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Abstract

In this review, we discuss the genetic architecture of obesity and the metabolic syndrome, 

highlighting recent advances in identifying genetic variants and loci responsible for a portion of 

the variation in adiposity traits, serum HDL and triglycerides, blood pressure, and glycemic traits; 

in other words, the components comprising the metabolic syndrome. We focus particularly on 

recent progress from large-scale genome-wide association studies. Detailing their successes and 

how lessons learned can pave the way for future discovery. Results from recent genome-wide 

association studies coalesce with earlier work suggesting numerous interconnections between 

obesity and the metabolic syndrome, developed through several potentially pleiotropic effects. We 

detail recent work by way of a case study on the cadherin 13 gene and its relation with adiponectin 

in the HyperGEN and the Framingham Heart Studies, and its association with obesity and the 

metabolic syndrome. We provide also a gene network analysis on recent variants related to obesity 

and metabolic syndrome discovered through genome-wide association studies.

1. Introduction

Obesity is arguably the most important and, at the same time, the most complex, major 

public health problem in the United States and elsewhere. Obesity prevalence has increased 

rapidly over the last several decades [1] and is associated with increased mortality and 

morbidity from a variety of conditions and disorders [2–4]. The prevalence of obesity and 

overweight in many countries as diverse as Egypt, Mexico, and South Africa is similar to 
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that of the United States, but rates of increase are higher [5, 6], with some of the most rapid 

increases in obesity and its co-morbidities seen in Asian populations [7, 8].

Obesity is a central risk factor for a host of metabolic disturbances, primarily in lipid and 

glucose metabolism. There is ample epidemiologic evidence that adiposity is correlated with 

adverse lipid profiles and biomarkers of glucose metabolism [9, 10]. In fact, derangements 

of these variables can cluster together as obesity, dyslipidemia, insulin resistance, and 

hypertension in what is referred to as the metabolic syndrome (MetS) [11]. Hypertension, 

hyperlipidemia, impaired glucose tolerance, and obesity are established traditional 

cardiovascular disease (CVD) risk factors. When these risk factors cluster in one individual, 

CVD risk increases dramatically. This clustering of risk factors is, in fact, not a rare event 

but a common cause of CVD in modern society [12, 13]. While this combined phenotype 

has been described since the late 1980s as the metabolic syndrome, the precise definition has 

shifted slightly over time, and there have been a number of attempts to develop standardized 

criteria for its diagnosis. The most widely-used definitions from the World Health 

Organization (WHO), proposed in 1998 [14], the National Cholesterol Education Program 

Adult Treatment Panel III (NCEP ATPIII), proposed in 2001 [15], the International Diabetes 

Federation (IDF) [16], revised in 2005, and the AHA/NHLBI [17], proposed in 2005, are 

summarized in Table 1. It is clear from inspection of Table 1 that only minor differences 

exist between the specific components that make up the diagnostic schemes. However, a 

couple of important differences do exist. First, while the WHO and the IDF require the 

presence of one essential factor (impaired glucose for the WHO and central adiposity for the 

IDF), the NCEP ATPIII and AHA/NHLBI equally weight the five criteria listed. Secondly, 

the definitions differ in their handling of adiposity. While the WHO allows for excess 

adiposity to be determined either by waist-to-hip ratio (WHR) or body mass index (BMI) as 

an ancillary criterion, the NCEP ATPIII and AHA/NHLBI use a measure of central adiposity 

via waist circumference (WC) as one of five components, and the IDF requires excess 

central adiposity measured via WC as a required criterion. Recently the IDF and the AHA/

NHLBI attempted to resolve differences between definitions on the metabolic syndrome, as 

there continued to be disagreement and confusion on the part of clinicians (see [18]). The 

resulting definition does not require the presence of abdominal obesity for diagnosis, instead 

it is one of five criteria, and utilizes population- and country-specific WC cut points. The 

remaining four criteria are identical to the AHA/NHLBI 2005 definition.

Although estimates of prevalence in different populations are highly dependent on the 

definition of the metabolic syndrome, the reality is that the current prevalence estimates and 

future projections are alarming. In fact, age-adjusted estimates from the National Health and 

Nutrition Examination Survey (NHANES) revealed that approximately 34% of adult 

Americans aged 20 years or older met the criteria for metabolic syndrome [19]. The 

prevalence of metabolic syndrome increased with age for males and females 40–59 years of 

age, about three times as likely as the youngest age group (20–39) to meet the criteria for 

metabolic syndrome (males: OR=2.70, 95% confidence interval (CI) 1.96–3.73; females: 

OR=3.20, 95% CI 2.32–4.43). The prevalence of metabolic syndrome also varied by race 

and ethnicity but the pattern was different in males and females. For example, 25% of 

African American men met the criteria for metabolic syndrome whereas 37% of non-
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Hispanic white males met these same criteria. In contrast, although the prevalence did vary 

by race in females, all differences were non-significant.

A number of studies have reported a positive relationship between the metabolic syndrome 

and CVD morbidity [20–22]. For example, in the NHANES III [23], the metabolic 

syndrome was associated with a higher risk of nonfatal myocardial infarction (OR, 2.01; 

95% CI, 1.53–2.64) and stroke (OR, 2.16; 95% CI, 1.48–3.16). In other non-US populations, 

Lakka et al [24] reported a higher risk of coronary mortality associated with the metabolic 

syndrome (hazard ratio of 4.16; 95% CI, 1.60–10.8) in Finnish adults. Consequently, a major 

effort should be placed on the detection, prevention, and therapy of the metabolic syndrome. 

Therapeutic tools are available to successfully deal with a number of the individual 

components. Specifically, effective drugs are available to lower blood pressure, improve 

insulin sensitivity, and treat dyslipidemia. In contrast, therapeutic success has not been 

shared by the other major component of the metabolic syndrome, obesity.

Clearly there is much to be learned about the genetic underpinnings of the components of 

the metabolic syndrome and there is great hope that discoveries will lead to the development 

of effective candidates for screening and therapies. With this in mind, the purpose of this 

review is to describe the current state of the science on the genetic epidemiology of the 

metabolic syndrome and its components. To accomplish this goal, we first describe the 

genetic architecture of obesity, a primary component of and a risk factor for the other 

components of the metabolic syndrome. Next we describe recent progress in genome-wide 

association studies for obesity and the other metabolic syndrome components. We follow 

with a discussion of pleiotropic effects and conclude with a case study of some recent work 

specifically exploring the genetic epidemiology of the metabolic syndrome in the 

Hypertension Genetic Epidemiology Network (HyperGEN) study (Section 9), as well as 

provide a gene network analysis of recent GWAS findings (Section 10).

2. The Genetic Architecture of Obesity

Because obesity is a strong risk factor for numerous other metabolic derangements, diabetes, 

cardiovascular disease, fatty liver disease, various cancers, as well as a host of other 

morbidities, there is strong motivation to understand its genetic architecture.

Both genetic and environmental factors have been linked to obesity [25]. Heritability 

estimates for adiposity phenotypes range from 30 to 70% in family and twin studies [26], 

and multiple quantitative trait loci and candidate genes have been identified [25]. In the 

current environment termed “obesogenic” and characterized by plentiful inexpensive energy-

dense foods and sedentary occupational environments, different constitutions for obesity are 

evident (monogenic, strong predisposition, moderate predisposition, and resistant) [27]. 

Despite strong evidence for an underlying genetic component, genes for obesity-related 

traits using candidate gene and linkage approaches have been difficult to identify and 

replicate.
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3. New Developments in the genetics of Obesity (findings from GWAS)

Genome-wide association studies (GWAS) aimed at discovery of variants associated with 

adiposity traits, have recently produced many findings, implicating numerous novel genes, 

owing to the cooperation of large cohort and family studies in meta-analyses of tens of 

thousands of subjects. Findings are summarized in Table 2.

In two contemporaneous genome-wide association studies in 2007, Frayling et al and Scuteri 

et al identified the fat mass and obesity associated (FTO) gene as highly significantly related 

to body mass index (BMI) and waist circumference (WC) [28, 29]. In 2008, three studies 

identified the melanocortin 4 receptor (MC4R), known before this time to be important in 

monogenic forms of obesity, as playing a role in common forms of obesity [30, 31]. 2009 

was quite a banner year for genetics of common complex obesity, with an additional six 

genome-wide association studies published, reporting 14 new loci for adiposity traits [32–

37]. While many of the biological mechanisms behind these variants remain unknown, as do 

the actual functional variants, many of the discovered candidates locate near genes that are 

highly expressed in the brain and hypothalamus, suggesting a role for neuronal control in 

body weight regulation. For example, our study uncovered a new gene influencing waist 

circumference, the neurexin 3 (NRXN3) gene, which has been previously implicated in 

studies of addiction and reward behavior [32]. However, a sobering statistic is that 

collectively these variants explain only a small proportion of the population variation in 

adiposity. Given that the heritability of BMI ranges from 30–70%, we should conclude that 

many more loci remain to be discovered, many which are below the level of detection given 

current technology. Also of interest and of note is that the vast majority of GWAS conducted 

thus far have been in populations of European-descent. Similar studies in other populations 

are just now getting underway and researchers are hopeful that differences in linkage 

disequilibrium will bring to light new findings.

GWAS have revealed many genomic loci, often surprising, that were not previously 

identified through traditional linkage and candidate gene studies (see [25] for review of 

linkage and candidate gene findings). Major insights from these studies include: 1) most 

complex traits have many associated loci, rather than few; 2) variants have small effects of 

1–5%; 3) associated variants usually have allele frequencies greater than 10%; and 4) large 

samples are needed to detect these associations [38, 39]. Thus, even for the common disease, 

common variant hypothesis which postulates that common disease-causing alleles found in 

all populations will be responsible for small effects on a given disease, the research 

community learned that it needed sample sizes larger than those previously used for linkage 

and candidate gene studies. For this reason, the past few years has seen the establishment of 

consortia of studies to maximize sample size, previously unheard of, for the purpose of 

detecting common genetic variants of small to moderate effect sizes.

4. The Genetic Architecture of the Metabolic Syndrome

Like obesity, the development of metabolic risk factors is likely to involve both genetic and 

environmental components. Serum lipid levels, including HDL and triglycerides, two 

components of the metabolic syndrome definitions, are highly heritable, with estimates 
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consistently over 50% [40]. Studies of related individuals have found evidence of significant 

familial aggregation for the individual components of the metabolic syndrome, including 

blood lipids [41], blood pressure [42–44], and blood glucose/insulin levels [45, 46]. Further 

studies have investigated the co-occurrence of risk factors and found evidence that 

pleiotropy may underlie the clustering [47, 48]. Results from a number of genome-wide 

linkage analyses provide further evidence of common genetic factors on multiple individual 

components of the metabolic syndrome [49–51], as well as evidence for clustering [47, 48, 

52–57].

5. New Developments in the genetics of the Metabolic Syndrome (findings 

from GWAS)

Relatively few genome-wide association studies have been published using presence of the 

metabolic syndrome as the dependent variable. We published a study using data from the 

Framingham Heart Study investigating the association of variants present on the 500K SNP 

chip with the metabolic syndrome [58]. We found significant associations in the PTHBI, 
PAPPA, and FBN3 genes, and in intergenic regions of chromosomes 12 and 14. Results 

however have yet to be replicated. Follow-up work of ours, using the Hypertension Genetic 

Epidemiology Network (HyperGEN) data, with replication in the Family Heart Study, is 

currently being finalized (data as yet unpublished). We have identified several genome-wide 

significant loci for loadings on latent factors describing obesity/insulin traits, lipid/insulin 

traits, blood pressure traits, and central obesity traits. Details of these analyses are presented 

below in the case study.

Far more genome-wide studies have been published investigating the individual components 

of the metabolic syndrome. Table 3 tallies genome-wide significant and replicated results for 

blood pressure traits. While loci have been identified for both systolic and diastolic blood 

pressure, as well as for hypertension affectation status, only two studies have reported 

genome-significant results. Conversely, genome-wide association studies have been quite 

successful in identifying and replicating variants for HDL-cholesterol and triglycerides 

(Table 4) and diabetes traits (Table 5). Like GWAS for obesity, larger and larger consortia 

are convening, increasing the ability to discover additional variants. Also similar to obesity 

GWAS results, several of the loci identified to harbor variants associated with common 

dyslipidemia are also implicated in Mendelian disorders featuring a similar phenotype (e.g. 

ABCA1). In contrast to results from obesity GWAS, a much greater percentage of 

interindividual variability is explained, 9.3% and 7.4% for HDL and triglycerides, 

respectively [59], and ~10% for fasting glucose [60].

As with obesity, the advent of the genome-wide association study has revolutionized our 

ability to find genetic variants associated with the various components of the metabolic 

syndrome. Results indicate many novel loci harboring these genetic variants, loci likely to 

have remained undiscovered as part of candidate gene studies due to many of them not being 

recognized players in known pathways. Notably, in contrast to adiposity GWAS, findings are 

in some cases generalizable to other ethnic populations, particularly Asian populations, and 

in other cases have revealed new variants (e.g. KCNQ1). Future work in additional 
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populations is forthcoming, and it will be interesting to see if further generalization is 

achieved and new variants uncovered.

6. Lessons learned from GWAS will help pave the way for future discovery

Regardless of phenotype, investigators have learned many lessons from genome-wide 

association studies of common complex traits such as obesity and others that comprise the 

metabolic syndrome. First, effect sizes for common variants confer small increments in risk 

and explain relatively little of the inter-individual variation in the trait. Combined with 

correcting for multiple testing, large consortia are essential to discovery efforts, and with 

further increases in sample size, we should expect to identify more variants with small(er) 

effect sizes, as well as rarer variants with possibly larger effect sizes. In fact, several studies 

have shown that the number of detected variants increases with increasing sample size [61, 

62]. Both the discovery of rare variants and identification of functional variants will be 

facilitated with the 1,000 Genomes Project catalogue (http://www.1000genomes.org), as 

well as with targeted or whole genome sequencing. Second, the majority of identified 

variants fall outside of coding regions, underscoring the need for future research to identify 

functional variants. Third, most of the identified genes or loci were not previously thought to 

be associated with the biology of the trait. While initially a bit perplexing, this has begun to 

provide new insights into the biological pathways of disease etiology. Lastly, the exciting 

discovery that both common complex disease and monogenic disease variants often reside 

within the same genes suggests that with fine mapping or targeted sequencing we may 

discover rarer variants of larger effect in these loci. In the future, more precise measurement 

of phenotypes should reduce the heterogeneity that may be limiting our ability to detect 

informative loci; future studies should be designed with this in mind and potentially target 

endophenotypes. Similarly, investigation of gene-environment interaction, which requires 

harmonized measures of environmental factors, is critical to assessing the contextual milieu 

in which genetic effects may or may not give rise to specific phenotypes.

7. Obesity and Metabolic Syndrome interconnections

As defined by the NCEP ATPIII, MetS is a combination of three or more risk factors beyond 

clinical thresholds (larger WC, elevated TG, lower HDL-C, elevated glucose, and elevated 

BP). In contrast, obesity represents an excess of body fat, as measured by BMI, skin-fold 

thickness, bioelectrical impedance, or other measures. In clinical practice a simple and 

successful measure has been the assessment of WC, because an excess of abdominal fat is 

strongly associated with metabolic risk factors. Obesity per se is a combination of an 

existing genetic profile that predisposes to obesity and a chronic imbalance between energy 

intake, energy utilization for basic metabolic processes, and energy expenditure from 

physical activity [63]. Obesity is viewed as an important cause of insulin resistance in 

children and associated with dyslipidemia, earlier puberty and menarche in girls, type 2 

diabetes, increased incidence of obesity and MetS in adults and long-term vascular 

complications [64–71].

Reaven [72] hypothesized that insulin dysregulation was the underlying disorder in the 

syndrome. Haffner et al [73] suggested that fasting insulin, serving as surrogate of insulin 
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resistance, predicted the development of dyslipidemia, hypertension and T2DM. Other 

studies nevertheless showed that insulin and measures of obesity, BMI and WHR, had joint 

contributions to MetS [74]. Many later studies have shown that fasting insulin and fasting 

glucose are correlated with obesity measures as well as with measures of lipids in the blood 

[18, 75–90]. For example, Han et al [91] reported that BMI and insulin had similar areas 

under the receiver operating characteristic curves (0.74 and 0.76, respectively). In addition, 

32% of the obese subjects (BMI≥30 kg/m2) with high WC from the San Antonio Heart 

Study developed MetS, compared with 10% of participants with both low BMI and low WC. 

Ascaso et al [92] showed that subjects with high WC had a prevalence of insulin resistance 

of 54.6% as measured by HOMA-IR ≥ 3.8, compared to 31.7% on those with normal WC. 

During that time and later, several studies showed the fundamental importance of obesity in 

the foundation of MetS by the way of multivariate analysis of several traits related with 

obesity and central obesity, insulin and glucose, lipid profiles and blood pressure [93–95]. 

Arnlöv et al [96] in a follow-up study of more than 30 years of middle-aged men with MetS 

reached the conclusion that these subjects with MetS had increased risk for cardiovascular 

events and total death regardless of BMI status. Therefore how strong is obesity a 

predisposing condition for MetS? And what might be the mechanism of action? Multiple 

hypotheses have been proposed. The insulin hypothesis states that obesity typically results in 

insulin and leptin resistance and a shift from expansion of subcutaneous fat to deposition of 

abdominal and ectopic fat [97], which leads to metabolic dysregulation, elevated fatty acids, 

and increased pro-inflammatory adipokines. Although, it is important to note that not all 

obese individuals are insulin resistant [98]. An alternative hypothesis proposes that the 

metabolic syndrome starts with an obesity-associated metabolic dysfunction, where chronic 

macronutrient and/or lipid overload (associated with adiposity) induce cellular stress that 

initiates and propagates an inflammatory cycle [99, 100]. Studies have reported that a 

postprandial hyperinsulinemia exists in obesity, in cases when fasting insulin levels are 

normal [101–103]. For more information on diet and metabolic syndrome see a detailed 

review in this issue by Djoussé at al [104].

McGarry (2001) in his Banting Lecture posited that an abnormal accumulation of fat in 

muscle and other tissues plays an important role in the etiology of insulin resistance and 

possibly also in the demise of the β-cell in type 2 diabetes [105]. This thinking coalesces 

with the MetS obesity hypothesis. Despite these two main hypotheses on the origin of MetS, 

obesity or insulin resistance or a combination of the two, Carr and Brunzell [106] underline 

familial combined hyperlipidemia (FCHL) as a subgroup of subjects that have MetS and a 

special increment of apolipoprotein B. Hopkins et al, and Hunt et al [107, 108] have shown 

that in patients with FCHL, abdominal adiposity and insulin resistance do not fully explain 

the elevated levels of apo B. In contrast, evidence exist that there is a very small group of 

subjects that are obese yet metabolically healthy [109]. Because obesity intersects with 

many metabolic pathways, the possible confounders are numerous, making it difficult to 

discriminate among them based on their importance. Furthermore, because MetS represents 

an atherogenic combination of central obesity, dyslipidemia, glucose intolerance and/or 

insulin resistance and high BP disorders, it is quite complex to explain. This complexity 

provides a great challenge for basic and clinical research. Together with challenges it opens 

opportunities for new targets of therapy for the metabolic syndrome [110].
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The development of obesity as a chronic disease has a strong genetic component, although 

recent increases in prevalence do not reflect changes in population genetics. Therefore 

obesity is arguably the result of the obesogenic environment and gene-by-environment 

interactions, reflecting the selectivity to deposit fat efficiently that is maladaptive in the 

conditions of today’s energy-dense foods and sedentary lifestyles [111].

Adipose tissue may be the origin of one or more interconnections between obesity and the 

metabolic syndrome, as adipose tissue serves as storage and also as a place where lipids are 

mobilized [112, 113]. Free fatty acid (FFA) production and reduced FFA oxidation may 

obstruct insulin activity at the tissue level, especially where intramuscular fat is present. 

Moreover, the adipose tissue produces several adipokines that serve as a communication link 

with several important tissues including the liver (adiponectin, IL6), brain (adiponectin, IL6, 

leptin), vasculature (adiponectin, MCP-1, IL6, PAI1, SAA), muscle (adiponectin, IL6, 

MCP1), β-cells (IL6), and the reproductive tract (leptin) [114]. Abdominally obese 

individuals show higher levels of CRP, IL-6, TNF-α and reduced levels of adiponectin. 

Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of the endogenous 

fibrinolytic and modulates thrombosis progression. PAI-1 and IL6 show strong correlations 

with measures of obesity [114–117]. We have reported that PAI-1 and IL6 clustered in two 

MetS latent factors related to obesity and lipids due to this correlation [116]. An 

accumulation of visceral fat accompanied with insulin resistance, rising blood pressure, and 

a prothrombotic and inflammatory profile suggests that adipose tissue is causally involved in 

the pathophysiology of MetS.

8. Evidence for Pleiotropic Genetic Effects on Adiposity Related 

Phenotypes and Metabolic Syndrome Related Traits

The heritability of the NCEP ATPIII-defined metabolic syndrome has been estimated to be 

about 30% [118], and principal component analysis combining these risk factors support the 

idea that the clustering or correlation among them is heritable and has a genetic basis [119]. 

Moreover, Kullo et al [120] investigated the degree to which pleiotropy contributes to the 

correlation between lipid traits related to the metabolic syndrome in the Genetic 

Epidemiology Network of Atherosclerosis (GENOA) cohort of hypertensive sibships and 

reported that pleiotropy contributes to the additive genetic variation in three correlated lipid 

traits – high density lipoprotein cholesterol, triglycerides, and low density lipoprotein 

particle size [121].

Genes that influence (have penetrance on) multiple phenotypes can be said to have 

pleiotropic effects, even if the effect may not be directly on the outcome variables. Genes 

that influence multiple outcomes may be highly desirable targets for intervention, and may 

identify points of connection between different pathways. Indeed, there are examples of 

individual genes found to have pleiotropic effects on the metabolic syndrome suite of 

phenotypes. NR3C1, which encodes the glucocorticoid receptor, has been associated with 

obesity, hypertension, and insulin resistance, and ADIPOQ has been associated with 

diabetes, hypertension, and dyslipidemia [122–125]. Findings from the recent genome-wide 

association studies reviewed here (Tables 2–5) have identified many new trait genes for 
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obesity and central adiposity, blood pressure, lipids, and glycemic traits, some of which may 

have pleiotropic effects across phenotypic domains. In fact, it has been demonstrated that the 

first major well-replicated adiposity gene found by GWAS, the FTO gene, not only 

influences BMI, but may also predispose to type 2 diabetes [28, 29, 126, 127]. Other 

examples include loci containing the FADS1, GCKR, and MADD genes, all of which have 

been associated with type 2 diabetes [60] and fasting lipid concentrations [62, 128–132]. 

Lastly, pleiotropic relationships between the metabolic syndrome and coronary heart disease 

have also been revealed [133–136]. Elucidating these relationships is an important step in 

defining the genetic architecture of these correlated traits.

9. A case study: CDH13 gene in association with obesity and metabolic 

syndrome in the HyperGEN and Framingham studies

In this section we provide novel experimental information from the HyperGEN and 

Framingham studies on the CDH13 (cadherin 13) gene and MetS. We assess the association 

of CDH13 variants with obesity and MetS by means of latent factors resulting from factor 

analysis of a group of risk factors for MetS (Table 6). The HyperGEN study is part of the 

NHLBI Family Blood Pressure Program (FBPP, see Williams et al [137] and Province et al 
[138] for detailed descriptions). Briefly, sibships were selected so that at least two 

individuals per sibship were hypertensive prior to age 60. Parents and offspring of some of 

the hypertensive sibs, as well as a random sample of unrelated African Americans and 

whites were also recruited, totaling 4,781 participants. Those with genotype data and non-

missing measures on 11 important metabolic and adiposity traits were utilized in this 

analysis [n=1935 (910 African American, 1025 white)]. Traits utilized include BMI (kg/m2), 

WC measured at the level of the umbilicus (cm); waist-to-hip ratio (WHR); fasting (≥12 

hours) glucose (mg/dL); fasting (≥12 hours) insulin (μU/mL), LDL cholesterol (mg/dL), 

HDL cholesterol (mg/dL), triglycerides (mg/dL), sitting systolic blood pressure (SBP, mm 

Hg), diastolic blood pressure (DBP, mm Hg), and percent body fat (PBF) derived from the 

bioelectric impedance measurements based on the Lukaski formula [139]. All traits were 

adjusted for age within gender strata, and transformations were implemented when needed, 

followed by standardization of each trait to a mean 0 and variance 1. The transformed traits 

were included in multivariate factor analyses, and 4 factors were produced representing 

obesity and insulin (OBS-INS), lipids and insulin (LIP-INS), blood pressure (BP) and 

central obesity (CENT-OBS) factors. A detailed account on preparing phenotypes is 

provided in Kraja et al [93]. Previously we demonstrated that obesity and hypertension were 

the most important factors contributing to the MetS in the HyperGEN Study. Whites tended 

to have a higher prevalence of deleterious triglyceride and HDL levels than African 

Americans. The prevalence of MetS was 34% in African Americans and 39% in whites. 

Participants with complete phenotypic data had a mean age of 46 (SD 13) years in African 

Americans, and a mean of 51 (SD 14) years in whites. Overall, when compared to whites, 

African Americans tended to have a higher BMI, fasting glucose levels, fasting insulin 

levels, SBP, DBP, WC, and PBF; similar LDL levels and WHR; and lower TG and HDL 

levels. Similar trends were reported also in the FBPP study with a sample of 13,592 

participants including African Americans, whites and Asians [140]. The Framingham Heart 

Study (FHS) is a generational cohort study which aims to identify the common factors that 
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contribute to CVD by following its longitudinal development in participants who at 

enrollment had not yet developed overt symptoms of CVD or suffered a heart attack or 

stroke [141, 142]. We have shown in another publication [58] the trends of MetS prevalence 

in FHS which were comparable with the MetS prevalence in the general US population. We 

applied similar adjustments in the FHS data to the ones described above for the HyperGEN 

data.

In previous work, using the HyperGEN data to investigate echocardiographic and metabolic 

syndrome features, we reported a LOD score of 2.8 on chromosome 16 in whites for a 

multivariate factor related to cardiovascular disease, namely “Left Ventricular wall 

thickness” [143]. This multivariate factor explained variation in left ventricular mass index 

(LVMI), diastolic posterior wall thickness (PWT), diastolic relative wall thickness (RWT), 

and left ventricular mid-wall shortening (MWS) [144]. This result was particularly 

interesting because the QTL for “LV wall thickness” on chromosome 16q24.2-q24.3 reached 

its local maximum LOD score at microsatellite marker D16S402, which is positioned within 

the 5th intron of the cadherin 13 gene (CDH13), implicated in heart and vascular remodeling 

[145, 146]. The CDH13 gene is a putative mediator of cell-cell interaction in the heart and 

may act as a negative regulator of neural cell growth. The gene locus is hypermethylated or 

deleted in breast, ovarian and lung cancers. It has been considered an LDL receptor [147] 

and has also been associated with BP [148]. Almost a decade ago this gene was identified as 

a receptor of adiponectin [149, 150]. Adiponectin is an adipokine produced in adipose 

tissue, and is believed to sensitize the body to insulin. Adiponectin receptors AdipoR1 and 

AdipoR2 are considered to play a special role in T2DM and CVD [151–158]. A number of 

interactions of adiponectin have already been confirmed via the curated literature as shown 

in Figure 1. However, it is unclear if these interactions, including CDH13 as a new receptor 

of adiponectin, contribute substantially to obesity and metabolic syndrome phenotypes.

We studied the association of SNPs located within the CDH13 gene and the surrounding 

area using genotyped (not imputed) data, by selecting a 2 MB region on chromosome 16 

(82MB–84MB) based on reference assembly build 36.3 of NCBI (accessed on April 12, 

2010). Genotyping platforms used were Affymetrix 5.0 chip 500K Array Set for HyperGEN 

whites, Affymetrix 6.0 chip 1M Array Set for HyperGEN African Americans; and for the 

Framingham Heart Study genotyping GeneChip® Human Mapping 500K Array Set (Nsp 

and Sty), and the 50K Human Gene Focused Panel of Affymetrix platform. As shown in 

Table 6, latent factor scores that represented contributions of risk factors for obesity and 

insulin measures, dyslipidemia and insulin measures, blood pressure, and central obesity 

were used in mixed model analysis (SAS version 9.2), for testing the hypothesis that CDH13 
is associated, under an additive genetic model, with obesity and/or other metabolic 

syndrome risk variables. Pedigree ID was included as a random effect in the model to 

correct for familial relationships. Figure 2 shows the results of these analyses with a baseline 

above a negative log10 p-value of 1.3 (p < 0.05). Two SNPs from the HyperGEN whites 

showed significant associations, rs4548846 with the OBS-INS latent factor (p-value 

9.14×10−6, r2=0.019, β= −0.997, se=0.2236, MAF=1.03%), and rs11861528 with the LIP-

INS latent factor (p-value 0.00014, r2=0.014, β=0.221, se=0.0579, MAF=9.1%). There were 

also many SNPs with p-values <0.05, although they were not significant after correcting for 

multiple comparisons. Rs4548846 had a p-value of 0.03 in the HyperGEN African 
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Americans (MAF 9.46%); rs11861528 was genotyped only in whites. Thus, although 

CDH13 has a demonstrated importance on obesity, metabolic syndrome, and diabetes, our 

significant associations between CDH13 variants and latent factors of obesity and metabolic 

syndrome were relatively weak with the exception of the two SNPs reported. Similarly weak 

significant results were also found when testing the association of several variants in the 

AdipoR1 and AdipoR2 genes in association with T2DM in a French case control study 

(n=1,498), as well as a Greek CVD case control study (n=68) [153, 157]. However, 

AdipoR2 variants were found to contribute to variation in hepatic fat accumulation (n=302 

Finnish; replication: n=619 Swedish, and n=3,050 Finnish individuals) [154]. It is possible 

that the role of adiponectin and its receptors including CDH13 play a more indirect role, 

possibly through anti-inflammatory, anti-atherogenic, and anti-diabetic properties. 

Adiponectin has been considered a key molecule in MetS and viewed as a possible 

therapeutic target. Our results indicate that CDH13 variants have only small effects on the 

phenotypes studied. More recent studies place CDH13 in the role of a signaling receptor 

participating in recognition of the environment and regulation of cell motility, proliferation, 

and phenotype, controlling and guiding tissue architecture [159–162]. Because this gene is 

highly expressed in the heart (see www.genecards.org), it will be of interest to see if CDH13 
variants associate more significantly with echocardiographic variables in the HyperGEN 

study, especially for LV Wall thickness, which will be focus of future work.

10. Meta-analysis of genetic findings in obesity, metabolic syndrome and 

pathways

Meta-analyses of genetic studies have become the norm in order to increase the power to 

discover variants with small effects on obesity and the metabolic syndrome. Prior to this 

time, the most authoritative summary on discovery of obesity genes was the human obesity 

gene map, a yearly review of cumulative findings on obesity genetic research, which 

published its 12th and final issue in 2006 [25]. The final issue reported 11 genes as leading to 

single-gene mutations obesity cases, 50 loci related to Mendelian segregation, 244 genes 

which when mutated or expressed as transgenes in animal models affected weight or 

adiposity, and 22 gene polymorphisms replicated in at least 5 studies. In addition, it reported 

408 animal QTLs and 253 human QTLs humans, 52 of which were replicated by two or 

more studies.

An important review on the genetics of MetS findings is the publication by Terán-García and 

Bouchard in 2007 [118], where they summarized 14 MetS related genes and 38 QTLs. In 

2008, Joy et al [163] provided an alternative review of genetic findings on candidate genes 

that may contribute to components of MetS, namely adipokines, lipoproteins, inflammation, 

adipose, glucose, and energy metabolism. Other publications have summarized important 

work in animal models [164, 165].

In recent years several studies have combined evidence from different candidate gene work 

and genome-wide association studies of obesity and MetS via meta-analysis. Results have 

been more productive than expected in terms of discovery; however, as we noted earlier, 

findings indicate that obesity and MetS are quite complex and a substantial number of gene 
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variants appear to be involved in disease development. Hinney et al [166, 167], supporting a 

polygenic view of obesity in humans, provided a comprehensive overview of two gene 

variants (MC4R and FTO) with small but replicable effects on obesity. Not only do the 

results from the recent studies cited herein suggest obesity and MetS arise from a 

combination of more common variants of relatively small effect, but also that several 

causative alleles may be quite rare and beneath the detectable limit of current genome-wide 

studies. Genome-wide and candidate gene studies have recently reported several genetic 

variants associated with adiposity and obesity [28, 30, 32, 34, 35, 37, 168–171], blood 

pressure [172–174], dyslipidemia [62, 128, 129, 132, 175–180], inflammation and 

prothrombosis [155, 181–186], and insulin resistance, diabetes, and glucose intolerance [60, 

61, 126, 187–204]. Using these data and the database and tools created by Hindorff et al 
[205–207] (see www.genome.gov/gwastudies), we conducted an analysis of recent genetic 

findings on obesity and metabolic syndrome. The database contains data from studies that 

attempted to assay at least 100,000 SNPs in the initial stage, and results were limited to 

those with p-values <1.0×10-5. Based on the phenotypes studied in the reported GWAS, we 

grouped the results into the following domains: obesity, dyslipidemia, type 2 diabetes, 

glucose, blood pressure, or inflammation. Of these, adiposity and obesity included a total of 

58 unique intragenic SNPs or genes; dyslipidemia, 74; glucose studies, 29; type 2 diabetes, 

29; blood pressure, 30; and inflammation, 24. Our results are summarized in Figure 3, which 

shows gene names, and in cases when the SNP was intragenic, their rs numbers in 

association with a specific domain. We observe that the CETP, GCKR, LPL, FTO, HNF1A, 

SLC30A8, and TCF7L2 genes have connections between at least two of the domains, with 

GCKR reported to connect to 4 domains. Kraja et al [208] recently reported for the 

STAMPEED consortium a meta-analysis of 7 studies for the bivariate analysis on 

components of MetS and MetS itself (a total of 11 traits, n=22,161 participants). This 

analysis, which also took into account pleiotropic effects of the most significant variants, 

identified a number of associations at or near the genes LPL, CETP, APOA5 (and its cluster, 

namely ZNF259 and BUD13), and GCKR. In addition they reported a number of variants 

for MetS components in LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and in 

LOC100129150.

In parallel with work on metabolic syndrome in humans, several animal models are used to 

study potential causative gene polymorphisms. For example Su et al [165] identified 15 

QTLs for obesity in mouse models, and using comparative genomics narrowed their findings 

to candidate genes (referred by their locations in human genome mapping), to Apcs on 

chromosome 1 (1q21-q23), Ppargc1a on chromosome 4 (4p15.1), Ucp1 on chromosome 4 

(4q28-q31), Angptl6 on chromosome 19 (19p13.2), and Lpin1 on chromosome 2 (2p25.1). 

Lawson and Cheverud [164] report 31 adiposity QTLs in their recent work on obesity genes 

utilizing a different mouse model. This article is part of a series of review papers on MetS, 

and has an in-depth analysis of MetS components and several candidate gene findings for 

obesity and metabolic syndrome in murine models and their comparative action in humans. 

These findings underscore that complex traits such as obesity and metabolic syndrome have 

an intricate genetic background and must be viewed in their complexity.
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11. Future challenges

There are several advances that parallel each other in understanding the genetic basis of 

common complex disease. A drastic increase of DNA sequence information by recent 

introduction of instruments capable of producing millions of bases of DNA sequence in a 

single run is rapidly changing the landscape of genetics [209]. Massive genotyping and 

sequencing efforts require enormous computing resources to analyze, access, and archive 

these data. Earlier programs that were designed to work with single computers and one 

sequential run of a program are capable of perform these analyses. Instead, researchers are 

utilizing parallel computing by distributing the work to large numbers of computing servers 

(cloud computing) [210]. Studies are taking advantage of the wealth of phenotype data 

collected and reanalyzing them in association with genotype and sequence data. However, 

advancements in genotyping have lead to challenges in the phenotype realm. For example, 

while BMI as a measure correlates very well with obesity, it is an imperfect measure, and it 

is becoming increasingly clear that future studies will need to limit heterogeneity by 

collecting data which more precisely measures adiposity or endophenotypes related to 

adiposity. Not only do we need “deep sequencing,” but also “deep phenotyping” [211]. 

While several multivariate methods have been applied to analyze obesity and the other 

components of the metabolic syndrome, more comprehensive statistical methodologies are 

needed especially to find useful subsets in these massively large accumulations of data. As 

stated earlier, findings from GWAS explain only a relatively small percentage of 

interindividual variation in obesity and metabolic syndrome traits. We believe that 

information from other methods including gene expression, copy number variation, micro 

RNA regulation [212], methylation [213], special treatment of rare variants and study of 

other regulatory processes, as well as information from proteomics, and from comprehensive 

databases on modules, pathways and networks of genes and proteins will contribute to 

further understanding of the true functioning of genes that increase susceptibility to obesity 

and the metabolic syndrome.
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Figure 1. 
A network of genes that includes 17 interactions with Cadherin 13 gene (CDH13), 

comprising Adiponectin. Highlighted in yellow are direct interactions with CDH13. (The 

network is built using the curated literature of GeneGO Inc.)
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Figure 2. 
Association tests results expressed as negative log10 p-value (> 1.3) of a number of SNPs 

selected from a region on chromosome 16, starting at 82MBs–84MBs, which comprises 

CDH13. The association tests were implemented with latent factors result of factor analysis 

on a number of risk variables for obesity and metabolic syndrome (see text).
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Figure 3. 
A network of genes or intragenic SNPs reported from the most recent GWAS in relation to 

obesity and metabolic syndrome. Results represented here include those that attempted to 

assay at least 100,000 SNPs in the initial stage, and are limited to those with p-values 

<1.0×10−5. (Source: http://www.genome.gov/gwastudies/, accessed on April 05, 2010).
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Table 1

Widely-used definitions of the Metabolic Syndrome

World Health Organization (adapted from reference [14])

 One of the following:

  Diabetes mellitus

  Impaired glucose tolerance

  Impaired fasting glucose

 Plus any two of the following

  Waist-to-hip ratio >0.9 (men) or >0.85 (women); BMI>30; or both

  Triacylglycerols ≥ 1.7 mmol/L; HDL cholesterol <0.9 mmol/L (men) or <1.0 mmol/L (women); or both

  Blood pressure ≥ 140/90 mmHg

  Microalbuminuria (urinary albumin excretion rate ≥ 20 μg/min or albumin/creatinine ratio ≥ 30 mg/g)

National Cholesterol Education Program Adult Treatment Panel III (adapted from reference [15])

 Any three of the following:

  Fasting glucose ≥ 6.1 mmol/L

  Waist circumference >102 cm (men) or >88 cm (women)

  Triacylglycerols ≥ 1.7 mmol/L

  HDL cholesterol <1.036 mmol/L (men) or <1.295 mmol/L (women)

  Blood pressure ≥ 130/85 mmHg

International Diabetes Federation (adapted from reference [16])

 Must have:

  Waist circumference as defined by sex- and ethnic-specific values

 Plus any two of the following:

  Triacylglycerols ≥ 1.7 mmol/L or treatment

  HDL <1.03 mmol/L (men) or <1.29 mmol/L (women) or treatment

  Blood pressure ≥ 130/85 mmHg or treatment

  Fasting plasma glucose ≥ 5.6 mmol/L or diagnosed type 2 diabetes

AHA/NHLBI (adapted from reference [17])

 Any three of the following:

  Waist circumference ≥ 102 cm (men) or ≥ 88 cm (women)

  Triglycerides ≥ 1.7 mmol/L or drug treatment for elevated triglycerides

  HDL cholesterol <1.03 mmol/L (men) or <1.3 mmol/L (women) or drug treatment for reduced HDL-C

  Blood pressure ≥ 130 mmHg systolic or ≥ 85 mmHg diastolic or drug treatment

  Fasting glucose ≥ 5.6 mmol/L or treatment for elevated glucose
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