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Abstract

Rice accumulates 10-fold higher inorganic arsenic (i-As), an established human carcinogen, than 

other grains. This review summarizes epidemiologic studies that examined the association between 

rice consumption and biomarkers of arsenic exposure. After reviewing the literature we identified 

20 studies, among them included 18 observational and 2 human experimental studies that reported 

on associations between rice consumption and an arsenic biomarker. Among individuals not 

exposed to contaminated water, rice is a source of i-As exposure — rice consumption has been 

consistently related to arsenic biomarkers, and the relationship has been clearly demonstrated in 

experimental studies. Early-life i-As exposure is of particular concern due to its association with 

lifelong adverse health outcomes. Maternal rice consumption during pregnancy also has been 

associated with infant toenail total arsenic concentrations indicating that dietary exposure during 

pregnancy results in fetal exposure. Thus, the collective evidence indicates that rice is an 

independent source of arsenic exposure in populations around the world and highlights the 

importance of investigating its affect on health.
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1. Introduction

Arsenic is a ubiquitous metalloid and its presence in the environment is the result of both 

natural geologic processes and environmental pollution. Human exposure to arsenic has 

been associated with a broad range of adverse effects on health (IARC, 2004; Sharma et al., 

2014; UN FAO/WHO, 2011). It is estimated that 140 million people worldwide are exposed 

to inorganic arsenic (i-As) primarily through the consumption of unregulated contaminated 

water — the known primary source of i-As human exposure (States et al., 2011). Adverse 

health effects associated with high levels of i-As exposure are well recognized. However, 

recent studies have reported an elevated risk of certain cancers, cardiovascular diseases, 

respiratory conditions, and diabetes associated with relatively low levels of i-As exposure 

(Amaral et al., 2012; EFSA, 2009; Ettinger et al., 2009; Karagas et al., 2004, 2001; Leonardi 

et al., 2012; Navas-Acien et al., 2008; Sohel et al., 2009). Such associations have been 

observed in populations who were known to consume water with concentrations of i-As well 

below the World Health Organization’s guideline of 10 μg/L.

While seafood is a major dietary source of exposure due to high levels of arsenobetaine, a 

non-toxic organic form of arsenic, fruits, fruit juices, and grains are among the primary 

dietary sources of i-As exposure, especially in regions with access to water low in i-As 

(Meacher et al., 2002; Taylor et al., 2016; Xue et al., 2010; Yost et al., 2004). Rice, a crop 

that is grown in flooded plains, is of particular concern as the plant has been shown to 

bioaccumulate i-As at approximately 10-fold higher rate than other grains such as wheat and 

barley (Ma et al., 2008; Meharg et al., 2009; Mitani et al., 2009; Williams et al., 2007a, b; 

Williams et al., 2005). Nevertheless, wide variations exist in the amount and type of arsenic 

found in rice dependent on both where the plant was grown and the rice species (Bastias et 

al., 2010; Norton et al., 2012; Signes-Pastor et al., 2016a; Williams et al., 2007a, b; Williams 

et al., 2005). For instance, rice grown in the U.S. contains higher amounts of total arsenic (t-

As) and dimethylarsinic acid (DMA) — the primary arsenic metabolite found in rice 

(Meharg et al., 2009; Williams et al., 2005). High concentrations of i-As have also been 

found in rice-based products, including those consumed by infants and young children, who 

are especially vulnerable to the adverse health effects of i-As exposure (Farzan et al., 2013; 

Jackson et al., 2012; Signes-Pastor et al., 2016b).

In the context of dietary i-As exposure assessment, it is important to differentiate between 

estimates of intake of contaminated food versus biological measures of internal dose. 

Numerous studies have explored the relationship between diet and arsenic biomarker 

concentrations; however, only a few accounted for arsenic intake from water by direct 

measurement of water samples (e.g., Gilbert-Diamond et al., 2011). The most common 

methods to measure dietary intake include the 24-hour food recall (administered via an 

interview or a food diary) and food frequency questionnaires (FFQ). The gold standard of 

dietary intake assessment is multiple 24-hour food diaries. However, both 24-hour food 
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diaries and food frequency questionnaires rely on self-report, and thus are prone to 

measurement error (Orloff et al., 2009; Tao and Bolger, 1999).

For the present study, we performed a comprehensive literature review of published studies 

that examined the relationship between rice consumption and arsenic exposure using human 

biomarkers. Table 1 summarizes the relevant articles included in this review.

2. Biomarkers of human exposure to arsenic

Biomarkers are used to estimate internal dose because they: (1) represent an aggregate 

measure that accounts for all routes of exposure and (2) are independent of self-report. 

Human biological specimens used to estimate internal dose of arsenic exposure include 

urine, blood, nails, and hair (Marchiset-Ferlay et al., 2012).

Upon ingestion, i-As is rapidly metabolized by the body to monomethylarsonic acid (MMA) 

and DMA. MMA and DMA are among the end metabolites of the i-As metabolism which 

may be excreted in the urine unchanged from direct dietary exposure (Vahter, 2002). Urinary 

arsenic concentration measured in urine spot samples, normalized by creatinine or specific 

gravity to account for differences in urinary dilution, is a commonly used biomarker of 

short-term exposure. However, among individuals with consistent patterns of arsenic 

exposure urinary arsenic concentration appears to be a reliable source of long-term exposure 

as well (Kile et al., 2009; Marchiset-Ferlay et al., 2012; Navas-Acien et al., 2009).

The measurement of specific arsenic species in urine is performed by ion exchange high 

performance liquid chromatography coupled with either inductively coupled plasma mass 

spectrometry (HPLC-ICP-MS) or hydride generation atomic fluorescence spectrometry 

(HPLC-HG-AFS). Identification of specific arsenic species in urine is useful to both assess 

dietary exposure and explore arsenic metabolism (Chowdhury et al., 2003; Concha et al., 

1998; Fängström et al., 2009). In addition, arsenic speciation in urine allows the subtraction 

of species considered relatively non-toxic including arsenobetaine and arsenocholine, 

predominantly found in seafood products (Navas-Acien et al., 2011). To a lesser extent 

human blood has been used as a biomarker of short-term arsenic exposure (Hall et al., 2007, 

2006).

Human nail (both fingernail and toenail) and hair samples have been extensively used as a 

biomarker of long-term i-As exposure since unmetabolized i-As tends to be attracted to 

negative sulfhydryl-groups found in keratin-rich tissues of the integumentary system 

(Mandal et al., 2003; Slotnick and Nriagu, 2006). The use of hair and nail specimens has the 

added advantage of being easy to collect (e.g., toenail clippings are of low cost to collect 

from study participants). However, measurement of t-As in hair and nails (that represents 

primarily i-As) is potentially less sensitive than arsenic measured in urine. Concentration of 

t-As in nails and hair tend to provide a better estimate of long-term exposure than arsenic 

measured in urine due to their growth rate. Nevertheless, considerable care must be taken 

during nail and hair sample collection and laboratory analysis to avoid external 

contamination (Mandal et al., 2003). For instance, nails must be thoroughly washed prior to 
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chemical digestion in the laboratory to remove trace contamination of nail polish, dirt or 

other products.

3. Literature review

3.1. Experimental studies

Epidemiologic evidence points to rice being an independent contributor to dietary i-As 

exposure. Bioaccessibility of arsenic in rice has been evaluated using in vitro gastro 

intestinal digestion simulation procedures. These studies have found that between 53% and 

102% of t-As in rice is bioavailable (He et al., 2012; Signes-Pastor et al., 2012). One 

experiment followed two participants who, while consuming ≤ 1 μg/L arsenic water, were 

exposed to a wheat-based diet for five days and then switched to a rice-based diet (418 g/

day) for another five days (He and Zheng, 2010). The two study participants’ urinary t-As 

concentrations doubled (primarily urinary DMA) upon switching from the wheat-based to 

the rice-based diet — from a mean of 8.2 μg of t-As during the wheat-based diet to 16.3 μg 

of t-As during the rice-based diet. It was estimated that approximately 63% of the t-As 

ingested from rice was excreted in the urine. A 7.3-fold increase in urinary t-As 

concentration (from 6.8 μg/L to 49.9 μg/L) that consisted primarily of DMA was reported in 

a study including six experimental and three control participants after following a five-day 

rice diet (300 g/day) (Meharg et al., 2014). In this study the five-day rice diet was prepared 

with rice containing i-As and DMA at a ratio of 1:1 and cooked with deionized water. The 

authors estimated that 40% of t-As ingested by consuming rice was excreted in the urine. 

Variation was observed in an individual’s concentrations of t-As urine concentrations 

following a standardized rice portion, as well as urinary t-As excretion over time.

3.2. Child and adult (non-pregnant) populations

In the non-experimental setting, one of the most common used methods to estimate dietary 

intake is the 24-hour dietary recall. This method includes having a participant recall 

everything consumed in the previous day via either an interview or by a diet diary. The 24-

hour dietary recall using an in-person questionnaire interview has been used in the National 

Health and Nutrition Examination Survey (NHANES). The NHANES is a survey of U.S. 

non-institutionalized population that also collects objective health measurements designed to 

make national estimates on diet and health. Several studies have used the NHANES data to 

examine the association between food intake and urinary arsenic concentrations. These 

studies reported associations between rice intake and higher t-As exposure in both children 

and adults (Davis et al., 2012; Davis et al., 2014a; deCastro et al., 2014; Wu et al., 2015). 

Using NHANES data, rice and rice cakes/crackers intake in g/day was independently 

associated with an increase of urinary MMA and DMA concentrations among both younger 

(6–11 years) and older (12–19 years) children (deCastro et al., 2014). In this study, an 

increase of urinary DMA and MMA (untransformed β =105.6 and 5.6 for DMA and MMA, 

respectively p-value < 0.15 for both) also was associated with rice beverage consumption in 

adults between 20 and 84 years old. Using a combination of the NHANES data and the U.S. 

Department of Agriculture’s Food Commodity Intake Database, it was found that children 

6–17 years old consuming rice had almost 2-fold higher urinary t-As — median urinary 

arsenic concentration of 8.9 μg/L compared to 5.5 μg/L among those non-rice consumers 
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(Davis et al., 2012). Adjusted for other factors, an increase of ¼ cup of cooked rice per day 

(14.1 g dry weight) was associated with a 14.2% increase in urinary t-As concentration 

(Davis et al., 2012). In a follow-up study, the same authors found that an increase of 10 g of 

dry rice per day was associated with an increase of 9.6% urinary t-As, and an increase of 

8.6% urinary DMA (Davis et al., 2014a). In both studies the majority of study participants 

reported to consume water from public sources, which due to regulation is expected to have 

relatively low i-As concentrations (<10 μg/L). Another study used NHANES data to 

examine the association between brown and polished white rice intake separately and 

urinary arsenic (both t-As and i-As) concentrations in adults (Wu et al., 2015). Both white 

and brown rice consumption were associated with higher urinary t-As. However, urinary t-

As excluding arsenobetaine did not differ between participants who primarily consume 

white versus brown rice. Mean urinary concentrations of the sum of arsenic metabolites 

excluding arsenobetaine were 11.5 μg/L among participants who ate <1 cup/day white rice, 

13.1 μg/L among those who ate ≥1 cup/day white rice, and 7.9 μg/L among non-rice eaters. 

For brown rice eaters, the mean urinary i-As concentrations were 10.9 μg/L among those 

who ate <1 cup/day brown rice only and 13.1 μg/L for those who ate ≥1 cup/day brown rice. 

The lack of an observed difference between white and brown rice was unexpected. White 

rice is known to contain less i-As than brown rice as brown rice tends to accumulates arsenic 

in the outer layers of the pericarp and aleurone, portions of the grain that are removed during 

the polishing process (Meharg et al., 2008). In the one contrasting study of only 12 adults, 

whose diets comprised a relatively small proportion of rice, rice intake did not appear to 

affect either urinary excretion of i-As and its methylated species (Lovreglio et al., 2012).

The FFQ is another common method used to estimate diet in particular long-term dietary 

patterns (e.g., over the past year). Consequently, among those with variable diets, it may not 

accurately represent recent, short-term intake — e.g., be reflective of the period of urinary 

arsenic excretion. The FFQ has been used to examine the association between diet and 

urinary arsenic concentration among Bangladeshi populations living in the United Kingdom 

(U.K.) — a group known to consume high amounts of rice (Cascio et al., 2011). Indeed, the 

Bangladeshi population living in the U.K. had up to 30-fold higher rice consumption 

compared to Caucasians residing in the U.K. Furthermore, urinary DMA and i-As 

concentrations were 5- and 2.5-fold higher for the Bangladeshi population (median of 16.9 

μg DMA/L and 0.63 μg i-As/L) than for Caucasians (median of 3.16 μg DMA/L and 0.25 μg 

i-As/L), respectively.

Using NHANES, which also collected FFQ data, another study classified U.S. adults 

according to their rice frequency consumption as low (<twice a week) and high consumers 

(>twice a week) (Wei et al., 2014). Those with high rice consumption had higher mean 

urinary t-As (2.4 μg/g) and DMA (1.6 μg/g) creatinine-adjusted concentrations compared to 

those with lower rice intake (mean urinary t-As and DMA creatinine-adjusted concentrations 

of 2.2 and 1.3 μg/g respectively). A similar trend was found in a study population of adults 

residing in Michigan, U.S. (Rivera-Nuñez et al., 2012). While individuals who reported 

consuming rice in the FFQ were found to have higher urinary t-As concentrations than those 

who did not report consuming rice, rice explained only a small percentage of the variability 

in t-As concentrations (Rivera-Nuñez et al., 2012). In a large prospective cohort study of 

adults residing in Araihazar, Bangladesh, spot urine samples were collected along with a 39-
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item FFQ that inquired about rice consumption (Melkonian et al., 2013). Nearly half of the 

study population (n = 18.470) was exposed to i-As contaminated drinking water >50 μg/L 

and amount of rice intake was positively associated with urinary t-As concentration (β = 

0.04, 95% CI: 0.03, 0.05). A clear correlation between rice consumption estimated by a FFQ 

and urinary t-As concentrations also has been reported for both the Korean population living 

in the U.S. and residing in South Korea (Cleland et al., 2009; Park and Lee, 2013).

Toenail t-As concentration, that represents long-term exposure particularly to i-As, has also 

been related to rice intake. To our knowledge, one of the first research studies on dietary 

exposure to arsenic used data from the Nurses’ Health Study and the Health Professionals 

Follow-Up Study and reported that consumption of brown rice (estimated using a FFQ) was 

positively associated with toenail t-As concentration (β = 0.40, p-value = 0.11) (MacIntosh 

et al., 1997). A more recent study including participants from a case-control study of bladder 

and skin cancer in New Hampshire found that toenail t-As concentration increased with 

household water i-As concentration, but did not identify a relationship between rice 

consumption and toenail t-As concentration (for brown rice adjusted β = 0.23, p-value = 

0.29 and white rice β = 0.065, p-value = 0.67) (Cottingham et al., 2013). The lack of a 

relationship in this study may have resulted from the overall low rice consumption of the 

study population (only 1–3 times per month). Similar results were found in a case-control 

study carried out in 11 counties of Michigan where rice intake was negatively associated (β 
= −0.137, p-value <0.05) with toenail t-As concentration (Slotnick et al., 2007). In this study 

the authors used an FFQ where study participants were asked on average over the past year 

how often they consumed foods including soup, rice, and pasta. The authors report the 

negative association between rice and toenail arsenic may have been due to dietary intake of 

other foods that confounded the observed relationship.

3.3. Pregnancy and early childhood

Exposure to arsenic during pregnancy and early childhood is of particular concern due to the 

vulnerability of the fetus, infants, and young children to environmental contaminants. There 

is some evidence that exposure i-As early in life may impact growth and health throughout 

the lifespan (Farzan et al., 2013; IARC, 2004).

It is known that i-As crosses the placental barrier and appears in fetal tissue. Thus maternal 

exposure during pregnancy is an important area of inquiry. Dietary i-As exposure has been 

evaluated extensively in the New Hampshire Birth Cohort Study (NHBCS) — an ongoing 

prospective birth cohort study being conducted in New Hampshire, U.S. where low-level i-

As exposure is known to occur (Davis et al., 2014b; Gilbert-Diamond et al., 2011; Karagas 

et al., 2016). In these studies rice consumption was estimated using a 3-day food diary and 

spot urinary samples were obtained from women during pregnancy. Mothers who consumed 

rice had 0.07 μg/L higher urinary i-As, 0.18 μg/L higher urinary MMA, and 1.25 μg/L 

higher urinary DMA compared to non-rice eaters after adjustment for estimated arsenic 

intake through the drinking water (Gilbert-Diamond et al., 2011). Among mother-infant 

pairs it was found that maternal rice intake, also determined with a 3-day food diary, was 

associated with infants toenail t-As concentration (Davis et al., 2014a, b). Specifically, an 

increase of 1/4 cup of rice per day was associated with a 16.9% increase in infants toenail t-
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As concentration indicating that maternal consumption of rice relates fetal exposure, and 

that infant toenails represent this exposure.

Among one-year old infants participating in the NHBCS, those who were reported to 

consume rice-based products had mean urinary t-As concentration nearly twice that of those 

who did not consume rice-based products (5.8 μg/L versus 2.8 μg/L respectively) (Karagas 

et al., 2016). A similar trend was found among a sample of children between the ages of 5 to 

8 years old residing in Montevideo, Uruguay, whose rice intake was estimated using two 24-

hour food recall periods (Kordas et al., 2016).

4. Conclusion

Differences in study design, i.e., methods of characterizing both arsenic exposure and rice 

consumption, geographic and ethnic differences in the study populations, and ages of the 

study participants all provide challenges to directly compare estimates of the association 

between rice intake and arsenic exposure. Nevertheless, across diverse populations, studies 

have consistently found positive associations between rice intake and arsenic exposure. 

These associations have been reported for infants, adolescents and adults. Most notably, the 

association between rice intake and arsenic exposure using biomarkers such as urinary 

arsenic (that represent an estimate of internal dose) has been demonstrated in two 

experimental studies where participants followed a controlled rice diet. Maternal rice intake 

during pregnancy also has been associated with infant toenail arsenic concentration at birth, 

suggesting in utero exposure occurs by rice consumption during pregnancy. Collectively, 

evidence points to rice being an independent source of arsenic exposure in populations 

around the world underscoring the importance of strategies to prevent this exposure and 

understanding its impact on human health.
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HIGHLIGHTS

• Rice intake has been associated with increased urinary arsenic concentrations 

across numerous studies.

• The association between rice intake and human exposure has been 

demonstrated in populations around the world.

• Maternal rice intake during pregnancy is associated with total arsenic 

concentrations in infant toenails.
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