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Presenilin 1 (PS1), the catalytic subunit of the γ-secretase complex,
cleaves βCTF to produce Aβ. We have shown that PS1 regulates Aβ
levels by a unique bifunctional mechanism. In addition to its known
role as the catalytic subunit of the γ-secretase complex, selective
phosphorylation of PS1 on Ser367 decreases Aβ levels by increasing
βCTF degradation through autophagy. Here, we report the molecular
mechanism bywhich PS1 modulates βCTF degradation. We show that
PS1 phosphorylated at Ser367, but not nonphosphorylated PS1, inter-
acts with Annexin A2, which, in turn, interacts with the lysosomal
N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)
Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autopha-
gosomal SNARE Syntaxin 17 to modulate the fusion of autophago-
somes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an
antiamyloidogenic function, promoting autophagosome–lysosome
fusion and increasing βCTF degradation. Drugs designed to increase
the level of PS1 phosphorylated at Ser367 should be useful in the
treatment of Alzheimer’s disease.
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Autophagy is a highly conserved cellular mechanism in which
aggregate-prone proteins and damaged organelles are tar-

geted for cellular degradation in the lysosome (1). The auto-
phagic process begins with an isolation membrane, also known as
a phagophore, which expands to engulf intracellular cargo, such
as protein aggregates and organelles, sequestering the cargo in a
double-membraned autophagosome (2). The loaded autopha-
gosome fuses with the lysosome, promoting the degradation of its
content (3). The mechanisms regulating the fusion between the
autophagosome and the lysosome are incompletely understood.
Organelle membrane fusion is achieved by soluble N-ethyl-

maleimide–sensitive factor attachment protein receptor (SNARE)
complexes. Upon membrane contact, a specific SNARE complex
in each organelle interacts with an opposing SNARE in another
organelle to mediate membrane fusion. For example, it has been
found that fusion between the late endosome and lysosome uses
Syntaxin 7, Vti1b, and Syntaxin 8 on the late endosome and
VAMP7 on the lysosome (4–8). In the autophagy pathway, it has
been shown that VAMP7, VAMP8, and Vti1b play a role in
autophagosome fusion in mammals (9–11). Syntaxin 17 (Stx17)
and Vamp8 are reported to mediate autophagosome–lysosome
fusion (12). In addition to providing the core machinery for
membrane fusion, SNARE-interacting proteins can facilitate
complex formation. For instance, SNAP29 and Atg14 stabilize
Stx17–Vamp8 interaction and promote autophagosome–lysosome
fusion (13–15).
Presenilins are intramembrane proteases. The Presenilin 1

(PS1) isoform is primarily responsible for Aβ generation in neu-
rons and contains the catalytic activity of the γ-secretase complex
(16–18). In addition to this catalytic role, PS1 can participate in
cellular processes that are independent of its proteolytic activity,
for instance: (i) calcium release from the endoplasmic reticulum
stores as well as calcium entry through store-operated channels
(19), (ii) mitochondrial function in cortical synaptic compartments
(20), and (iii) modulation of homeostatic scaling of excitatory
synapses in hippocampal neurons (21).

Here, we report that PS1 phosphorylated at Ser367 facilitates
autophagosome–lysosome fusion. We show that PS1 phosphorylated
at Ser367, but not nonphosphorylated PS1, interacts with Annexin
A2, which, in turn, interacts with the lysosomal SNARE Vamp8.
Finally, Annexin A2 facilitates the binding of Vamp8 to the auto-
phagosomal SNARE Stx17 to modulate the fusion of autophago-
somes with lysosomes.

Results
In the accompanying paper (22), we show that PS1 phosphorylation
at Ser367 induces autophagic flux. To understand the molecular
mechanism behind this effect, we examined neurons in the
CA1 region of the hippocampus in PS1-S367A mice by trans-
mission electron microscopy. We found membrane-bound structures
containing electron-dense material whose number was greatly in-
creased compared with WT (Fig. 1 A and D and Fig. S1). These
vacuoles often had two adjacent well-circumscribed membrane-bound
components; one was filled with amorphous electron dense material
and was surrounded by a single-membrane bilayer, whereas the other
had little electron dense content and a double-membrane bilayer
(Fig. 1B). The component with electron-dense content contains
cathepsin D (Fig. 1C). Together, the findings suggest that these
structures are autolysosomes with incompletely fused membranes.

PS1 Phosphorylated at Ser367 Binds Annexin A2. Ser367 is located in
the third intracellular loop of PS1, between transmembrane do-
mains 6 and 7. In the recently resolved crystal structure of
γ-secretase at 3.4 Å (23), the third intracellular loop was disordered
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and no structure was determined. Because disordered regions can
facilitate regulatory protein–protein interactions, we searched for
proteins that would specifically bind to the pSer367 form of PS1.
Whole-mouse brain lysate was immunoprecipitated with an an-

tibody recognizing the N terminus of PS1. To isolate proteins
interacting with PS1 selectively in a phosphodependent manner,
elution from bound PS1 was performed with a phosphopeptide
containing a sequence spanning phosphorylated-Ser367 PS1. As
controls, the immunoprecipitation complex was eluted with either a
nonphosphorylated peptide or a scrambled peptide. Eluted proteins
were separated by SDS/PAGE gel and identified by silver stain. A
major 45-kDa band was eluted with the phosphorylated peptide, but
not by the nonphosphorylated or scrambled peptides, and identified
by mass spectrometry as Annexin A2. In addition, we generated a
stable N2A cell line overexpressing the Flag-PS1 third intracellular
loop, spanning amino acids 267–381 of human PS1. Lysates from
these cells were used for immunoprecipitation with anti-Flag anti-
body. The interacting proteins were eluted with Flag peptide and
subjected to SDS/PAGE and mass spectrometry analysis. Annexin
A2 was again identified as an interacting protein of phosphorylated
PS1. Using whole-brain lysates, we found that Annexin A2 and

pPS1 coimmunoprecipitated with either anti-Annexin A2 or anti-
PS1 antibodies, confirming this interaction (Fig. 2A).
To characterize the binding between PS1 and Annexin A2 further,

we performed pull-down assays using immobilized biotinylated phos-
phorylated PS1 peptide on magnetic agarose beads. The beads were
incubated with recombinant Annexin A2. After washing, bound pro-
teins were separated by SDS/PAGE, levels of Annexin A2 were
assessed by immunoblot, and a weak interaction was detected. Be-
cause Annexin A2 is a calcium-binding protein (24), we investigated
whether calcium affected the pPS1–Annexin A2 interaction and found
that 5 mM Ca2+ is required for maximum binding of Annexin to
pPS1. No binding of Annexin A2 was detected to nonphosphorylated
or scrambled peptides (Fig. 2 B andC). Mutation of PS1-S366 or PS1-
S368 did not affect the binding of Annexin A2 to PS1 (Fig. 2D).
Annexin A2 is known to form a complex with p11, a protein that is

involved in regulation of endosomal trafficking (25, 26). To de-
termine whether p11 affects pPS1 binding to Annexin A2, we used
biolayer interferometry. We found that although p11 is not necessary
for Annexin A2-pPS1 binding, it does increase their binding affinity
(Fig. 2E). To analyze the region of Annexin A2 that interacts with
pPS1, we created a series of deletion constructs. Subsequent pull-
down analysis indicated that the N terminus of Annexin A2 was
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Fig. 1. Incompletely fused autophagosomes–lysosomes are increased in brains of PS1-S367A mice. (A) Representative electron micrographs of autolysosomes in
a pyramidal neuron from the CA1 area of the hippocampus from S367A knock-in mice. (Scale bar, 500 nm.) (B) Higher magnification of an unfused autoly-
sosome. Arrows point to the double membrane. (Scale bar, 100 nm.) (C) Autolysosomes in the CA1 area of the hippocampus in PS1-S367Amice contain Cathepsin
D, as revealed by immunoelectron microscopy. (Scale bar, 500 nm.) (D) Quantification of the percentage of neurons bearing autolysosomes, as seen by electron
microscopy. Sixty fields from three different WT and PS1-S367A mice were used for quantification. N, nucleus. Data represent mean ± SEM. ***P < 0.001, t test.
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necessary for its interaction with pPS1 (Fig. 2F). To confirm the
Annexin A2 and PS1 interaction further, we used an in situ proximity
ligation assay (PLA) in cultured cells and demonstrated a close

physical relationship between the two proteins (Fig. 2G, note red
fluorescence in WT cells). The interaction between PS1 and Annexin
A2 was abolished in PS1-S367A mutant cells (Fig. 2G).
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Fig. 2. PS1 phosphorylated at Ser367 binds Annexin A2. (A) Immunoprecipitates (IP) from whole-mouse brain lysate using anti-Annexin A2 or anti-
PS1 antibody were immunoblotted with an antibody against PS1 or Annexin A2. WB, Western blot. (B) Pull-down, showing that increasing the concentration
of calcium increases the binding between recombinant Annexin A2 and the PS1-pSer367 biotinylated peptide. Numbers indicate calcium concen-
tration (millimolar). P, phosphorylated PS1 peptide; S, phosphorylated scrambled control peptide. (C ) Recombinant Annexin A2 binds to both PS1-
pSer367 biotinylated peptide and a double-phosphorylated PS1-pSer365-pSer367 biotinylated peptide. It does not bind to S367D or S367A biotinylated
peptide or to an S or WT sequence biotinylated peptide. (D) Recombinant Annexin A2 binds to PS1-pSer367 biotinylated peptide and to a mutant S366A-
pS367 and L368A-pS367 biotinylated peptide. It does not bind to a S367D or S367A biotinylated peptide or to an S or WT sequence biotinylated peptide.
(E) Biolayer interferometry between a PS1-pSer367 biotinylated peptide and an Annexin A2 (AnxA2) or AnxA2-p11 fusion protein at several Ca2+ concen-
trations. The y axis represents binding (nanometers). (F, Upper) Diagram showing the constructs used in this experiment. (F, Lower) Deletion mutant of
Annexin A2 lacking the N terminus (ΔN) does not bind a pPS1 peptide, whereas a deletion mutant of Annexin A2 lacking the third and fourth calcium-binding
domains (Δ3–4) is still able to bind a pPS1 peptide. (G) In situ PLA between Annexin A2 and PS1 in MEFs derived from WT or PS1-S367A mice. Note the loss of
Annexin A2-PS1 binding in the absence of PS1 phosphorylation at Ser367. (Scale bars, 2 μm.)
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Annexin A2 Regulates Aβ Metabolism. We next studied the role of
Annexin A2/p11 on Aβ metabolism. N2A cells stably expressing
APP695 were transfected with siRNA directed against Annexin
A2, p11, or both. Scrambled siRNA was used as a control.
Knock-down efficiency was 70–90%, as assessed by immunoblot-
ting. The knock-down of both Annexin A2 and p11 induced a 190%
increase in Aβ40 and Aβ42 (Fig. 3A). Annexin A2 knock-down also
affected the levels of other APP metabolites. The levels of βCTF
increased but the levels of total APP did not. The pattern of these
changes was the same as shown in the brains of mice with the PS1-
Ser367A knock-in (Fig. 3B).
Recent reports suggest that Annexin A2 is involved in the

early steps of autophagy in primary dendritic cells of the immune

system (27). In our experiments, the knock-down of Annexin
A2 in N2A cells induced an increase in LC3 II and p62 protein
levels, suggesting that the loss of Annexin A2 in these cells
resulted in impaired late-stage autophagic flux (Fig. 3C). We
have shown that CK1γ2 phosphorylates PS1 at Ser367 (22).
Knock-down of Annexin A2 blocked the increase in Aβ40 induced
by the compound 2-((4-(2-hydroxypropan-2-yl)phenyl)amino)-1H-
benzo[d]imidazole-6-carbonitrile, a CK1γ inhibitor (Fig. 3D), con-
firming the concept that Annexin A2 is functionally linked to the
CK1γ2-PS1 phosphorylation pathway.

Annexin A2 Binds Vamp8. Annexin A2 has been shown to bind
members of the SNARE protein family, such as SNAP23 (28). We
therefore screened SNARE family members for their ability to bind
Annexin A2 and found that VAMP8, a lysosomal SNARE, directly
binds to Annexin A2 in vitro (Fig. 4A). In addition, endogenously
expressed Annexin A2 and VAMP8 coimmunoprecipitated from
mouse brain lysates, confirming that Annexin A2 and Vamp8 interact
in the brain in vivo (Fig. 4B). Binding of Annexin A2 to VAMP8 was
also confirmed in cells by PLA (Fig. 4C, Left). As a control for the
specificity of the antibodies used for the PLA reaction, PLA between
Annexin A2 and Vamp8 was not observed in Annexin A2-KO
(AnxA2-KO) cells (Fig. 4C, Right).
We next analyzed the role of PS1 phosphorylation on Ser367 in

Annexin A2/VAMP8 binding. Using PLA in mouse embryonic fi-
broblasts (MEFs) derived from WT or PS1-367A mice, we found
decreased binding of Annexin A2 to VAMP8 in PS1-Ser367A
cells, which suggests that pSer-PS1 facilitates Annexin A2–
VAMP8 interaction (Fig. 4 D and E). It has been shown that
VAMP8 participates in autophagosome–lysosome fusion by
binding to Stx17. Recent reports showed that Stx17, a member
of the Qa-SNARE family, translocates to the outer membrane
of autophagosomes upon starvation. Here, it recruits the ly-
sosomal R-SNARE, VAMP8, causing fusion of autophago-
somes with lysosomes (12). We confirmed the colocalization of
STX17 with autophagosomal marker LC3-II upon induction of
autophagy by immunofluorescence (Fig. 5A). Endogenously
expressed Stx17 and Vamp8 coimmunoprecipitated from mouse
brain lysates, confirming that Stx17 and Vamp8 interact in the brain
in vivo (Fig. 5B). This interaction was decreased in the brain of
the mutant PS1-Ser367Ala (Fig. 5B). The interaction between
VAMP8 and Stx17 measured by PLA provided a tool for ana-
lyzing the efficiency of autophagosome–lysosome fusion. As a
control, we evaluated the effect of autophagy induction on
Vamp8-Stx17 binding. We observed an increase in VAMP8-
Stx17 binding after inducing autophagy (Fig. 5 C, Upper vs. Lower
and D). We next analyzed the role of Annexin A2 and pPS1-
Ser367 on VAMP8-Stx17 binding using MEFs derived from WT,
AnxA2-KO, or PS1-Ser367A mice. We found that loss of
Annexin A2 or pPS1-Ser367 significantly decreased the VAMP8-
Stx17 binding in cells in situ (Fig. 5 C, Lower and D). Our results
suggest that PS1 phosphorylation at Ser367, through interaction with
Annexin A2, modulates the progression of autophagy and decreases
Aβ levels by facilitating autophagosome–lysosome fusion (Fig. 6).

Discussion
PS1 is an intramembrane protease, harboring the catalytic site of
the γ-secretase complex. Although PS1 has a central role in the
generation of β-amyloid, little is known about its other possible
functions. Here, we describe a phosphorylation site on PS1 that
regulates autophagy and promotes the degradation of βCTF.
It was recently found that βCTF can both be a substrate for

autophagic degradation and induce impairment of the autophagic/
lysosomal (29) and endosomal (30) pathways. These results, to-
gether with our findings, suggest the presence of a positive feedback
mechanism in which a deficit in autophagy leads to increased βCTF
levels, which can, in turn, induce further autophagic impairment.
As a step toward defining the mechanism by which phos-

phorylated PS1 decreases Aβ levels, we searched for its binding
partners and found that Annexin A2 was able to bind specifically
to PS1 phosphorylated at Ser367. The S367D analog of PS1 did
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not bind to Annexin A2, providing a molecular explanation
for the lack of a phosphomimetic effect of PS1-S367D on Aβ
accumulation (22).
A role for Annexin A2 in the early steps of autophagy has re-

cently been described. In primary dendritic cells of the immune
system, Annexin A2 promotes ATG16 vesicle biogenesis by
orchestrating recruitment of phosphoinositides to vesicular
membranes and by coordinating vesicular budding and homo-
typic fusion (27). In addition, it has been shown that Annexin
A2 regulates autophagosome formation in HeLa cells by con-
trolling the sorting and trafficking of ATG9 from endosomes
(31). We propose that in addition to autophagosome biogenesis,
Annexin A2 plays a role in autophagosome–lysosome fusion.
The participation of the same proteins in early and late steps of
autophagy may provide greater control of autophagic flux.
We found that Annexin A2 modulates autophagosome–lyso-

some fusion by interaction with VAMP8, a lysosomal R-SNARE.
Vamp8 participates in autophagosome–lysosome fusion by
binding Stx17, located in autophagosomes (12). It is possible that
Annexin A2 enhances the specificity of the autophagosome–
lysosome fusion by targeting a selected pool of lysosomes for

fusion with autophagosomes. That these interactions affect a late
step in autophagy is supported by the appearance of the vacuoles
we observed accumulated in the brain, which are most consistent
with autophagosomes that are docked with lysosomes, but not
completely fused. However, other effects of this pathway on
autolysosome function cannot be excluded.
In the PS1-S367A mouse line, the lack of PS1 phosphorylation

at Ser367 prevents its binding to Annexin A2. In turn, Annexin
A2 has decreased binding to Vamp8 in the lysosome, rendering the
lysosome less able to fuse with the autophagosome. Thus, βCTF
present in the autophagosome fails to be degraded in the lysosome.
Because γ-secretase has been shown to be active in the autophago-
some (32), the increased concentration of βCTF leads to increased
synthesis of Aβ. Additional effects of PS1 Ser367 phosphorylation on
the autophagic degradation of Aβ and Aβ accumulation are possible.
This study describes a function of PS1 in regulating autophagy.

The dephosphorylated PS1 Ser367 form catalyzes the formation
of Aβ but does not stimulate the autophagic flux. In contrast, the
CK1γ Ser367-phosphorylated form retains its catalytic activity in
the formation of Aβ but also causes, as its dominant effect, an
enhanced autophagosome–lysosome fusion and the autophagic
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degradation of βCTF, resulting in a reduced availability of sub-
strate to generate Aβ. Drugs that increase PS1 phosphorylation
at Ser367 should aid in the development of potential therapies
for Alzheimer’s disease.

Methods
All procedures involving animals were approved by the Rockefeller University
Institutional Animal Care and Use Committee and were in accordance with
the NIH guidelines.

Protein Quantification and Immunoblot Analysis. Detailed descriptions of all
experimental procedures used for protein quantification and immunoblot
analysis are provided in SI Methods.

PLA. Detailed descriptions of all experimental procedures used for PLA are
provided in SI Methods.

Electron Microscopy. Detailed descriptions of all experimental procedures
used for electron microscopy are provided in SI Methods.

Statistical Analysis. A detailed description of statistical analysis is provided in
SI Methods.
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