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Abstract

Here, we explore the potential of single-cell genomic analysis in blood for early detection of 

cancer; we consider a method that screens the presence of recurrent patterns of copy number (CN) 

alterations using sparse single-cell sequencing. We argue for feasibility, based on in silico analysis 

of existing single-cell data and cancer CN profiles. Sampling procedures from existing diploid 

single cells can render data for a cell with any given profile. Sampling from multiple published 

tumor profiles can interrogate cancer clonality via an algorithm that tests the multiplicity of close 

pairwise similarities among single-cell cancer genomes. The majority of common solid cancers 

would be detectable in this manner. As any early detection method must be verifiable and 

actionable, we describe how further analysis of suspect cells can aid in determining risk and 

anatomic origin. Future affordability rests on currently available procedures for tumor cell 

enrichment and inexpensive methods for single-cell analysis.
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Advantages of Single-Cell Analysis for Early Detection of Cancer

Cancer kills by spreading to distant sites. At the time of the first clinical presentation, 

metastasis has often already occurred. Were it otherwise, most cancers would be curable by 

surgery. It follows that there may be a window of time when detection of cancer and its 

timely extirpation might result in a cure. Some -- perhaps most -- tumors spread to distant 

sites via blood. The evidence of this is that in patients with metastatic disease, cancer cells 

are found in blood [1] and bone marrow [2]. Even for non-metastatic malignancies, cancer 

cells may be present in the bone marrow [3]. Therefore, a periodic screen for cancer cells in 

the blood might detect disease prior to symptomatic clinical presentation, and at a stage 

before malignant cells have successfully colonized elsewhere. To be useful, such a test must 

have high sensitivity and specificity.
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We argue that such screening should be based on a nearly universal signal in the genomic 

DNA of cancer cells: almost all cancers stem from a clonal population of cells each bearing 

a shared profile of DNA copy number variation (CNV). This profile is acquired 

somatically and through clonal expansion, and is distinct from the germ-line CNV profile of 

the patient. Several considerations distinguish screens based on enriched cell populations 

from a screens based on cell-free (cf) DNA in the circulation, and there are three potential 

advantages of analyzing cells over free DNA. First, both methods are plagued by a high 

background from the normal genome. But cancer cells can be enrichedfrom the blood[4–8], 

thus dramatically enhancing the signal of the cancer over the normal fraction. Second, once 

identified, suspect cancer cells can be exhaustively analyzed, either singly or in pools. For 

example, subsequent deeper sequencing of single or pooled cancer cell DNA can confirm 

clonality, enable risk assessment, identify coding mutations and help predict anatomic origin 

for subsequent image-based screening. The third advantage of cell-based screens is that they 

can start with a predictable, and an almost universal, cancer signature: CNV. Although 

cfDNA methods can also be based on CNV, the technical obstacles are enormous and the 

sensitivity is dubious [9]. To date, most cfDNAs in the blood of cancer patients have been 

tested through deep-sequencing of coding regions from known cancer-related genes [10]. 

This approach however is problematic; numerous target genes remain unknown and many 

mutations of functional consequence might not reside within coding domains. As a 

consequence, such a method would have low sensitivity. Moreover, an observed somatic 

coding variant in a target gene will typically be uninterpretable. Indeed, many sequence 

variants might arise by somatic mutation in tissues and be represented in the blood, yet not 

be harbingers of disease [11, 12]. Finally, it takes more than one gene mutation to generate a 

malignant cell [13], but observing many pathogenic mutations in the circulation does not 

allow us to infer if these mutations co-occur within the same cell. As a result, a gene-focused 

method would likely have low specificity. A method with low specificity would be a huge 

burden to the patient and medical system alike.

Powerful methods can now be applied to enrich cancer cells in the blood based on selecting 

for the cancer component, or by filtering out blood elements based on surface markers and 

size [5, 14]. Methods for analysis of single-cell DNA [15, 16], RNA [17, 18] and protein 

composition [19] are also increasing in power and decreasing in cost. From DNA analysis, 

we can infer if any atypical cells derive from a cancerous clonal population, and assess the 

malignant potential [20–22]. The tissue of origin might be inferred from RNA expression 
profiles [23] or from DNA methylation patterns [24, 25]. Once we identify the tissue of 

origin, more conventional imaging tools could be used to verify the localization of malignant 

cells.

Thus, practical questions emerge: (i) what algorithms allow the confident detection of sparse 

cancer cells in a much larger population of cells? And (ii) are there enough neoplastic cells 

in the circulation to be detected? In this opinion article, we illustrate and discuss a 

prospective protocol to test this (Key Figure, Figure 1). Indeed, most prevalent cancer types 

display extensive copy number (CN) alterations (Figure 2A and Table S1 in Supplemental 

Information) [26]. These alterations comprise CN profiles which must be shared by cancer 

cells from a given patient. From single-cell sequence analysis, and using CN data from 
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3,852 cases of solid tumors described in The Cancer Genome Atlas (TCGA) [26], we have 

concluded that characteristic tumor profiles might be detectable in patients carrying a low 

load of tumor cells in the blood.

Performance of Single-Cell Based Early Detection: A Virtual Clinical 

Assessment

To conceptualize a single-cell based method of early detection of cancer, we envision the 

following procedure: Following a standard draw of 10 mL of blood, hematopoietic cell 

components could be depleted using surface antigens [5], or tumor-like epithelial cells 

directly selected for epithelial cell adhesion molecule (EpCAM) expression [14], or both 

(Key Figure, Figure 1). As we indicate below, very low sequence coverage (ultra-sparse 

whole genome sequencing) [15] on single cells enables sufficient DNA CN profiling to 

accomplish the goal of detecting a small sub-population of clonally-related tumor cells.

If the only challenge were to detect low numbers of a clonally-related (CR) subpopulation 
in an overwhelming population of normal diploid (ND) cells, the algorithmic task would be 

straightforward. However, troublesome subpopulations of unrelated tumor-like (UTL) 
cells can also be expected to be present. These, in all likelihood, result from chromosome 

degradation in dying normal cells, each with an abnormal and unique CN profile, 

ubiquitously observed in single-cell analyses. Conceptualizing a numerical method, we have 

assumed that some number of such UTL cells would be present. They are troublesome 

because they will not appear as normal, and thus, might be confused with tumor cells. 

However, we have also assumed that UTL cells might share CNVs with the tumor 

subpopulation only by chance. We argue that in the absence of an overwhelming number of 

UTL cells, it is possible to effectively assess the presence of a small population with a 

shared CN profile.

A detection procedure would be considered successful if it is both sensitive (low false 
negative detection rate), and highly specific (very low false positive detection rate). 

Success would critically depend on many factors: First, sensitivity would depend on the 

degree of CNV in the CR cells, their count, and their proportion in the population. Second, 

specificity would depend on the number and proportion of UTL cells. Lastly, success would 

depend on operational factors such as the accuracy of determining CN profiles of individual 

cells; and the computational protocol used to detect similar CN profiles in the presence of 

noise (the UTL profiles).

Modeling Single-Cell Sequence Data from Cells In Blood

To properly model a sample of cells that are subjected to an early detection procedure, we 

must specify for each category of cells in the sample, the expected CN properties and the 

expected cell count. For tumor cells, published integer CN profiles for 3,852 tumors, and 

representing eleven common solid tumor types, can be used in this analysis [26, 27]. We can 

assume that a sample obtained from a patient suffering from one of these tumors can contain 

CR cells, all sharing a CN profile with the tumor. We can further assume the CR cell count 

to be 10 cells per 10 mL, well within the range of published circulating tumor cell counts [6, 
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8, 28]. To model CR cells, one tumor profile is selected for each clone. The 3,852 published 

profiles are also used to model UTL cells: random chromosomes from genomes of archived 

tumor profiles are sampled. Modeling UTL cells as random tumor cells adds burden to the 

task, but it is a conservative procedure to follow. In the absence of experimental data on the 

number of UTL cells with substantial CNV, we can allow this number to vary in a broad 

range of 10 and 200 UTL cells per specimen. With these assumptions, one might prefer to 

err on the side of caution, as large numbers of cancer-like cells in a specimen can pose a 

challenge to achieve specificity of early detection. Finally, ND cells can be assumed to have 

strictly diploid genomes, and the specimen might be expected to contain 103 – 105 such 

cells. We anticipate that ND cells do not affect the specificity of early detection, even if 

present in large numbers.

Next, sparse single-cell sequence reads can be simulated. The methodology is outlined here 

(Key Figure, Figure 1) and described in full detail in the Supplemental Information. To 

model a read set with a specified coverage and CN profile, an empirical read set can be 

selected from an in-house (not yet published) collection of 1306 single-cell genomes of ND 

cells, with an average of 2×106 reads per genome. First, the needed number of 1,306 read 

sets are selected, and no read set is chosen twice. By not selecting the same read set twice, 

spurious correlations can be avoided, albeit limiting the simulation of sequence data to no 

more than that number of cells. The read set is then resampled with replacement to achieve a 

sparser read set that would correspond to a cell with the desired CN profile and coverage. 

The mean sampling rate per read can be set to reach an average overall coverage of 1.25×105 

reads. This process might at first seem overly complicated, but captures nevertheless, the 

stochastic noise that is inherent of actual single-cell read data.

Clonal Detection Procedure

To derive CN profiles from simulated read data, a tested and published pipeline for sparse 

reads from cancer and diploid cells can be used [15, 29]: the genome is partitioned into 

contiguous bins, and the set of sequence reads is converted into read counts per bin. The 

output of the pipeline is thus a bin vector comprising counts whose values represent CN 

estimates in those bins. From two cells, each with bin vectors, a Pearson correlation can be 

calculated (Key Figure, Figure 1 D,E). Two CR cells would then exhibit high Pearson 

correlation, and UTL cells would have close to zero correlation. The distributions of 

pairwise correlation coefficients within the three populations (ND, UTL and CR) are shown 

in Figure 2B.

A simple heuristic is then introduced to detect the presence of a clonal population with a 

shared CN profile (Key Figure, Figure 1F). Individual cells in the specimen are considered 

vertices in a graph, and a pair of vertices is connected by an edge if the pairwise Pearson 

correlation of the bin vectors exceeds a given empirical test threshold. In this analysis, a 

correlation threshold of 0.7 is chosen because correlations of this magnitude are frequently 

observed among CR cells but never for ND cells (Figure 2B). Pairwise correlations of this 

magnitude might occur among the UTL cells, but at a frequency of approximately 1 per 104 

pairs (Figure 2B). The largest component of the graph consists of the largest set of vertices 

and their connections such that a path of vertices and edges connects any two vertices (Key 
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Figure, Figure 1F). The vertices of the largest component are selected to represent a clone of 

cells with shared CN profiles; and, the number of vertices in the connected component can 

provide an estimate for the number of clonal cells in the specimen. Tumor cells can be 

considered as ‘detected’ if the number of estimated clonal cells in the specimen exceeds a 

set value ‘S’, as described below (e.g. 8 detected cells are shown in Key Figure, Figure 1F).

Sensitivity and Specificity of Clonal Detection

With this procedure, the sensitivity and specificity of clone detection can be assessed. We 

consider these separately. For sensitivity we can ask how often a large connected component 

can be detected for 10 CR cells taken from each of the 3,852 tumors, each with published 

integer CN profiles [26]. Then, for specificity, we can ask how often ND or UTL cells -- 

present in given numbers -- result in a large connected component and therefore, represent a 

false positive signal.

For sensitivity, we can assume that 10 CR cells from the tumor are present in the specimen. 

Our summary analysis is depicted in Figure 2C, where for each of the eleven tumor types, 

the fraction of cases (on the Y-axis) with a detected clonal population of size S (on the X-

axis) is depicted. Thus, the graph shows that this detection method would be highly sensitive 

in the majority of tumor types considered (Figure 2C). For example, a sensitivity of 

approximately 90% could be achieved in breast cancer if the size S of the largest connected 

component is set to be at least 6 (Figure 2B). For ovarian cancer, sensitivity could approach 

100%, and this is relevant as this disease is most often diagnosed at a late stage, portending 

an adverse outcome.

To evaluate the specificity of detection, we can measure the frequency of false detection 

within a population containing only ND and UTL subpopulations. The criterion for a false 

positive would be defined by the presence of a connected component of highly correlated 

cells within the specimen. This false positive rate would therefore crucially depend on the 

frequency of high correlations in cell pairs within and between subpopulations. Pearson 

correlations of CN profiles of ND cells -- either among themselves or with CN profiles of 

UTL cells -- are highly unlikely to exceed the threshold value of 0.7. None of the empirical 

correlations of this kind are found to exceed this threshold. Furthermore, using methods of 

extreme-value theory [30–32], the probability of exceeding this threshold with at least one 

member of the pair being ND can be expressed in terms of the generalized Pareto 
distribution and estimated to be below 10−18. Consequently, even with approximately 

5×109 pairwise correlations in a specimen of 105 cells, the ND cell subpopulation might 

present no challenge to specificity of detection, and could be safely dropped from the 

determination of the false positive rate.

By contrast, correlations among CN profiles of UTL cells might exceed the threshold of 0.7 

with low, but non-negligible empirical probability (e.g. 1.6×10−4, Figure 2B). If present in 

sufficient numbers, these cells might occasionally form sizable connected components as 

defined above, leading to false discovery of a clonal population. The corresponding false 

positive rate can be determined empirically by simulating multiple random sets of 10, 20, 

50, 100 or 200 of UTL cells and computing the size of the largest connected component for 

each set respectively (Table 1). In Table 1, the corresponding empirical false positive rate is 
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listed for each of the five set sizes and for a range of threshold values ‘S’. For example, in a 

specimen with 100 UTL cells, a false discovery of a connected component comprising 6 or 

more cells would rarely occur, (approximately 1/3000 cases). Indeed, UTLs might 

occasionally contribute to the largest connected component (Key Figure, Figure 1 E, F), but 

could be eliminated upon follow-up (Key Figure, Figure 1 C–F).

Follow-up Analysis from Positive Findings

As discussed above, false positive rates can be low, but are not ‘zero’; consequently, any 

level of false positives is unwanted. Moreover, a true positive must be actionable. Therefore, 

detection of a clonal pattern in blood would require us to do more. Certainly, a repeat test, 

starting with larger volumes of blood would be warranted. Once the positive cells are 

identified, they can be further analyzed, either singly or in pools, provided one uses methods 

that enable the reexamination of single-cell nucleic acids (Key Figure, Figure 1 C–F). This is 

presently out of reach in our repertoire of molecular tools, but may be entirely possible using 

either addressable arrays of single-cell nucleic acids or, addressable nucleic acid libraries.

Deeper DNA sequencing of candidate cell nucleic acid can enable the virtual elimination of 

false positives, as UTLs with correlated profiles (low coverage and resolution) might rarely 

exhibit coincident individual CN events (higher coverage and resolution), whereas clonal 

tumor cells would. Moreover, details of CN profiles (overall ploidy, number and location of 

CN events, etc.) combined with knowledge of tissue origin, are likely to yield (ultimately) a 

good assessment of the malignant risk and source of the neoplasm [20–22]. Using pooled 

nucleic acid from tumor cells that are confirmed, we might reach sufficient sequence depth 

to observe therapeutically actionable mutation patterns. Finally, strong clues to the tissue of 

origin can in turn be discovered from methylation patterns, chromatin structure and gene 

expression data [24, 25]. Comprehensive databases with this type of information are 

currently being compiled and will be most useful [33, 34]. Indeed, defining an anatomical 

origin of neoplasia will be critical for diagnostics, where once the location of probable 

primary sites is identified, subsequent scanning/imaging at high resolution could validate 

any preliminary blood-based findings.

Concluding Remarks

We have outlined a sparse genomic sequencing method for detecting cancer from single-

cells in blood (Key Figure, Figure 1). It comprises components that include: (i) enriching 

atypical cells from blood (Key Figure, Figure 1 A–C); (ii) separating individual cells (Key 

Figure, Figure 1C); (iii) performing inexpensive copy-number profiling (Key Figure, Figure 

1D); and (iv) detecting clonal CN profiles computationally (Key Figure, Figure 1D–F). The 

technical components of (i)–(iii) are presently feasible, and we posit that based on 

simulation analysis under certain conditions, part (iv) could detect clonal cancer cells with 

low false positive rates. No false positive is without harm, and a true positive will require 

actionable information, which might be attained by tracing-back and performing deep-

sequencing analysis of candidate single-cell nucleic acids, either singly, or in pools (Key 

Figure, Figure 1C–F). In this scenario, one might confirm risk of disease, lower false 

positive finding to negligible levels, discover critical mutations of possibly therapeutic 
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significance, determine anatomic origin of the primary site of clonality. This information 

would then be actionable.

From another angle, we have set the sequence coverage for genomic analysis in a way that 

the procedure should be affordable. At approximately 125,000 reads per single-cell (given 

the least expensive high throughput sequence platform presently available), we anticipate 

that the cost basis for the sequencing alone might be constrained to approximately $1 USD 

per cell. Detecting ten tumor cells in the presence of a thousand diploid cells might cost 

approximately $1000 USD for the sequencing component. At this sequence depth, false 

positive rates may be acceptable, if no more than 100 non-clonal cells with abnormal 

genomes are present per enriched blood specimen. A more expensive test, with higher 

coverage, would reduce false positive rates. The follow-up analysis after a positive detection 

would undoubtedly be more expensive.

Of note, other conditions might arise to confound detection, such as the presence of benign 

populations in the blood carrying CN alterations (see Outstanding Questions and Box 1). We 

cannot presently answer this and many other critical questions, such as how often, in what 

numbers, and at what stage do tumors release malignant cells into the blood. One central 

question is whether this detection method in blood, reveals malignant neoplasms sufficiently 

early, so that appropriate interventions can take place, and the incidence of metastasis be 

reduced for any cancer type. The procedure might best benefit certain patients with 

increased risk, for example the elderly, those with genetic predispositions, or those with 

suspected lesions but for whom invasive surgical biopsy is not the best option. Of relevance, 

these ideas are not restricted to the detection of cancer signature in blood, but might also be 

of value in detecting low levels of non-specific cancer signatures in any biological specimen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Bins
here, sequence intervals into which a genome is partitioned

Cell-free (cf) DNA
DNA shed into the bloodstream as a result of cell disintegration

Clonally related (CR) subpopulation
cells originating from a tumor clone

Copy number (CN) profile
CN of a genomic DNA sequence as a function of genomic position

Counts per bin
sequence read counts in each of the bins into which the genome is partitioned

DNA methylation patterns
tissue-specific degree of DNA methylation as a function of genomic position

DNA copy number variation
large-scale copy number losses and gains.

Edge
a pairwise relationship among two vertices in a graph; if vertices are graphically represented 

by points, edges are represented by intervals connecting pairs of points

Extreme-value theory
a branch of statistics dealing with extremely rare observations

False negative rate
the fraction of patients, with at least one clonal tumor cell per milliliter of blood, missed by 

the test; equals one minus the sensitivity

False positive rate
the fraction of tumor-free patients among those in whom the test points to the presence of a 

tumor clone in blood; equals one minus the specificity

Graph
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here, a set of objects called vertices and a (0, 1)-valued function on pairs of vertices, called 

adjacency; a pair of vertices with the adjacency of one are said to be connected by an edge

Integer copy-number (CN) profile
an approximation of an observed CN profile by an integer function of the genomic position

Largest (connected) component
the largest subset of vertices in a graph such that there is a path of edges between any two 

vertices in the subset

Modal
here, a value of DNA CN observed in a greater portion of the genome

Normal diploid (ND) cell
a cell with DNA CN of two throughout the genome, with a possible exception of the X and 

Y chromosomes

RNA expression profiles
numerical data consisting of RNA expression levels for each gene in a given biological 

entity

Sensitivity
the ratio of the number of patients testing positive for circulating tumor cells to the number 

of patients with circulating tumor cells being tested

Sequence coverage
the total length of sequence reads divided by the length of the genome being sequenced

Sequence read
a portion of an individual DNA molecule in which the nucleotide sequence is determined by 

a sequencing apparatus

Shared copy number profile
CN profile common to several cells

Specificity
the ratio of the number of true positives to the number of all positive test results

Stochastic copy-number noise
variation in the CN profile due to random effects inherent in DNA preparation and 

sequencing procedures

Unrelated tumor-like (UTL) cells
cells with significantly altered CN but not originating from a tumor clone

Vertex
an object in a graph; vertices in a graph are customarily illustrated as points
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Trends

• Metastasis is the most lethal aspect of cancer. To preempt metastatic spread 

tumors must be detected early.

• There is ample experimental evidence that large scale DNA copy number 

(CN) variation is ubiquitous in multiple tumor types.

• Clonal expansion is a hallmark of cancer; clonal expansion of cells with 

massively altered CN profiles is not observed outside of cancers and should 

be targeted for early detection.

• Single-cell genomic analysis may be the best method to ascertain that 

multiple genomic alterations occur within the same cell.

• Massively parallel CN profiling of individual cells by sparse sequencing is 

accurate and affordable.

• Powerful microfluidic technologies exist to isolate small numbers (in the 

thousands) of candidate circulating tumor cells from blood samples.

• Similarities among single-cell CN profiles may be exploited to identify clonal 

subpopulations.

• Transcriptional, epigenetic or immunohistochemical examination of analytes 

pooled from suspicious malignant clonal cells found in blood, may offer an 

opportunity to determine the tissue of origin.
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Outstanding Questions

• What is the specific abundance of malignant clonal cells in circulation, before 

the emergence of macroscopic disease, by tumor type?

• Are non-clonal aneuploid cells in circulation rare enough to keep false 

detection rates low?

• How frequently are non-malignant clonal cell populations bearing substantial 

copy number variation found in blood?

• What categories of patients are most likely to benefit from, and should be a 

priority target for single-cell based early detection procedures?
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Box 1. Clinician’s Corner

• Metastasis is by far the most lethal aspect of cancer. In all likelihood, cancer 

mortality would be significantly reduced if most tumors were detected early 

enough to preempt metastatic spread.

• Early detection of tumors cannot be accomplished consistently by methods in 

present clinical practice, as none of these methods are simultaneously 

sensitive, specific and applicable across multiple tumor types. For example, 

MRI or CAT scans are able to detect a tumor at many anatomic locations, but 

not before the tumor is macroscopically large. Similarly, blood-based tests for 

antigens such as PSA (prostate specific antigen) focus on a single tumor type 

and lack specificity.

• There is mounting evidence that tumor cells enter circulation and are 

disseminated from the primary site to distant organs early in disease. It is 

therefore likely that such cells are present in circulation even before the 

disease is detectable by imaging or by physical examination.

• Here, we argue that for multiple tumor types, a combination of molecular 

techniques can be used to detect circulating tumor cells (CTC), even if the 

latter are as rare as one per milliliter of blood.

• The procedure we envision involves three critical steps: i) candidate CTC are 

separated from blood cells using surface proteins that discriminate the two 

populations; ii) the genome of each candidate CTC is examined individually 

for aberrations in DNA CN; iii) CTC are identified from cell candidates based 

on a shared pattern of aberrations.

• The entire detection procedure might be accomplished with existing 

molecular technologies, at a cost of approximately $1,000 per test.

• Once CTC are identified, a more stringent molecular analysis can be used, 

and may include a combination of deep-sequencing and analysis of 

methylation or gene expression patterns. This information might be used to 

confirm malignancy risk and identify putative tissue of origin, thus guiding 

possible diagnosis and treatment.
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Figure 1. Schematic of Single-Cell Detection Procedure in Blood
(A–B) Blood is drawn from a subject. (C) Blood elements are removed and cells of 

epithelial origin can be enriched. (D) Single-cell barcoded DNA libraries are prepared and 

sequenced, leading to single-cell copy number profiles. (E). Pairwise correlation analysis is 

performed. (F) A ‘graph’ constructed where ‘vertices’ represent single-cell profiles or ‘bin 

vectors’, and two vectors are connected by an ‘edge’ if they are highly correlated. The 

largest ‘connected component’ is identified (F), and resides on the left-hand side of the 

dotted vertical line. This identifies the clonally correlated cells, indicated in bold. In the 
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illustrated example, the largest connected component of CN profiles is shown, and 

predominantly stems from the clonally related (CR) tumor cells (3, 6, 9, 10, 15, and 19 in 

red). Not all tumor cells might be identified this way (2, 13, and 14). In this example, one 

unrelated tumor like cell (17, UTL) is fortuitously linked to the largest connected 

component. Two UTLs (7 and 12) also form a small connected component. From the 

barcodes taken from the largest component, one can return to select cells in (C) (in bold) for 

deeper analysis; this might confirm cell clonal relations, potentially assess prognosis and 

therapeutic options, and determine the anatomic origin of the primary tumor.
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Figure 2. Detection of Clonal Cells in Circulation
(A) Ubiquity of copy number (CN) variations across multiple cancer types; each histogram 

shows the percentage of patient cases (vertical axis) with a given percentage of the genome 

with an abnormal non-modal CN value (horizontal axis). The cancer types represented are 

(in alphabetical order) bladder urothelial carcinoma (BLCA), breast invasive carcinoma 

(BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck 

squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian 
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cystadenocarcinoma (OV), rectum adernocarcinoma (READ) and uterine corpus endometrial 

carcinoma (UCEC). The number of cases for each type is listed parenthetically, and is based 

on data published by The Cancer Genome Atlas (TCGA) [26]. Thus, for example, 60% of 

glioblastoma multiforme (~500 cases) have CN alterations in more than 10–20% of the 

genome. (B) The graph presents the cumulative probability distribution (CDF) for 

correlation of pairs of single-cell CN profiles. The CDF is plotted for pairs of normal diploid 

cells (ND, solid brown); for pairs of clonally unrelated tumor-like cells (UTL, solid green); 

and for mixed pairs of an ND and a UTL cell (ND to UTL, solid magenta). For comparison, 

the CDF for pairs of profiles from two cells simulated from the same cancer are plotted, and 

the analysis of each of the 11 tumor types considered is shown, as described in the inset 

legend. The gray vertical line indicates the discriminatory threshold of 0.7 correlation. The 

values of the CDF at this threshold are indicated in the inset for each curve in parentheses. 

These values are taken from the simulations of the 11 tumor types and for UTL cells, and 

from estimates based on extreme-value theory for ND cells and for the mixed ND – UTL 

pairs. (C) To assess sensitivity of detection, for each tumor type, the cumulative percentage 

of patients are plotted against the number of clonal cells detected (out of 10 assumed to be 

present in the specimen). For example, for BRCA (solid red line) a sensitivity of close to 

90% is achieved if the number of clonal cells detected is at least 6. For KIRC (dashed blue 

line), the sensitivity is approximately 50% for that threshold.
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