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Introduction
Heart failure is a common cardiovascular disease with poor 
prognosis that develops when the heart is unable to pump 
blood and maintain tissue perfusion (Fang et al., 2008; Yancy 
et al., 2013). Despite improvements in the treatment of cardio-
vascular diseases, such as coronary heart disease and hyperten-
sion, the prognosis of heart failure remains poor (Braunwald, 
2013). Several mechanisms contribute to the development 
of heart failure following valve disease, cardiomyopathy, or 
after myocardial infarction (Frey and Olson, 2003; Jessup and 
Brozena, 2003; Heineke and Molkentin, 2006). In most cases, 
cardiac remodeling occurs in response to environmental de-
mands, and various stimuli, such as hormonal activation and 
hypertension, inducing cardiac hypertrophy. Hypertrophic 
growth is the primary mechanism to reduce stress on the 
ventricular wall; however, the heart undergoes irreversible de-

compensation with prolonged stress, resulting in heart failure 
(Hill and Olson, 2008).

All cells possess transmembrane signaling systems re-
sponsive to extracellular stimuli. G protein–coupled receptors 
(GPCRs) are the largest superfamily of cell surface receptors 
and are involved in numerous physiological and pathological 
processes (Katritch et al., 2013). GPCR-mediated signaling is 
implicated in various diseases, including metabolic, immuno-
logical, and neurodegenerative disorders, as well as cancer and 
infection (Heng et al., 2013); thus, GPCRs are considered to 
be attractive drug targets (Overington et al., 2006).

In the heart, GPCRs regulate cardiac function in re-
sponse to extracellular stimuli, such as catecholamines and 
angiotensin II, and play a role in cardiac dysfunction and fi-
brosis (Wettschureck and Offermanns, 2005). GPCR inhibi-
tors are widely used to treat patients with heart failure (Kang 
et al., 2007; Capote et al., 2015). Although the heart expresses 
several GPCRs (Regard et al., 2008), only β adrenergic and 
angiotensin II receptors antagonists are clinically used as a 
long-term treatment for patients with chronic heart failure. 
Despite these available therapies, mortality and hospitalization 
rates have remained relatively high for over a decade, suggest-
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ing that additional uncharacterized factors may also mediate 
disease pathophysiology (Tamargo and López-Sendón, 2011).

Here, we report that the GPCR corticotropin releas-
ing hormone receptor 2 (Crhr2) is highly expressed in the 
heart and facilitates heart failure. Notably, constitutive Crhr2 
activation incites cardiac dysfunction in mice and serum lev-
els of the Crhr2 agonist urocortin2 (Ucn2) were markedly 
higher in patients with heart failure than in healthy controls. 
Moreover, Crhr2 antagonist treatment mitigated pressure 
overload-induced cardiac dysfunction in mice and suppressed 
maladaptive gene expression mediated by 3′-5′-cyclic ade-
nosine monophosphate (cAMP) response element binding 
protein (CREB), as well as pathological cardiac dysfunc-
tion induced by exchange protein directly activated by 

cAMP (EPAC)/CaMKII signaling. Thus, our results in-
dicate that Crhr2 may be a promising therapeutic target 
for chronic heart failure.

Results and discussion
Continuous Crhr2 activation causes heart failure in mice
A systematical search was performed to identify GPCRs ex-
pressed in cardiomyocytes and related to heart failure. For this, 
we performed non-biased quantitative RT-PCR (qRT-PCR) 
analysis to determine the gene copy number of 475 GPCRs 
in adult murine cardiomyocytes 2 wk after sham proce-
dure or transverse aortic constriction (TAC; Fig. S1). Data 
revealed that adult murine cardiomyocytes expressed about 
80 GPCRs (>5 copies per ng of RNA), the most abundant 

Figure 1. S ustained Crhr2 activation in-
duces cardiac dysfunction. (A) G-protein–
coupled receptor (GPCR) gene expression 
analysis in isolated cardiomyocytes 2 wk after 
transverse aortic constriction (TAC) using 
qRT-PCR greater than five copies per ng of 
RNA. The results are representative of two in-
dependent experiments. (B) Protein expression 
of Crhr2, adrenoceptor β-1 receptor (Adrb1), 
and prostaglandin E receptor 1 (Ptger1) in left 
ventricles 2 wk after sham or TAC was deter-
mined by immunoblotting analysis. (C) Statis-
tical evaluation of (B; sham set to 1; n = 3; 
two-tailed Student’s t test). (D) Plasma Ucn2 
concentration 2 wk after sham or TAC (n = 17; 
two-tailed Student’s t test). (E) Crhr2 tissue 
distribution in humans. (F and G) Plasma Ucn2 
concentration (F), and cardiac morphology, left 
ventricular weight/tibia length (LVW/TL) ratio 
(G) after 4 wk of sustained Ucn2 infusion (n = 
5; two-way ANO​VA and Bonferroni post-hoc 
test). (H) Left ventricular fractional shortening 
determined by echocardiogram after 4 wk of 
sustained Ucn2 infusion (n = 5; two-tailed 
Student’s t test). (I) Systolic blood pressure 
after 4 wk of sustained Ucn2 infusion (n = 5; 
two-tailed Student’s t test). (J) Plasma BNP 
concentration after 4 wk of sustained Ucn2 
infusion (n = 5, 2-tailed Student’s t test). Error 
bars indicate SEM. *, P < 0.05; **, P < 0.01; ns, 
not significant. The results are representative 
of three independent experiments (B–J).
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being Crhr2, Adrb1, Ptger1, and Gpr157 (Fig. 1 A). Crhr2 
expression was markedly increased at the gene and protein 
level in the left ventricle 2 wk after TAC, whereas that of 
Adrb1 was decreased and Ptger1 expression was unchanged 
(Fig.  1, B and C). Moreover, TAC significantly increased 
Ucn2 levels in the blood (Fig.  1  D). Western blot analysis 
of various human tissues indicated that Crhr2 is exclusively 
expressed in the heart and is undetectable in other tissues 
(Fig. 1 E). Together, these results indicate that Crhr2 is highly 
expressed in cardiomyocytes and increases after pressure over-
load–induced heart failure.

Acute intravenous injection of Ucn2 has been shown 
to accelerate cardiac contraction (Coste et al., 2000), but 
whether a chronic increase in plasma Ucn2 levels affects car-
diac function remains unknown. To examine the effect of 
long-term Ucn2 up-regulation in vivo, we implanted mice 
with osmotic pumps that release Ucn2. After 4 wk of sus-
tained Ucn2 infusion, blood analysis revealed that circulating 
Ucn2 levels were elevated similar to those observed after TAC 
(Fig. 1 F). In addition, animals showed cardiac hypertrophy 
with an increased left ventricular weight to tibia length ratio 
in a dose-dependent manner (Fig. 1 G), which was accom-
panied by a decrease in left ventricular fractional shortening 
(Fig. 1 H) without significantly affecting systolic blood pres-
sure (SBP; Fig. 1 I). Moreover, continuous Ucn2 infusion sig-
nificantly increased blood levels of brain natriuretic peptide 
(BNP), which is secreted by cardiomyocytes in response to 
pressure and volume overload (Fig. 1  J; Doust et al., 2005). 
Collectively, these results indicate that chronic increase in 
plasma Ucn2 impairs cardiac function.

Increased plasma Ucn2 levels in patients with heart failure
Based on these findings, we measured plasma Ucn2 levels 
in 260 healthy subjects (plasma BNP < 5.8 pg/ml) and 
52 patients with non-ischemic dilated cardiomyopathy  
(NID​CM; plasma BNP = 246.8 ± 362 pg/ml). The clin-
ical demographics of the patient population are shown 
in Table  1. Although both groups presented with simi-
lar body mass index (BMI), plasma total cholesterol, and 
plasma glucose levels, patients with NID​CM showed sig-

nificantly lower SBP and diastolic blood pressure, as well as 
significantly higher creatinine levels. Of note, patients with  
NID​CM exhibited significantly higher Ucn2 levels (a 
median 7.5-fold increase) than healthy controls, which 
remained significant after adjustment for all measured 
parameters (P < 0.01). Thus, these data indicate that in-
creased plasma Ucn2 is strongly associated with heart fail-
ure in humans, suggesting that Ucn2 measurement may be 
a novel diagnostic marker for chronic heart failure.

Attenuated cardiac hypertrophy, fibrosis, and heart failure 
in Crhr2-deficient mice
To examine the functional significance of Crhr2 in car-
diomyocytes in vivo, we generated mice with tamoxi-
fen-inducible cardiomyocyte-specific Crhr2 deficiency 
(cmc-Crhr2 KO) by mating αMHC-Cre-ERT2 mice with 
Crhr2flox/flox animals. The efficiency of tamoxifen-inducible 
recombination was analyzed by Western blotting, which 
showed that Crhr2 was undetectable in cardiomyocytes 
isolated from tamoxifen-treated cmc-Crhr2 KO mice 
(Fig. 2 A). No differences were observed in the ratio of left 
ventricular weight to tibia length or cardiac function be-
fore and after tamoxifen treatment in cmc-Crhr2 KO mice 
(Fig. 2, B and C). Notably, cmc-Crhr2 KO mice failed to 
show a Ucn2-induced hypertrophic response (Fig. 2 B). In 
addition, although 4 wk of continuous Ucn2 infusion de-
creased fractional shortening in control mice, this was sig-
nificantly attenuated in cmc-Crhr2-KO mice (Fig.  2  C). 
These results indicate that continuous Ucn2 infusion di-
rectly affects cardiomyocytes via Crhr2.

To investigate whether cardiomyocyte-specific Crhr2 
deficiency protected mice from pressure overload-induced 
cardiac dysfunction, we performed TAC surgeries in 
cmc-Crhr2 KO mice. In control mice, TAC resulted in a 
significant increase in cardiac hypertrophy as determined 
by postmortem analysis of the ratio of left ventricular 
weight to tibia length, whereas cmc-specific Crhr2 KO 
mice showed a significantly lower ratio of left ventricu-
lar weight to tibia length (Fig. 2 D). We also found that 
cmc-specific Crhr2 KO mice showed significantly less fi-

Table 1. C omparison of each parameter between controls and patients with NID​CM

Parameters Control HF (NID​CM) P-value

n = 260 n = 52

Age, yr 57.6 ± 10.5 57.4 ± 10.7 0.94
Gender, male (%) 140 (54%) 28 (54%) 1
BMI, kg/m2 22.3 ± 2.9 22.7 ± 4.3 0.51
SBP, mmHg 133 ± 18 119 ± 20 <0.01a

DBP, mmHg 80 ± 11 73 ± 13 <0.01a

Total Cholesterol, mg/dl 203 ± 34 195 ± 37 0.13
Glucose, mg/dl 96 ± 10 99 ± 24 0.27
Creatinine, mg/dl 0.73 ± 0.15 0.86 ± 0.22 <0.01a

Ucn2, pg/ml 235 (54–647)  1,755 (1,166–3,130) <0.01a

HF, heart failure; DBP, diastolic blood pressure. Data represent means ± SD, medians (interquartile ranges), or subject numbers (%).
aP < 0.01 (unpaired Student’s t test or Chi-square test).
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brosis 4 wk after TAC as determined by PicroSirius red 
staining (Fig. 2 E). Furthermore, cmc-Crhr2 KO mice were 
resistant to further deterioration of the left ventricular frac-
tional shortening as determined by echocardiography at 
4, 12, and 24 wk after TAC (Fig. 2 F). Ventricular dilation 
was also observed 12 wk after TAC in wild-type mice, but 
not in cmc-Crhr2 KO mice (Fig. 2 G). Crhr2 deficiency 
significantly improved mortality 8 mo after TAC (Fig. 2 H). 
Collectively, these results demonstrate that cardiomyo-
cyte-specific Crhr2-deficient mice are resistant to pressure 
overload-induced cardiac dysfunction.

Effect of Crhr2 antagonist on pressure 
overload-induced cardiac dysfunction
We next investigated whether treatment with the Crhr2 an-
tagonist, antisauvagine-30 (Rühmann et al., 1998), would at-
tenuate the progression of established cardiac hypertrophy in 
mice. For this, continuous antisauvagine-30 infusion was ini-
tiated 1 wk after TAC surgery (Fig. 3 A). Interestingly, Crhr2 
antagonist treatment protected mice from further deterio-
ration of cardiac output without significantly affecting SBP 
(Fig. 3, B and C). These protective effects were accompanied 
by a strong reduction of plasma BNP, cardiac hypertrophy, 

Figure 2. C ardiomyocyte-specific, Crhr2-deficient mice exhibit suppressed pressure overload–induced cardiac dysfunction. (A) Protein extracts 
from isolated cardiomyocytes of vehicle- or tamoxifen-treated α-myosin heavy chain (αMHC)-CreERT2 (Cre)-negative and -positive Crhr2flox/flox mice were 
blotted with antibodies against Crhr2 and actin. (B and C) LVW/TL ratio (B) and left ventricular fractional shortening (C) 4 wk after continuous infusion 
of Ucn2 or vehicle (sham) through an osmotic pump (n = 6; two-way ANO​VA and Bonferroni post-hoc test). (D) LVW/TL ratio 4 wk after transverse aortic 
constriction (TAC; n = 6–10; two-way ANO​VA and Bonferroni post-hoc test). (E) Fibrotic changes in left ventricles 4 wk after TAC were assessed by PicroSirius 
red staining (n = 4; two-way ANO​VA and Bonferroni post-hoc test). (F and G) Left ventricular fractional shortening (F) and left ventricular end-diastolic 
dimension (G) were assessed by echocardiogram before and 4, 12, and 24 wk after TAC (n = 6; two-way ANO​VA and Bonferroni post-hoc test). (H) Survival 
plot for control mice and cmc-Crhr2-KOs up to 8 mo after TAC (n = 36–37; Log-rank test). Error bars indicate SEM. *, P < 0.05; **, P < 0.01; ns, not significant. 
The results are representative of three independent experiments (A–G).
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and cardiac fibrosis (Fig. 3, D–F). Conversely, 4 wk of Ucn2 
infusion accelerated TAC-induced cardiac dysfunction (Fig. 
S2, A–E). These results suggest that Crhr2 blockade may be a 
novel therapeutic approach to treat chronic heart failure.

Therapeutic mechanism of Crhr2 
antagonist during heart failure
Most GPCRs are coupled to heterotrimeric G-proteins, re-
sulting in the activation of respective cellular signaling path-
ways (Wettschureck and Offermanns, 2005; Salazar et al., 
2007). Crhr2 activation increases intracellular cAMP levels, 

strongly suggesting that Crhr2 is coupled to the G-protein, 
Gαs (Kishimoto et al., 1995; Stenzel et al., 1995). To study 
Crhr2-mediated G-protein signaling, we measured the acti-
vation of individual G-protein–mediated response elements 
by luciferase reporter assays, which confirmed that Crhr2 in-
duced Gαs-mediated signaling, but not that of Gαq, Gαi, or 
Gα12 (Fig. S3, A and B). In addition, chronic increases in 
intracellular cAMP are associated with cardiotoxicity during 
heart failure (Boularan and Gales, 2015). Currently, β adrener-
gic stimulation is believed to be primarily responsible for the 
uncontrolled cellular cAMP accumulation observed during 

Figure 3. C rhr2 antagonist treatment sup-
pressed pressure overload–induced cardiac 
dysfunction in preexisting hypertrophy.  
(A) Experimental design. (B) Systolic blood pres-
sure in sham mice with Crhr2 antagonist treat-
ment (n = 5; two-way ANO​VA and Bonferroni 
post-hoc test). (C) Echocardiogram analysis of 
left ventricular fractional shortening was per-
formed before and 7, 14, 21, and 35 d after TAC 
surgery (n = 5; two-way ANO​VA and Bonfer-
roni post-hoc test). (D–F) Plasma BNP (D), LVW/
TL (E), and fibrotic area (determined by Picro-
Sirius red staining; F) were measured 35 d after 
TAC surgery (n = 8–10; two-way ANO​VA and 
Bonferroni post-hoc test). (G and H) Immuno-
blotting showed PKA, CREB, CaMKII, RyR2, and 
AKT phosphorylation in response to TAC in the 
heart with or without Crhr2 antagonist treat-
ment (n = 4; two-way ANO​VA and Bonferroni 
post-hoc test). (I) Gene expression 4 wk after 
Crhr2 antagonist treatment as determined by 
qRT-PCR in whole hearts (n = 4–6; two-way 
ANO​VA and Bonferroni post-hoc test). Error 
bars indicate SEM. *, P < 0.05; **, P < 0.01; ns, 
not significant. The results are representative 
of two independent experiments (B–I).
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cardiac hypertrophy and heart failure (Engelhardt et al., 1999; 
Lymperopoulos et al., 2013).

Because Ucn2 acts via several signaling pathways, in-
cluding cAMP-dependent protein kinase A (PKA), EPAC, and 
phosphatidylinositol 3-kinase (PI3K)/AKT (Adão et al., 2015), 
we further investigated whether Crhr2 inactivation could re-
duce the elevated cAMP signaling found during heart failure 
by examining the phosphorylation cascade of PKA (Stein-
berg et al., 1993), which undergoes activating phosphoryla-
tion at Thr197, and CREB, which binds CRE and stimulates 
transcription after PKA-mediated Ser133 phosphorylation 
(Mayr and Montminy, 2001; Altarejos and Montminy, 2011). 
We also investigated other mechanistic pathways. For exam-
ple, EPAC/CaMKII signaling can regulate cAMP-dependent 
cardiovascular functions in a PKA-independent manner to 
enhance vascular endothelial barrier stability and vasorelax-
ation, although chronic EPAC activation in the heart causes 
arrhythmia and heart failure (Lezoualc’h et al., 2016). More-
over, EPAC elicits CaMKII Thr286/287 autophosphory-
lation, downstream ryanodine receptor 2 (RyR2) Ser2814 
phosphorylation, and Ca2+ release from the sarcoplasmic re-
ticulum, which subsequently contributes to arrhythmias and 
pathological cardiac hypertrophy (Anderson et al., 2011). In 
addition, EPAC/CaMKII can also regulate histone deacetyl-
ases (HDACs) to induce myocyte enhancer factor 2 (MEF2)–
mediated hypertrophic gene expression.

Alternatively, PI3Ks, which are intracellular lipid ki-
nases regulated by the growth factor receptor tyrosine kinase 
and by GPCR-mediated Gβγ subunit binding (Engelman 
et al., 2006), may be involved in our observed Ucn2 effects. 
We examined PI3K-mediated AKT Ser473 phosphorylation, 
which contributes to both physiological and pathological car-
diac hypertrophy. We found that Ucn2 stimulation enhanced 
PKA, CREB, CaMKII, RyR2, and AKT phosphorylation 
in isolated murine cardiomyocytes and in the heart (Fig. S3, 
C–E). Moreover, Crhr2 antagonist treatment markedly de-
creased TAC-induced PKA, CREB, CaMKII, RyR2, and 
AKT phosphorylation in the heart (Fig. 3, G and H), indi-
cating that Crhr2 antagonism suppressed TAC-induced Gαs/
PKA/CREB/CRE, Gαs/EPAC/CaMKII/RyR2, and Gβγ/
AKT pathway activity. To identify Crhr2-regulated genes, we 
performed whole-genome expression profiling in hearts from 
mice subjected to continuous infusion of Ucn2 or vehicle 
for 2 wk. Notably, 88 genes were >1.5-fold up-regulated in 
wild-type mice in response to Ucn2, of which seven (Agt, 
Ccr5, Foxo3, Irs2, Ptk2b, Sik1, and Nr4a1) overlapped be-
tween predicted CREB- or MEF2-mediated genes and heart 
failure–related genes (Fig. S3 F; Jhala et al., 2003; Backs and 
Olson, 2006; Berdeaux et al., 2007; Banerjee et al., 2011; Shi-
mizu et al., 2013). Subsequent analysis showed that Crhr2 
antagonist infusion significantly suppressed the TAC-induced 
expression of Agt, Ccr5, Ptk2b, Sik1, and Nr4a1 (Fig. 3  I), 
indicating that Crhr2 blockade suppressed maladaptive 
CREB- and MEF2-mediated gene expression in the heart, 
thereby preventing cardiac dysfunction.

Data from the present study shows that Crhr2 is abun-
dantly expressed in cardiomyocytes and its expression in-
creases in pressure overload–induced cardiac dysfunction. 
There are two Crhr isoforms, termed Crhr1 and Crhr2 (Bale 
and Vale, 2004). Crhr1 is mainly expressed in the brain and 
pituitary gland, whereas Crhr2 mRNA expression in mice is 
found in peripheral tissues, such as the heart, liver, and skeletal 
muscle (Kishimoto et al., 1995; Stenzel et al., 1995; Chen 
et al., 2005). Moreover, Crhr1 appears to be responsible for 
stimulating the release of adrenocorticotrophic hormone in 
stress responsivity; however, the role of endogenous Crhr2 re-
mains unclear. Our study demonstrated that Crhr2 protein is 
abundantly expressed in the human heart, and plasma Ucn2 
levels were higher in patients with heart failure compared to 
healthy controls, indicating that endogenous Crhr2 is asso-
ciated with heart failure in humans. Our findings are sup-
ported by clinical trials in heart failure that reported increased 
plasma Ucn2 was associated with heart failure (Davis et al., 
2007a,b; Adão et al., 2015).

The Crh peptide family activates the PKA, CaMKII, 
and AKT signaling pathways to temporarily increase cardiac 
function (Adão et al., 2015), but the effects of chronic acti-
vation of these pathways in the heart remains controversial. 
Preclinical studies showed that acute Crhr2 agonist infu-
sion increases cardiac output by decreasing SBP (Chan et al., 
2013). Similarly, adenovirus-mediated Ucn2 overexpression 
in the liver (>15-fold) increased cardiac output in mice (Gao 
et al., 2013). However, the physiological effects of prolonged 
increases in plasma Ucn2 levels and Crhr2 antagonist therapy 
have not been investigated in heart failure. Our data demon-
strated that continuous Crhr2 agonist infusion increased 
plasma Ucn2 two-fold similar to that observed after TAC 
without a significant effect on blood pressure and resulted in 
cardiac dysfunction, whereas its blockade suppressed pressure 
overload-induced chronic cardiac dysfunction. These findings 
suggest that chronic Ucn2 activation without vasorelaxation 
may have cardiotoxic effects.

Because estrogen increases Ucn2 levels and Crhr2 ex-
pression in cardiomyocytes (Cong et al., 2014), another 
consideration is whether there are gender differences in the 
role of Ucn2 in the heart. We implanted female mice with 
osmotic pumps that release Ucn2 and found that 4 wk of 
Ucn2 infusion caused a significantly increased left ventricu-
lar weight to tibia length and decreased ventricular fractional 
shortening (unpublished data). Additionally, cmc-Crhr2 KO 
female mice were resistant to TAC-induced cardiac hypertro-
phy and Crhr2 antagonist treatment protected female mice 
from further TAC-induced cardiac dysfunction similar to 
that observed in male mice (personal correspondence). These 
findings indicate that there are no gender differences in the 
role of Crhr2 in heart failure.

Based on our findings, although acute Ucn2 injection 
has been shown to increase cardiac function, chronic eleva-
tions in Ucn2 are associated with cardiac dysfunction. These 
opposing effects may be similar to that found with cardiac 
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β adrenergic receptors, which are also coupled to Gαs. Al-
though adrenaline treatment is beneficial during the acute 
phase, β blockers have become a frontline drug for the treat-
ment of chronic heart failure (Braunwald, 2001). It is known 
that cellular signaling is adaptive in acute heart failure, and 
can cause maladaptive cardiac remodeling over prolonged pe-
riods of time. Most GPCRs are coupled to more than one 
heterotrimeric G-protein, resulting in activation of specific 
intracellular pathways. Cardiac Gαs transgenic mice exhibit 
progressive cardiac dysfunction with cardiac apoptosis, cardiac 
hypertrophy, and cardiac fibrosis as the mice age (Iwase et al., 
1996; Geng et al., 1999). Cardiac PKA transgenic mice display 
ventricular dilation and decreased cardiac function (Antos et 
al., 2001), and PKA phosphorylation is significantly elevated 
in failing hearts from humans and animal models (Marx et 
al., 2000). Similarly, CREB phosphorylation promotes tar-
get gene expression (Mayr and Montminy, 2001; Altarejos 
and Montminy, 2011), although the functional significance 
of CREB in the normal heart is controversial. For instance, 
cardiac-specific overexpression of dominant-negative CREB 
induced cardiac dysfunction (Fentzke et al., 1998); however, 
CREB-deficient mice display no changes in cardiac morphol-
ogy (Matus et al., 2007). Nevertheless, mechanistically, CREB 
has been implicated in heart failure, and CREB Ser133 phos-
phorylation enhances the expression of genes related to heart 
failure (Guo et al., 2010; Chien et al., 2015).

Although activation of AKT initially promotes physio-
logical growth of the heart, constitutive AKT activation leads to 
pathological cardiac hypertrophy and dysfunction (Chaanine 
and Hajjar, 2011; Shimizu and Minamino, 2016). In a mu-
rine pressure overload model, heterozygous AKT1-deficient 
(Akt1+/-) mice are resistant to pressure overload–induced car-
diac dysfunction (Shimizu et al., 2010); however, the mecha-
nism by which this occurs requires further investigation.

Collectively, these data support our findings that Crhr2 
antagonism suppresses TAC-induced continuous Gαs/PKA/
CREB and Gαs/EPAC/CaMKII pathway activity, thereby 
attenuating the development of heart failure (Fig. S3 G).

We show in this study that plasma Ucn2 levels signifi-
cantly increase in patients with heart failure and in mice with 
pressure overload–induced cardiac dysfunction. Although 
Ucn2 mRNA is detected in various tissues, including the 
brain and heart (Hillhouse and Grammatopoulos, 2006), the 
secretory organ of Ucn2 remains unclear. In a mouse model 
of myocardial infarction, Ucn2 expression increases in car-
diomyocytes (Li et al., 2013), leading to the hypothesis that 
cardiomyocytes secrete Ucn2 in heart failure. We measured 
plasma Ucn2 levels in the peripheral arterial, venous, and cor-
onary sinus blood from patients with NID​CM, but found no 
significant increase in the coronary sinus sample (unpublished 
data). Thus, further studies are required to pinpoint the cellu-
lar origin of Ucn2 in the context of heart failure.

In conclusion, our data show that Crhr2 activation plays 
a critical role in the development of heart failure and that 
Crhr2 antagonist treatment prevents cardiac dysfunction in 

model mice. Clinical analysis showed significantly elevated 
plasma Ucn2 in patients with NID​CM compared to healthy 
subjects. Therefore, Ucn2 may serve as a prognostic indicator 
for response to Crhr2 inhibitor treatment and facilitate the de-
velopment of more effective therapies for chronic heart failure.

Materials and methods
Materials and chemicals
Antibodies to Crhr2 (sc-20550), β-actin (sc-47778), Adrb1 
(sc-568), Ptger1 (sc-22648), CaMKII (sc-5306), phos-
pho-CaMKII (Thr286, sc-32289), and RyR (sc-376507) 
were obtained from Santa Cruz Biotechnology, Inc. Antibod-
ies to CREB (48H2, #9197), phospho-CREB (Ser133, 87G3, 
#9198), PKA (#4782), phospho-PKA (Thr197, #4781), AKT 
(#9272), and phospho-AKT (Ser473, #4060) were all from 
Cell Signaling Technology. An antibody to phospho-RyR 
(Ser2814) was from Badrilla. Human tissue samples were 
obtained from BioChain.

Western blotting
Cell and tissue samples were lysed in RIPA buffer (Wako) 
containing a protease inhibitor mixture and phosphatase 
inhibitor mixture (Roche). Protein concentrations were 
measured using a BCA protein assay (Thermo Fisher Sci-
entific). Equal amounts of proteins were resolved by SDS-
PAGE and transferred onto a PVDF membrane. ECL or 
ECL plus western blotting detection kits (GE Healthcare) 
were used for signal detection. Relative phosphorylation and 
protein levels were quantified with ImageJ software (Na-
tional Institutes of Health).

Luciferase assay
SNAP antibody (P9310S) and the pSNAPf plasmid 
were obtained from New England Biolabs. The vectors 
pGL4.29[luc2P/CRE/Hygro], pGL4.30[luc2P/NFAT-RE/
Hygro], pGL4.33[luc2P/SRE/Hygro], and pGL4.34[luc2P/
SRF-RE/Hygro] were purchased from Promega. Crhr2 
cDNA was from the Kazusa DNA Research Institute. Lu-
ciferase reporters for cAMP response element (CRE), nu-
clear factor of activated T-cells response element (NFAT-RE), 
serum response element (SRE), and serum response factor re-
sponse element (SRF-RE, a mutant form of SRE) were used 
to assess Gs, Gq, Gi, and G12 activation, respectively (Cheng 
et al., 2010). For luciferase assays, HEK293 cells (JCRB9068, 
JCRB Cell Bank) were transfected with the indicated plas-
mids with Lipofectamine 2000 (Invitrogen). Growth medium 
was replaced with serum-free medium 4 h after transfection, 
and then cultured for 24 h. Transfected cells were treated with 
Ucn2 (Peptide Institute) for 24 h and luciferase activities were 
measured with a luciferase assay system (Promega).

Isolation of adult mouse ventricular cardiomyocytes
Cardiomyocytes were isolated as previously described (Wol-
ska and Solaro, 1996). In brief, mice were heparinized (5,000 
IU/kg) and anesthetized with 50 mg/kg sodium pentobarbi-
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tal. Hearts were quickly removed, cannulated from the aorta 
with a blunted 24-gauge needle, and then connected to a 
perfusion apparatus for retrograde perfusion of the coronary 
arteries with perfusion buffer (135 mM NaCl, 4.0 mM KCl, 
0.33 mM NaH2PO4, 1.0 mM MgCl2, 10 mM Hepes, 5 mM 
taurine, 10  mM 2,3-butanedione monoxime, and 10  mM 
glucose, pH 7.4) for 3 min (5 ml/min), and then with en-
zyme buffer, which is the perfusion buffer supplemented with 
0.4 mg/ml collagenase D (Roche), 0.5 mg/ml collagenase 
B (Roche), and 0.06 mg/ml protease XIV (Sigma-Aldrich), 
for 10 min. After the heart was removed from the perfusion 
apparatus, atria were removed, ventricles were cut and sep-
arated into small pieces gently with forceps, and pipetted 
several times in perfusion buffer containing 5% BSA. Cells 
were plated in MEM (Thermo Fisher Scientific) containing 
2.0  mM l-glutamine, 10  mM 2,3-butanedione monoxime, 
10 µg/ml insulin, 5.5 µg/ml transferrin, 5.0 ng/ml selenium, 
and 0.1% BSA for 1 h, at which point media was removed 
and adherent cells were resuspended in BSA-free culture me-
dium until use, generally within 1–2 h.

mRNA expression analysis
To analyze GPCR expression, RNA was extracted from adult 
mouse cardiomyocytes with an RNeasy Mini kit (QIA​GEN) 
according to the manufacturer’s protocol and reverse-transcribed 
with a QuantiTect Reverse Transcription kit (QIA​GEN). Quan-
tification was performed using a LightCycler 480 Probe Master 
System (Roche) with primers described in Table S1. Genomic 
DNA from mouse tails was used as a universal standard to calcu-
late gene copy number per ng of RNA (Yun et al., 2006).

For CREB-related genes, quantitative real-time RT-PCR 
analysis was assessed on a CFX-96 system using SYBR Pre-
mix Ex Taq II (Takara Bio), which includes a double-stranded 
DNA-specific dye, according to the manufacturer's instruc-
tions (Bio-Rad Laboratory). PCR primer sequences were as 
follows: Agt, forward 5′-GTT​CTC​AAT​AGC​ATC​CTC​CT-3′, 
reverse 5′-CAG​GAA​GGG​GCT​GCT​CAGG-3′; Ccr5, forward 
5′-GAT​TTT​CAA​GGG​TCA​GTCC-3′, reverse 5′-GGT​ATA​
GAC​TGA​GCT​TGC​AC-3′; Foxo3, forward 5′-CGT​AGT​
GAA​CTC​ATG​GAT​GC-3′, reverse 5′-GCT​TTG​AGA​TGA​
GGC​CTG​CT-3′; Irs2, forward 5′-GGG​TCC​TTG​GCG​CAG​
TCT​CA-3′, reverse 5′-GCC​TGG​ACC​CCC​ACA​CAC​TC-3′; 
Ptk2b, forward 5′-GGG​TCC​TTG​GCG​CAG​TCT​CA-3′, re-
verse 5′-GAC​AGG​CGG​ACA​GAG​AGT​TCGG-3′; Sik1, for-
ward 5′-CCC​TTA​TTA​TTC​CCC​TGGA-3′, reverse 5′-CTC​
TAG​GCT​GGG​ACC​CTG​CC-3′; Nr4a1 forward 5′-CGC​
ACA​GTA​CAG​AAA​AGC​GC-3′, reverse 5′-CTT​CAC​CAT​
GCC​CAC​AGC​CA-3′; and Gapdh, forward 5′-TGT​GTC​CGT​
CGT​GGA​TCT​GA-3′, reverse 5′-TTG​CTG​TTG​AAG​TCG​
CAG​GAG-3′. Data are presented after normalization to Gapdh.

Tamoxifen-inducible, cardiomyocyte-specific Crhr2 
knockout mice (cmc-Crhr2-KO)
Crhr2tm1a(KOMP)Wtsi mice on a C57BL/6 background were 
generated by the Knock Out Mice Program (KOMP) at 

the University of California Davis (Davis, CA) and Chil-
dren’s Hospital Oakland Research Institute (Oakland, CA). 
Crhr2tm1a(KOMP)Wtsi mice were bred with mice expressing 
Flp recombinase to obtain Crhr2 conditional KO mice  
(Crhr2flox/flox mice). Crhr2flox/flox mice were backcrossed at 
least 10 times to wild-type C57BL/6 genetic background 
mice. Tamoxifen-inducible, cardiomyocyte-specific Crhr2 
knockout mice (cmc-Crhr2-KOs) were generated by in-
tercrossing the αMHC–CreERT2 line to Crhr2flox/flox mice 
(Takefuji et al., 2012). Cre-mediated recombination of floxed 
alleles was induced with an intraperitoneal injection of 1 mg 
tamoxifen dissolved in 100 μl Miglyol for 5 consecutive days. 
Vehicle-treated mice received Miglyol only, and αMHC–
CreERT2+/−-Crhr2wt/wt mice were used as controls. Experi-
ments were performed 2 wk after the end of induction.

Surgical interventions: osmotic minipumps and 
transverse aortic constriction
8–10-week-old male mice were anesthetized with 50 mg/kg 
sodium pentobarbital, and osmotic minipumps (Alzet) con-
taining Ucn2 (100 ng/g/day; Peptide Institute) or antisau-
vagine-30 (100 ng/g/day; Medical & Biological Laboratories) 
were implanted subcutaneously in the back for 4 wk.

TAC was performed under anesthesia and intubation. 
The chest was opened to visualize the aortic arch. The trans-
verse aorta was then ligated between the right innominate 
and left common carotid arteries against a blunted 24-G nee-
dle with a 7–0 suture. The sham procedure was identical ex-
cept that the aorta was not ligated.

Transthoracic echocardiography was performed on 
mice anesthetized with 50 mg/kg sodium pentobarbital. The 
left ventricular (LV) end-systolic diameter and the LV end-di-
astolic diameters were measured to calculate the %LV frac-
tional shortening (%FS) in M-mode using an Acuson Sequoia 
C-512 (Siemens) with a 15-MHz probe. SBP was measured 
by tail cuff method with an automatic sphygmomanometer 
(BP98A; Saffron) while the mice were restrained.

Mouse plasma Ucn2 and BNP were quantified by a 
mouse Ucn2 ELI​SA kit (Yanaihara), and by a BNP Enzyme 
Immunoassay kit (RayBiotech Inc.), respectively, according to 
the manufacturer's instructions.

Histological analysis
Tissue samples were embedded in OCT compound (Sakura 
Finetek) and snap-frozen in liquid nitrogen. Left ventricular 
myocardium sections (6-µm slices) were stained with Picro-
Sirius red with standard protocols and viewed with a BX51 
microscope (Olympus). Cardiac fibrosis in 20 random images 
was quantified in ImageJ software.

Clinical data of human subjects
Blood samples were collected from patients diagnosed with 
NID​CM at Nagoya University hospital from August 2006 to 
November 2011. All patients showed stable disease and were 
hospitalized for detailed cardiac examination by laboratory 
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analysis, echocardiography, and cardiac catheterization. NID​
CM was defined as left ventricular ejection fraction (LVEF) 
<50% on left ventriculography and a dilated LV cavity (LV 
end-diastolic dimension >55 mm determined by echocar-
diography), in the absence of coronary heart disease, valvular 
heart disease, or secondary cardiac muscle disease caused by 
any known systemic conditions, as determined by endomyo-
cardial biopsy. Of 52 patients, 36 (69.2%) received angioten-
sin-converting enzyme inhibitors or aldosterone receptor 
antagonists, 30 (57.7%) received β blockers, and 21 (40.4%) 
received mineralocorticoid receptor antagonists. Blood sam-
ples were collected from the antecubital vein of fasting pa-
tients in the morning after resting for 20 min in the supine 
position. Control blood samples were collected from age- and 
gender-matched healthy participants of a community-based 
cohort study without a history of metabolic, cardiovascular, 
or cancerous diseases. BMI was calculated as follows: BMI 
= weight (kg)/height (m)2. SBP and diastolic blood pressure 
(DBP) were measured with a sphygmomanometer, placed on 
the right arm of each subject with the appropriate cuff size. 
Plasma total cholesterol, creatinine, and glucose levels were 
measured by enzymatic methods. BNP (RayBiotech Inc.) and 
Ucn2 levels (USCN Life Science) were measured by ELI​SA.

RNA-sequencing
Total RNA was used to generate the cDNA library for sub-
sequent cluster generation using the TruSeq RNA Sample 
Preparation kit v2 (Illumina). The first step in the workflow 
involves purifying the poly-A containing mRNA molecules 
using poly-T oligo-attached magnetic beads. Following pu-
rification, the mRNA is fragmented into small pieces under 
elevated temperature. The cleaved RNA fragments are then 
used for first strand cDNA synthesis with reverse transcriptase 
and random primers, followed by second strand cDNA syn-
thesis. These cDNA fragments then go through an end repair 
process, the addition of a single “A” base, and ligation of the 
adapters. The products are then purified and enriched with 
PCR to create the final cDNA library. The libraries were 
sequenced on an Illumina HiSeq2500 platform in a paired-
end 100-bp configuration.

Adapter and low-quality sequences were removed by 
cutadapt (v1.2.1). After quality control analysis, poly-A/T 
sequences were removed by PRI​NSEQ (v0.19.2; Schmie-
der and Edwards, 2011). To determine gene expression, 
trimmed reads were aligned to the reference human ge-
nome (GRCh37/hg19) using TopHat (v2.0.13; Trapnell 
et al., 2009). Mapped reads were assembled by Cufflinks 
(v2.2.1; Trapnell et al., 2010), and the transcripts across all 
samples were merged with Cuffmerge, which is part of the 
Cufflinks package. The fragments per kilo base per mil-
lion mapped reads (FPKM) was calculated with Cuffquant, 
and differential expression analysis between samples was 
performed with Cuffdiff.

To identify candidates from the total gene pool (28,522 
genes), we set the t-value cut-off at <0.01 (255 genes), and 

FPKM at a >1.5-fold increase compared to controls (88 
genes). We then queried genes related to: CREB (29 genes), 
MEF2 (8 genes), or heart failure (15 genes), the CREB re-
sponse element; genes harboring TGA​CGT​CA, TGA​CG, or 
CGT​CA sequences (Altarejos and Montminy, 2011); or MEF2 
response elements; genes harboring a CTA(A/T)4TAG/A se-
quence (Akazawa and Komuro, 2003) within 3,000-bp up-
stream to 300-bp downstream of the transcription start site; 
heart failure–related genes, genes previously associated with 
heart failure. Six genes related to both CREB and heart 
failure, and one gene (Nr4a1), which was related to CREB, 
MEF2, and heart failure, were identified as target genes.

Study approval
The clinical study protocol was approved by the Ethics 
Review Board of Nagoya University School of Medicine 
and Jichi Medical University. Written informed consent 
was obtained from all study subjects. All procedures of an-
imal care and animal use in this study were approved by 
the Animal Ethics Review Board of Nagoya Univer-
sity School of Medicine.

Statistical analysis
Data are presented as the means ± SEM in animal experi-
ments and the means ± SD, medians (interquartile ranges), or 
subject numbers (%) in human subjects. All statistical analyses 
for animal experiments were performed in GraphPad Prism 
6. Comparisons between two groups were performed with 
unpaired Student’s t or Chi-square tests, while those between 
more than two groups were done using ANO​VA with Bon-
ferroni post-hoc testing. Survival curves were analyzed with 
Kaplan Meyer estimators and Log-rank (Mantel-Cox) test-
ing. Comparisons between more than two groups at different 
time points were performed by two-way ANO​VA, followed 
by Bonferroni post-hoc test.

Since Ucn2 showed a skewed distribution in the human 
studies, the variables were log-transformed before analysis, 
and differences were assessed using a general linear model 
with parameter adjustments. Significance was defined as P < 
0.05 (*, P < 0.05; **, P < 0.01).

Online supplemental material
Fig. S1 shows a flow chart of GPCR screening. Fig. S2 shows 
that Ucn2 caused further cardiac dysfunction induced by 
pressure overload. Fig. S3 shows Ucn2-mediated cellular sig-
naling in the heart. Table S1 shows probes and primer se-
quences for quantification of mouse GPCR expression. 
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