig. 2b. Using the relation

ffiffiffiffiffiffiffiffiffiffi
QðdÞ

p
¼Qðd=2Þ, it is

straightforward to see that ~Ut¼
ffiffiffiffi
Q
p

WQW:::QW
ffiffiffiffi
Q
p

. Hence, we
realize the operator ~Ut by placing q-plates yielding an optical
retardation d/2

ffiffiffiffi
Q
p� �

at the beginning and end of the optical
path, while in the bulk of the walk we adopt the same sequence
reported in Fig. 1a (with the last q-plate removed). Overall, our
QW implements seven steps of protocol ~U by means of a total of
eight q-plates, six with retardation d and two tuned at d/2 (first
and last plates), separated by quarter-wave plates. In Fig. 2d, we
report the measure of the mean chiral displacement ~C generated
by the single-step operator ~U . As in the case of protocol U, this
quantity accurately follows the theory prediction, providing an
unambiguous detection of the Zak phase ~g of the infinite system
after just seven steps.

Complete topological characterization. It is clear from the
previous discussion that the Zak phase associated with a single
timeframe does not contain all the topological information of
our QW. Indeed in Floquet 1D chiral systems, there exist two
independent classes of protected edge states at either 0- and p
energies. An example of these edge states is shown in Fig. 3a,
where we plot the quasi-energies of all eigenstates of an open-
ended lattice. As remarked above, the spectrum is independent

of the timeframe. The spectrum contains edge states even for
3p/2odo5p/2 where the Zak phase g of protocol U is zero,
explicitly confirming that the Zak phase of a single QW protocol
does not contain the complete information about the topological
state of the system.
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Figure 2 | Zak phase in the complementary timeframe. (a) Different choices of the origin of the periodic cycle lead to different protocols. (b) Sketch of the

setup implementing protocol ~U¼
ffiffiffiffi
Q
p
�W �

ffiffiffiffi
Q
p

. The two q-plates at the beginning and end of the optical path (shown in bright green) yield an optical

retardation d/2, where d is the optical retardation characterizing bulk q-plates (turquoise). (c) The unit vector ~nðkÞ associated with the operator ~U, for

optical retardations 3p/2odo2p, winds twice around the chiral axis as k spans the whole Brillouin zone. (d) Mean chiral displacement ~C after a 7-step QW

with protocol ~U. The datapoints are averages of 10 experimental measurements, and error bars are the associated s.e. Purple and orange colours refer,

respectively, to input polarizations Lj i and Lj iþ i Rj ið Þ=
ffiffiffi
2
p

. The lines display SGðtÞ, obtained by replacing n with ~n in equation (7), for different values of the

time t. At long times, SG converges to the Zak phase ~g.
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Figure 3 | Topological invariants and bulk-edge correspondence. (a) Edge

states on an open-ended lattice [� L : L], with L¼ 10; the colour coding

indicates the degree of localization w¼ log10 1� mj jh i=Lð Þ, with darker

colours indicating states more localized towards the edges. (b) Topological

invariants C0 and Cp, obtained as in equation (9) by combining the

measurements of the mean chiral displacements C and ~C of protocols U and
~U, and averaging the results obtained from the two initial states (error bars

are the propagated s.e.). The dashed lines show the long-time limit of the

topological indices C0 and Cp, yielding respectively the number of edge

states at 0 and p energy.
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The bulk-edge correspondence in these driven systems requires
two invariants C0 and Cp, yielding, respectively, the number of
0- and p-energy edge states. As shown in refs 38,41, these are
simple functions of two Zak phases, measured in two inequivalent
timeframes possessing an ‘inversion point’, that is, which may be
written, respectively, as U1¼GFyGF and U2¼FGFyG, with F a
suitable evolution operator. In the case of our setup, the two
special protocols fulfilling this criterion are ~U and
~U 0 �

ffiffiffiffiffi
W
p

� Q �
ffiffiffiffiffi
W
p

. However, it is simple to show that ~U 0 is
topologically equivalent to U, as no gap closing happens during
the rotation

ffiffiffiffiffi
W
p

; therefore the Zak phase of ~U 0 coincides with g.
As such, the complete topological classification of 1D chiral
systems may be obtained by means of the two quantities

C0¼
~CþC

2p
and Cp¼

~C�C
2p

; ð9Þ

which converge in the long-time limit, respectively, to the number
of 0- and p-energy edge states. By combining our measurements
of the mean chiral displacements measured in the inequivalent
timeframes, we are now able to compute the invariants C0 and Cp
and detect the complete phase diagram of this system: the result is
shown in Fig. 3b. Once again, our measurements show a
remarkably fast convergence towards the asymptotic limit.

Robustness to dynamical disorder. Finally, we test the stability
of the quantization of the mean chiral displacement against dis-
order. In particular, we choose protocol U and introduce dyna-
mical disorder by offsetting the optical retardation dj (1rjr7) of
each q-plate by a small random amount Ej

		 		oD around their
common mean value �d. In our experiment, we set D¼p/10 and
p/5. We note that this disorder is dynamic, in the sense that it
affects independently the various q-plates crossed by the beam,
but crucially it respects chiral symmetry. This can be simply
understood by noting that the vector vG, defining the chiral
operator, does not depend on d.

As shown in Fig. 4, in single realizations the mean chiral
displacement presents oscillations featuring higher amplitude for
increasing disorder, but an ensemble average over independent
realizations smoothly converges to the expected theoretical result,
which in the infinite time limit gives the bulk value of the Zak
phase. Here we performed measurements on protocol U, but
similar robustness of the chiral displacement shall hold for every
1D QW chiral protocol, and more generally every 1D chiral
system, as long of course as the disorder does not break chiral
symmetry and its strength is small compared to the gap size to
prevent interband transitions. As an example, in the
Supplementary Note 2 and Supplementary Figs 2–5 we show

that the mean chiral displacement is an equally robust topological
marker for a completely different and static (that is, not driven)
system, the celebrated SSH model.

Discussion
Summarizing, here we proposed an efficient method to measure
the Zak phase of a chiral system by direct observation of its free
bulk dynamics. In particular, we showed that information on the
topological phase of the bulk is encoded in the mean chiral
displacement, an oscillatory quantity that rapidly converges to the
Zak phase, and is robust against (chiral-preserving) disorder in
both space and time.

We experimentally verified our findings by performing the first
measurement of the Zak phase of a chiral QW. The physical
platform we chose is a photonic setup based on the OAM of a
light beam, where the mean chiral displacement corresponds to
the relative shift of the two chiral polarization components. A
precise readout of the Zak phase was obtained after only seven
QW steps. We further used the same method to measure the Zak
phase in a complementary timeframe, which we realized by
swapping few optical components. By combining the two
measurements, we extracted the two invariants providing the
complete bulk-edge correspondence for this driven system, that
is, the one associated to the 0-energy edge state, and the one
connected to the anomalous p-energy edge state. Finally, we
proved that the mean chiral displacement is a robust measure of
the Zak phase by introducing dynamical but chiral-preserving
disorder.

Although here we investigated experimentally a specific QW,
our results are not restricted to QWs nor to Floquet systems.
Indeed, the mean chiral displacement provides a robust
topological characterization of arbitrary spin-1/2 1D chiral
systems, either static or periodically driven. These may nowadays
be realized in a variety of platforms, ranging from ultracold atoms
in optical lattices to photonic waveguides and from semiconduc-
tor quantum wells to optomechanical systems.

While formerly known methods for detection of topological
properties require a uniform filling of the band of interest,
external forces, loss mechanisms or fine-tuning so that only edge
states are populated, the method proposed here quite remarkably
achieves this goal by observing the free evolution of a single
particle, initially localized on a single site in the bulk. This aspect
may be specially beneficial for systems where filling a band is
intrinsically challenging, such as bosonic condensates or
phononic and photonic ensembles.

Future interesting directions opened by this work include the
extension of our results to chiral systems with more than two
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Figure 4 | Robustness to dynamical disorder. Measurement of the mean chiral displacement C of protocol U for a localized input state in the presence of

dynamical disorder. For the orange (blue) lines, we choose a mean value of the q-plate optical retardation �d¼ 7p/4 �d¼p
� �

, expected to yield a Zak phase of

g/2p¼0 (g/2p¼ 1/2), and we add at each time step a small random retardation Ej

		 		oD, with D¼ p/10 (a) and p/5 (b). Thin solid lines display the

measurements of single realizations, and their average is shown as filled circles (error bars are the s.e.m.). In all plots, empty diamonds represent

theoretical simulation calculated for the ideal case D¼0, and dotted lines the expected result for t-N.
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internal states, a further understanding of the role played by
temporal disorder and the topological characterization of systems
in higher spatial dimensions.

Methods
Experimental setup. Our apparatus is shown schematically in Figs 1a and 2b, and
a more detailed description is given in Supplementary Fig. 1. We produce a TEM00

mode by coupling the output of a Ti:Sa laser (l¼ 800 nm) to a single-mode fibre,
thus preparing the beam in an OAM state with m¼ 0. At the exit of the fibre, a
specific polarization is selected by means of a sequence of a quarter-wave plate and
a half-wave plate. Therefore, the initial state of the QW is c0j i ¼ m¼0j i � sj i,
where m is the position in the walker (OAM) and space s its coin state (polar-
ization). In the standard protocol U¼Q �W, the single step consists of a quarter-
wave plate oriented at 90� with respect to the horizontal direction (operator W),
followed by a q-plate (operator Q), as shown in Fig. 1a. To implement the second
protocol, we exploited the fact that equation (3) may be written as
Q¼ exp � idnQ � rð Þ, that is, it corresponds to a rotation around a suitable unit
vector nQ; as such, a q-plate with retardation d/2 implements the desired operatorffiffiffiffi

Q
p

. To implement the single-step operator ~U¼
ffiffiffiffi
Q
p
�W �

ffiffiffiffi
Q
p

, we then added a d/2
q-plate at the beginning of the sequence, and we halved the retardation of the last
q-plate, as shown in Fig. 2b.

q-plates. Each q-plate consists of a thin layer of birefringent liquid crystals, whose
optic axes are arranged in a singular pattern characterized by a topological charge q
(in our case, q¼ 1/2). The patterned birefringence gives rise to an optical spin–
orbit coupling that induces the polarization-dependent shift of OAM. Along with
the specific pattern, the action of each device is determined by its optical retar-
dation d, as reported in equation (3). The optical retardation can be continuously
tuned by applying an electric field, allowing in turn for an accurate control of the
spin–orbit interaction53.

Detection of the chiral displacement. At the end of the walk, we can select any
polarization component of the final state by a combination of a quarter-wave and a
half-wave plate, followed by a linear polarizer, and we measure its OAM content by
diffraction on a spatial light modulator coupled to a single-mode fibre and a power
meter, which records the light intensity. Since we are interested in analysing
the OAM spectrum of chiral components of the final wavepacket, waveplates
orientations are selected so as to implement polarization projections onto chiral
states "j i and #j i. The chiral operators for protocols U and ~U are, respectively,
sy þsz
� �

=
ffiffiffi
2
p

and sz, so it is straightforward to see that "j iU¼ cos p=8ð Þ Lj i
þ i sin p=8ð Þ Rj i and #j iU¼ sinðp=8Þ Lj i � i cosðp=8Þ Rj i for protocol U, while
"j i~U¼ Lj i and #j i~U¼ Rj i for protocol ~U . The combination of polarization and OAM

projections allows for determining the probabilities Pi,m, with i¼ {m, k}, that the
system is in the chiral state ij i and in the OAM state mj i. Given the probability
distributions Pi,m, the chiral displacement is simply given by

P
m m P";m � P#;m

� �
.

Data availability. The complete set of raw data supporting the findings of this
study is available from the corresponding authors upon request.
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