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The σ2 receptor is an enigmatic protein that has attracted signifi-
cant attention because of its involvement in diseases as diverse as
cancer and neurological disorders. Unlike virtually all other recep-
tors of medical interest, it has eluded molecular cloning since its
discovery, and the gene that codes for the receptor remains un-
known, precluding the use of modern biological methods to study
its function. Using a chemical biology approach, we purified the σ2
receptor from tissue, revealing its identity as TMEM97, an endo-
plasmic reticulum-resident transmembrane protein that regulates
the sterol transporter NPC1. We show that TMEM97 possesses the
full suite of molecular properties that define the σ2 receptor, and
we identify Asp29 and Asp56 as essential for ligand recognition.
Cloning the σ2 receptor resolves a longstanding mystery and will
enable therapeutic targeting of this potential drug target.
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Pharmacological approaches such as radioactive ligand-binding
assays have enabled the identification and characterization of a

plethora of cellular receptors for hormones, peptides, neurotrans-
mitters, and other biologically active molecules (1). Among the
receptors thus identified are the enigmatic σ receptors, which were
first reported in 1976 and later classified into σ1 and σ2 subtypes (2,
3). Recently, the σ2 receptor has emerged as a potential therapeutic
target, and compounds targeting it are now in clinical trials for the
diagnosis of breast cancer (4) and for the treatment of Alzheimer’s
disease (5–7) and schizophrenia (8). However, despite the in-
creasingly apparent medical importance of the σ2 receptor, progress
toward understanding its biological role has been stymied because
the gene that encodes the receptor has never been identified.
The σ2 receptor was initially identified by radioligand-binding studies

as a binding site with high affinity for di-o-tolylguanidine (DTG) (Ki =
21.2 nM) and haloperidol (Ki = 48.7 nM) (3) but with low affinity for
(+)-benzomorphans (9). In contrast, the σ1 receptor shows high-affinity
binding for all these ligands (10). The σ2 receptor is known to be an
18- to 21-kDa membrane protein (3), and ligand-binding studies have
shown that it is highly expressed in the liver and kidney (11, 12) and in
the CNS (13) as well as in several cancer cell lines (14) and pro-
liferating tumors (15). These intriguing features and the potential
medical applications of compounds that modulate σ2 have stimu-
lated a number of investigations directed toward the development
of σ2 receptor ligands, and numerous high-affinity and subtype-
selective compounds have been developed as a result (12, 16–20).
In 1996, the cloning of the σ1 receptor revealed that it has no

mammalian paralogs (21), and subsequent σ1-knockout mouse
studies demonstrated that the pharmacologically similar σ2 subtype
derives from an altogether different, unknown gene (22). In 2011, it
was reported that the σ2 receptor-binding site resides within the
progesterone receptor membrane component 1 (PGRMC1) protein
complex (23). However, subsequent reports have shown that over-
expression of PGRMC1 does not increase σ2 receptor binding (24,
25), and σ2-binding levels are unaffected by either siRNA knock-
down or CRISPR-Cas9 knockout of PGRMC1 (25). Moreover, a
recent report using fluorescent σ2 ligands also showed that binding

levels were unaffected by whether PGRMC1 was overexpressed or
knocked down (26), further confirming that the σ2 receptor and
PGRMC1 are two distinct molecular entities. The identity of the
gene encoding σ2 thus continues to elude discovery despite almost
30 years of effort, posing a major roadblock to understanding σ2
receptor biology and therapeutic potential. To address this problem,
we sought to leverage chemistry being developed in our laboratories
toward σ2 receptor ligand discovery to identify the σ2 receptor.

Results
Affinity Purification of σ2 from Calf Liver Tissue. We first synthesized
JVW-1625 (Ki = 16.6 nM), a σ2 receptor-binding ligand that was
derived from the high-affinity σ2 ligand JVW-1601 (σ2 Ki = 19.6 nM)
(SI Appendix, Fig. S1). We then selected a tissue source material (SI
Appendix, Fig. S2A) and devised a protocol to extract σ2 efficiently
from calf liver membranes in a functional form (SI Appendix, Fig.
S2B). We next covalently coupled JVW-1625 to agarose beads to
prepare an affinity chromatography resin (SI Appendix, Fig. S2C) that
was used to capture σ2 extracted from calf liver membranes (Fig. 1).
The resulting eluate was separated by SDS/PAGE and analyzed by
mass spectrometry. From the many proteins identified by mass
spectrometry, seven candidates were prioritized for validation on
the basis of being membrane proteins of the expected molecular
weight. These proteins along with PGRMC1 were overexpressed
in HEK293 cells and were assayed for their ability to bind 3H
DTG at a site competitive with haloperidol, a core feature of the
pharmacological definition of the σ2 receptor (Fig. 1B). Among
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the candidate proteins tested, only the endoplasmic reticulum
(ER)-resident membrane protein TMEM97 resulted in a signifi-
cant increase of net 3H DTG binding (Fig. 1 B and C). As
reported by others (24, 25), PGRMC1 overexpression did not lead
to increased specific 3H DTG binding.

The Pharmacological Profile of TMEM97 Is Identical to That of the σ2
Receptor. If TMEM97 is indeed the σ2 receptor, its expression
should be required for σ2 binding activity. To test whether TMEM97
expression contributes to the σ2 site, we used siRNA knockdown to
reduce mRNA expression of Tmem97 by ∼60% in PC-12 cells, a
classical σ2 receptor cell line. This knockdown resulted in a nearly
identical reduction in σ2 expression levels as measured by sat-
urating 3H DTG binding (Fig. 2A). We then assessed whether
TMEM97 possesses the same ligand-binding profile as the σ2 re-
ceptor. To do so, human TMEM97 was overexpressed in Sf9 insect
cells, which lack an endogenous TMEM97 homolog (27) and show
no appreciable 3H DTG binding. Expression of TMEM97 in these
cells conferred saturable 3H DTG binding with an affinity of
11.3 nM, a value closely in line with literature values ranging from
17.9 to 37.6 nM (Fig. 2B) (3, 9, 14, 24). Competition binding ex-
periments with a collection of σ2 ligands representing diverse
chemical classes show that the affinity of each ligand for TMEM97
is consistent with previously reported σ2 receptor-binding affinities
(Fig. 2C, Table 1, and SI Appendix, Fig. S3) (20).

TMEM97 Ligands Bind the σ2 Receptor. Having demonstrated that
TMEM97 expression is both necessary and sufficient for σ2
receptor-binding activity, we tested whether two recently reported
TMEM97 ligands, Elacridar and Ro 48-8071 (28), could bind the
σ2 receptor in a classical binding assay. The measured binding
affinities of these compounds to Sf9 membranes overexpressing
TMEM97 were identical to those measured in MCF-7 cell

membranes, a classical σ2 receptor cell line (Fig. 2D and Table 1)
(14). Hence, known σ2 ligands bind to TMEM97, and, conversely,
known TMEM97 ligands bind to the σ2 receptor. In each case,
ligand affinities for the σ2 receptor in a classical binding assay are
identical to those for recombinant TMEM97. Collectively, these
data lead us to conclude that TMEM97 is synonymous with the
σ2 receptor.

Structural Insights into TMEM97 Ligand Recognition. To map the
ligand-binding site, we performed site-directed mutagenesis of all
Glu and Asp residues, hypothesizing that one of these must be the
counter ion to the basic amine found in all σ2 ligands. Mutation of
two conserved aspartate residues (SI Appendix, Fig. S4), D29N
and D56N, abolished all binding to 3H DTG (Fig. 3D and SI
Appendix, Fig. S5). We then performed evolutionary coupling
analysis (29) that revealed strong antiparallel correlations among
predicted transmembrane helices (Fig. 3B). Using these data for
ab initio structure prediction suggested that the protein likely
possesses a four-helix bundle fold (Fig. 3C). The two Asp residues
essential for binding are located in close proximity to one another
in our predicted structural model (Fig. 3C). That two acidic groups
are essential, rather than just one, is reminiscent of the σ1 re-
ceptor, in which both Asp126 and Glu172 are required for ligand
binding (30); in the case of σ1 these two residues interact directly
with each other as part of a hydrogen bond network that includes
the basic amine of the ligand (30). Asp29 and Asp56 may play a
similar role in ligand binding to the σ2 receptor.

Discussion
In contrast to the hundreds of studies of σ2 receptor biology,
comparatively little is known about TMEM97. Although its mo-
lecular function is not well understood, TMEM97 has attracted
interest because of its involvement in cholesterol homeostasis (31).
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Fig. 1. Purification and molecular cloning of the σ2 receptor. (A) A schematic of the purification of σ2 from calf liver. The Inset depicts the portion of the
ligand that binds σ2. (B) Single-point 3H DTG-binding assay of membrane preparations from expi293 cells expressing LC-MS/MS hits, shown as means ± SEM for
an experiment performed in triplicate. (C) The sequence of TMEM97. Red font indicates regions that were identified by LC-MS/MS. Green cylinders denote
predicted transmembrane (TM) helices.
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TMEM97 is a binding partner of the lysosomal cholesterol
transporter NPC1, whose loss causes Niemann–Pick disease type
C1, a fatal lysosomal storage disorder (32). The connection be-
tween the σ2 receptor and sterol biology is not entirely unforeseen,
because pharmacological studies in the mid-1990s had sug-
gested a possible connection between σ receptors and choles-
terol metabolism (33). Moreover, TMEM97 has also been
recently described as a highly ligandable protein because of its

ability to bind multiple small-molecule chemotypes (28), a
finding consistent with the relatively large number of σ2 ligands
reported to date (12, 13, 34).
Additionally, the proposed role of σ2 receptor in cancer cell

proliferation fits well with its identity as TMEM97. For many
years, it has been known that the σ2 receptor is overexpressed in
several rat and human cancer cell lines, and it has been reported
that the receptor is particularly overexpressed in proliferating
tumors (12, 14). Similarly, TMEM97, which is also known as
“MAC30,” is overexpressed in epithelial, lung, colorectal, ovarian,
and breast cancers (35–39). In some of these cancers, TMEM97
expression has been correlated with poor prognosis and metastasis
(35, 37). Furthermore, a recent study has reported that RNA si-
lencing of TMEM97 in human gastric cancer cells can inhibit cell
growth (40), and pharmacological targeting of the σ2 receptor in
human cancer cell lines has been shown to exert antiproliferative
effects (12). Together, these data support the identity of the σ2
receptor as TMEM97, and the unification of σ2 receptor phar-
macology and the emerging biology of TMEM97 may be useful for
assessing the value of this receptor as a therapeutic target.
Revealing the identity of the σ2 receptor as TMEM97 makes it

possible to apply parallel computational and mutagenic analysis
to develop a better understanding of the molecular basis for the
binding of σ2 ligands to their target (41). Sequence analysis in-
dicates that TMEM97 consists of an “EXPERA” domain, which
in humans is shared among TMEM97 and its distant homologs
TM6SF1, TM6SF2, EBP, and EBPL (42). Like TMEM97, these
genes are implicated in cholesterol biology, and one of them,
TM6SF2, has been implicated in nonalcoholic fatty liver disease
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Fig. 2. Pharmacological validation of TMEM97 as the σ2 receptor. (A) PC-12 cells treated with Tmem97-targeted or control siRNA were tested to measure
Tmem97 mRNA levels (Left) and σ2 expression by 3H DTG binding (Right). qPCR data are shown as mean ± SD. Radioligand binding data are shown as mean ±
SEM and are representative of two independent experiments performed in triplicate. (B) 3H DTG saturation binding on Sf9 insect cell membranes expressing
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curves, data points are shown as mean ± SEM and are representative of two independent experiments performed in triplicate.

Table 1. Radioligand-binding analysis

Ligand
Ki for TMEM97 in

Sf9 cells, nM σ2 Ki, nM

DTG 19.6 ± 3.0 21.2*
Haloperidol 54.1 ± 6.7 48.7*
PB-28 2.0 ± 0.3 1.8†

(+)-pentazocine 2,467 ± 436 1,402* – 3,890†

(+)-SKF 10,047 >10,000 No inhibition*
SAS-1121 25.2 ± 3.8 23.8‡

Elacridar 6.5 ± 1.1 4.7 ± 0.7
Ro 48-8071 971 ± 228 817 ± 226

The inhibition constant (Ki) for various ligands binding to recombinant
TMEM97 and to the σ2 receptor natively expressed in cell membranes. Af-
finities were measured as described in Methods and are reported from lit-
erature where indicated.
*Data from Hellewell and Bowen, 1990 (3).
†Data from Colabufo et al., 2004 (49).
‡Data from Sahn et al., 2017 (20).
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in humans (43). Like other EXPERA domains, TMEM97 is
predicted to have a four-pass transmembrane topology with cy-
tosolic N and C termini (42), the latter of which contains the
predicted ER-retention sequence “KRKKK” (Fig. 3A).
The identification of the σ2 receptor as TMEM97 resolves a

longstanding pharmacological mystery and opens the door to
applying the full suite of modern molecular biology tools and

techniques to mechanistic studies of this receptor. Furthermore,
because TMEM97 appears to be involved in cholesterol ho-
meostasis, a ready trove of ligands that had originally been
identified as σ2 receptor binders may now be used to study pa-
thologies associated with aberrant cholesterol trafficking. Simi-
larly, other EXPERA domain proteins, such as TM6SF2, may be
amenable to ligand discovery aided by the abundant collection of
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σ2 ligands developed to date. The molecular cloning of the σ2
receptor provides an opportunity to revisit the biology and
pharmacology of this receptor with implications for all areas of
σ2 research, ranging from cancer to neuroscience.

Methods
Purification of the σ2 Receptor from Calf Liver. Frozen calf livers (Omaha Steaks)
were thawed, cut into 1-cm cubes, and suspended in a buffer of 20 mM Hepes
(pH 7.5), 2 mMmagnesium chloride, and 1:100,000 (vol:vol) benzonase nuclease
(SigmaAldrich), supplementedwith cOmpleteMini, EDTA-free Protease Inhibitor
Mixture Tablets (Roche). Tissue was homogenized with a blender and then was
centrifuged for 20 min at 50,000 × g. The supernatant was discarded, and the
pelleted membranes were washed by resuspension with a glass Dounce tissue
grinder in Hepes-buffered saline (HBS) [20 mM Hepes (pH 7.5), 150 mM NaCl].
Washing was repeated until the protein content in the supernatant was below
detection (typically 5–10 washes). Membranes were washed further with HBS
supplemented with 2 M urea and then with HBS supplemented with 0.5 M
sodium chloride to remove peripheral membrane proteins.

To extract the receptor, membranes were homogenizedwith a glass Dounce
tissue grinder in a 1:5 (vol/vol) solubilization buffer consisting of 150 mM NaCl,
20 mM Hepes (pH 7.5), 10% (vol/vol) glycerol, and 1% (wt/vol) lauryl maltose
neopentyl glycol (LMNG) (Anatrace). Samples were stirred for 2 h at 4 °C and
then were centrifuged as before for 20 min. The resulting supernatant was
filtered with a glass microfiber filter (VWR). The filtered supernatant con-
taining solubilized receptor was loaded by gravity flow onto 2-mL affinity resin
made by coupling compound JVW-1625 at 100 μM density to Affi-gel 10 (Bio-
Rad) according to the manufacturer’s instructions. The resin was washed with
50 mL of buffer containing 150 mM NaCl, 20 mM Hepes (pH 7.5), 1% glycerol,
and 0.1% LMNG. The receptor was eluted with 50 mL of the same buffer
supplemented with 100 μMDTG using a syringe pump over a period of 3 h and
with the eluate flowing directly onto a 250-μL hydroxyapatite resin column.
Receptor then was eluted from hydroxyapatite resin using 500 μL of a buffer
containing 500 mMpotassium chloride (pH 7.2), 25mMNaCl, and 0.1% (wt/wt)
LMNG. Proteins were precipitated by trichloroacetic acid and were resolved on
SDS/PAGE. A segment of the gel corresponding to a mass range of 15–25 kDa
was sent for LC-MS/MS analysis at the Harvard Medical School Taplin Mass
Spectrometry Facility and at Harvard’s Faculty of Arts and Sciences Mass
Spectrometry and Proteomics Resource Laboratory.

Recombinant Receptor Expression. Eight selectedhits from LC-MS/MSwere cloned
into a pTARGET vector (Promega), followed by a porcine teschovirus-1 2A skip
peptide (ATNFSLLKQAGDVEENPGP) and by the fluorescent protein mCardinal
(44) to assess transfection efficiency. Plasmids were transfected into Expi293 cells
(Thermo Fisher) according to the manufacturer’s instructions. After 36 h, ex-
pression of each target protein was confirmed by flow cytometry analysis of
mCardinal fluorescence levels. Receptor point mutants were generated by site-
directed mutagenesis using KAPA polymerase (KAPA Biosystems), and resulting
constructs were expressed in Expi293 cells as described above.

For insect cell expression, human TMEM97 was cloned into the vector
pVL1392, and baculovirus was prepared using the BestBac system (Expression
Systems) in accordance with the manufacturer’s instructions. For large-scale
production, Sf9 insect cells were infected at a density of 4 × 106 cells/mL and
then were shaken at 27 °C for 60 h before harvest.

Preparation of Cell Membranes from Cultured Cells. Membranes were prepared
from PC-12, MCF-7, Sf9, or Expi293 cells with a protocol based on that of Vilner
et al. (14) In brief, adherent cells were washed with ice-cold PBS or HBS and
were harvested with a cell scraper; suspension cells were simply pelleted. Cell
pellets were suspended in 20 mM Hepes (pH 7.5), 2 mM magnesium chloride,
and 1:100,000 (vol:vol) benzonase nuclease (Sigma Aldrich) and were supple-
mented with cOmplete Mini, EDTA-free Protease Inhibitor Mixture Tablets
(Roche). Following Dounce homogenization, the cells were centrifuged at
50,000 × g for 20 min. The supernatant was discarded, and the membranes
were washed one more time with cold 50 mM Tris (pH 8.0) containing one
cOmplete Mini, EDTA-free Protease Inhibitor Mixture Tablet (Roche) per 50 mL
buffer. The membranes were centrifuged once more at 50,000 × g for 20 min
and then were resuspended in a variable volume of cold 50 mM Tris (pH 8.0)
with the same protease inhibitor mixture. Protein content was assessed by DC
protein assay (Bio-Rad) according to the manufacturer’s instructions. Mem-
branes were aliquoted, flash frozen, and stored at −80 °C until use in the
radioligand binding experiments described below.

Single-Point Radioligand-Binding Assays. Membrane radioligand-binding as-
says were performed as described (45) with slight modifications. Briefly,

samples were incubated with 10–30 nM 3H DTG (Perkin-Elmer) in 50 mM Tris
(pH 8) buffer supplemented with either 1.8 μM (+)SKF-10,047 or 50 nM PD-
144418, both potent and selective σ1 receptor ligands (46), to block σ1 sites.
Nonspecific binding was measured by the addition of 2 μM haloperidol to
otherwise identical conditions measured in parallel. For siRNA experiments
in PC-12 cells, 30 nM 3H DTG was isotopically diluted with 270 nM cold DTG
to ensure that total σ2 binding was assayed. Samples were incubated at
room temperature with shaking for 1.5 h; then the reaction was terminated
by the addition of ice-cold water. Samples then were applied to glass fiber
filters (Merck Millipore) that had been pretreated with 0.3% (vol/vol) poly-
ethylenimine. Filters were immediately washed twice with ice-cold water
and then dried. Radioactivity was measured by liquid scintillation counting.

Radioligand-binding experiments on solubilized, detergent-extracted samples
were donewith slight modifications. The buffer in these assays contained 0.01%
(wt/vol) LMNG, and incubation with 3H DTG was done without shaking. Bound
radioligand was separated from unbound radioligand using a desalting column
of G50 fine resin (GE Healthcare) with a separation buffer also containing
0.01% (wt/vol) LMNG.

3H DTG Saturation Binding in Cell Membranes. 3H DTG saturation binding to
membranes was determined using an assay similar to that described by Chu
and Ruoho (45). Briefly, membranes from infected Sf9 insect cells (2.5 μg
total protein per reaction) or MCF-7 cells (15-30 μg total protein per re-
action) were incubated in a 100-μL reaction buffered with 50 mM Tris
(pH 8.0), containing 1.8 μM (+)SKF-10,047, and 0–30 nM 3H DTG. Concentrations
of 100 and 300 nM DTG were assayed by isotopic dilution to minimize the
use of 3H DTG. For each membrane type, a second curve that was otherwise
identical save for the addition of 2 μM haloperidol was measured in parallel
to determine nonspecific binding. Reactions were incubated at 37 °C for
90 min and then were terminated via filtration through a glass fiber filter
using a Brandel cell harvester. After washing, filters were soaked in 5 mL
Cytoscint scintillation fluid (MP Biomedicals) overnight, and scintillation was
measured on a Beckman Coulter LS 6500 scintillation counter. Kd values
were calculated using nonlinear regression tools from GraphPad Prism.

Competition Binding Assays in Cell Membranes. 3H DTG competition curves test-
ing the binding of σ ligands haloperidol, DTG, PB-28, SAS-1121, (+)-pentazocine,
and (+)-SKF-10,047 or the TMEM97 ligands Elacridar or Ro 48-8071 were per-
formed as described by Chu and Ruoho (45), with slight modifications. Briefly,
Sf9 insect membranes overexpressing TMEM97 (2.5 μg of total protein per re-
action) or MCF-7 membranes (12–30 μg total protein per reaction) were in-
cubated in a 100-μL reaction buffered with 50 mM Tris (pH 8.0), with 30 nM 3H
DTG and eight concentrations (ranging from 10 to 100 μM) of the competing
cold ligand. (+)SKF-10,047 (1.8 μM) was included to block σ1 receptor sites in all
MCF-7 membrane-binding assays and in Sf9 membranes when testing
TMEM97 ligands. Reactions were incubated for 90 min at 37 °C and then were
terminated by filtration through a glass fiber filter using a Brandel cell har-
vester. Glass fiber filters were soaked in 0.3% polyethylenimine for at least
30 min at room temperature before harvesting. All reactions were performed in
triplicate using a 96-well block. After the membranes were transferred to the
filters and washed, the filters were soaked in 5 mL Cytoscint scintillation fluid
overnight, and radioactivity was measured using a Beckman Coulter LS 6500
scintillation counter. Data were analyzed using GraphPad Prism software. Ki

values were computed by directly fitting the data and using the experimentally
determined probe Kd to calculate a Ki value, using the GraphPad Prism soft-
ware. This process implicitly uses a Cheng–Prusoff correction, so no secondary
correction was applied.

siRNA Knockdown of Tmem97. A pair of siRNA oligos was designed against
Rattus norvegicus Tmem97 mRNA using the Stealth RNAi tool available
through Thermo Fisher Scientific. The sense strand for the siRNA was
5′-CAACCUGUUGCGGUGGUACUCUAAG-3′, and the antisense strand was
5′- CUUAGAGUACCACCGCAACAGGUUG-3′. As a control, we used the AllStars
Negative Control siRNA from Qiagen.

For the transfection, 2.2 × 106 PC-12 cells suspended in 8.0 mL of DMEM
with 10% FBS and 10 μg/mL gentamicin were placed in a 10-cm dish and
immediately transfected with a 2.0-mL solution containing 20 μL of Lip-
ofectamine RNAimax from Thermo Fisher Scientific and 10 nM of either the
control or Tmem97 siRNA. After 24 h, the medium was replaced with fresh
medium, and the cells were transfected again in the same way. Forty-eight
hours after the first transfection, the cells were trypsinized and split 1:2 into
two new 10-cm plates. On the fifth day after the first transfection, cells were
harvested by trypsinization and centrifugation. Ten percent were set aside
for RNA extraction, and 90% were used for binding analysis.
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RNA extraction was done using the RNeasy kit from Qiagen according to
the manufacturer’s instructions. The RNA was converted to cDNA using
Invitrogen’s SuperScript II reverse transcriptase kit according to the manu-
facturer’s instructions. RNA was removed from the cDNA after reverse
transcription by digestion using Escherichia coli RNase H.

Real-Time qPCR for Quantification of TMEM97 mRNA Levels in PC-12 Cells. After
preparation of the cDNA was complete, real-time qPCR was performed on a
QuantStudio 6 qPCR instrument (Applied Biosystems) at the Harvard Medical
School Center for Molecular Interactions using PowerUp SYBR Green Master
Mix from Applied Biosystems Life Technologies. The qPCR was performed
according to the recommendations of the master mix manufacturer, using a
range of different template input concentrations and a final primer con-
centration of 250 nM. Primers for qPCR were designed using the National
Center for Biotechnology Information (NCBI) primer design tools. The pri-
mers used for the forward and reverse primer for R. norvegicus Tmem97
were 5′-TACTTCGTCTCGCACATCCC-3′ and 5′-TTGCTGAACTCCTGCGGGTA-3′, re-
spectively. R. norvegicus Actb was used as a reference gene, for which the forward
and reverse primers were 5′-CCCGCGAGTACAACCTTCTTG-3′ and 5′-GTCATC-
CATGGCGAACTGGTG-3′, respectively. Fold differences in Tmem97 expression levels

were calculated using the ΔΔCT method (47). All measurements were performed
in triplicate.

Synthetic Chemistry. See SI Appendix for details of synthetic chemistry.
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