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SUMMARY

The presence of advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is the most 

important predictor of liver mortality. There are limited data on the diagnostic accuracy of gut 

microbiota derived signature for predicting the presence of advanced fibrosis. In this prospective 

study, we characterized the gut microbiome compositions using whole-genome shotgun 

sequencing of DNA extracted from stool samples. This study included 86 uniquely well-

characterized patients with biopsy-proven NAFLD, 72 of which had mild/moderate (stage 0–2 

fibrosis) NAFLD, and 14 had advanced fibrosis (stage 3 or 4 fibrosis). We identified a set of forty 

features (p-value <0.006), which included 37 bacterial species that were used to construct a 

Random Forest classifier model to distinguish mild/moderate NAFLD from advanced fibrosis. The 
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model had a robust diagnostic accuracy (AUC 0.936) for detecting advanced fibrosis. This study 

provides preliminary evidence for a novel fecal-microbiome derived metagenomic signature to 

detect advanced fibrosis in NAFLD.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease 

in the United States, affecting approximately 80–100 million Americans. (Loomba and 

Sanyal, 2013; Rinella, 2015; Vernon et al., 2011) NAFLD is broadly sub-divided into two 

phenotypes: nonalcoholic fatty liver (NAFL), which is considered the non-progressive 

subtype, and nonalcoholic steatohepatitis (NASH), which is considered the progressive 

subtype that can lead to cirrhosis, hepatocellular carcinoma and liver-related death. (Adams 

et al., 2005; Bhala et al., 2011; Matteoni et al., 1999; Singh et al., 2015; Wong et al., 2010) 

The presence of advanced fibrosis has consistently been identified as the most important 

predictor for liver-related events and complications in NAFLD, and therefore represents the 

most clinically meaningful determinant of long-term outcomes. (Angulo et al., 2015; Dulai 

et al., 2017; Ekstedt et al., 2015; Younossi et al., 2015) Early identification of the presence 

of advanced fibrosis using non-invasive modalities is a major unmet need in the field. 

(Decaris et al., 2016; Dulai et al., 2016)

There has been an increased interest in understanding the role of the microbiome in 

metabolic disorders, with studies trying to elucidate the functional significance of stool 
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microbiome in the progression of liver disease in NAFLD and other chronic liver diseases. 

(Anand et al., 2016; Gill et al., 2006; Human Microbiome Jumpstart Reference Strains et al., 

2010; Qin et al., 2014; Zhu et al., 2013) Specifically, a dysbiotic microbiome is often 

observed among obese individuals, and is considered to be one of the major risk factors for 

NAFLD. (Turnbaugh et al., 2009) Both obesity and NAFLD are associated with a higher 

proportion of Gram-negative bacterial species in the gut microbiome. (Zhu et al., 2013) 

Microbial populations of NASH patients have been suggested to have a higher ability to 

produce alcohol,(Qin et al., 2014) and NASH has been associated with disrupted bile acid 

profiles in serum and feces, a finding which is thought to be due to reduced bacterial 

diversity and loss of gut microbiota members that are responsible for the generation of 

secondary bile acids. (Kakiyama et al., 2013) In addition, some members of the gut 

microbiota can convert choline to trimethylamine, which can induce liver injury leading to 

steatohepatitis. (Chen et al., 2016) Therefore, changes in gut microbiome have been linked 

to NAFLD, and NASH. (Betrapally et al., 2016; Henao-Mejia et al., 2012)

Qin and colleagues (Qin et al., 2014) recently reported on a Chinese cirrhosis cohort and 

observed that a specific gut microbiome signature is present in individuals with cirrhosis. 

However, this study included diverse etiologies of cirrhosis (alcoholic liver disease, hepatitis 

B and hepatitis C), and did not provide gut microbiome signatures that are specific to 

NAFLD, and NAFLD related cirrhosis. It is likely that the gut microbiome signatures of 

advanced fibrosis in patients with NAFLD who are residing in the United States would be 

very different than gut microbiome signature of patients with cirrhosis predominantly due to 

hepatitis B who are residing in China.

Given the importance of advanced fibrosis in NAFLD, and the association between specific 

microbial populations and NASH, a strong rationale exists for the development of a panel of 

gut-microbiome derived biomarkers that can be used to predict the presence of advanced 

fibrosis in NAFLD. Therefore, we studied the stool microbiome and serum metabolome of a 

well-characterized, prospective cohort of patients with biopsy-proven NAFLD. Our aim was 

to develop a panel of gut-microbiome derived biomarkers for the non-invasive diagnosis of 

advanced fibrosis in NAFLD.

RESULTS

Baseline characteristics of the study cohort

This prospective study included 86 patients (female 56%) with biopsy-proven NAFLD, 72 

patients had stage 0–2 fibrosis and were classified as mild/moderate NAFLD (Group G1), 

and 14 patients had stage 3–4 fibrosis and were classified as advanced NAFLD (Group G2). 

Table 1 provides a detailed demographic, clinical, biochemical and metabolic profile of the 

entire cohort classified by the advanced fibrosis status. Patients with advanced fibrosis were 

more likely to be older, Hispanic, diabetic, and had higher ALT, higher AST, lower platelet 

count, and a higher HbA1c than those without advanced fibrosis. In addition, although the 

two groups had similar BMI, patients with advanced fibrosis had higher waist 

circumference. Table 2 provides detailed histologic differences in the study cohort classified 

by the advanced fibrosis status. Patients with advanced fibrosis were more likely to have 
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more severe lobular and portal inflammation and ballooning than those without advanced 

fibrosis.

Differences in the taxonomic composition of stool derived metagenomes between mild/
moderate NAFLD versus advanced fibrosis

Gut microbiome compositions of the patients were determined using whole-genome shotgun 

sequencing of DNA extracted from their stool samples. The 86 stool samples yielded an 

average of 6.58 × 109 bases per sample (after trimming low-quality bases and removing 

human sequences). At the phylum level, the gut microbiomes in both groups were 

dominated by members of Firmicutes and Bacteroidetes, followed by Proteobacteria and 

Actinobacteria in much lower abundances (Table 3). Furthermore, both Firmicutes and 

Proteobacteria were differentially abundant across the two groups (p-value < 0.05), with 

Firmicutes being higher in mild/moderate NAFLD (G1) while Proteobacteria was higher in 

advanced fibrosis (G2). At the species level, Eubacterium rectale (2.5% median relative 

abundance) and Bacteroides vulgatus (1.7%) were the most abundant organisms in mild/

moderate NAFLD (G1) while B. vulgatus (2.2%) and Escherichia coli (1%) were the most 

abundant in advanced fibrosis (G2). Ruminococcus obeum CAG: 39, R. obeum, and E. 
rectale were significantly lower in advanced fibrosis than mild/moderate NAFLD.

Diagnostic accuracy of the metagenomics derived gut microbiome model for the detection 
of advanced fibrosis

The RF model selected 37 species together with Shannon diversity, Age, and BMI as the 

most important features. Age was observed to be the top predictor in nearly all of the RFs in 

the training phase. The forty selected features were determined from the feature elimination 

step and the best performing model was selected as the final model. This model had a robust 

and statistically significant diagnostic accuracy of AUC 0.936 (Figures 1 and 2).

From the 37 species selected by the optimized model, eight species were more than two-fold 

more abundant in advanced fibrosis (G2) compared to mild/moderate NAFLD (G1), while 

22 species were more than two-fold abundant in mild/moderate NAFLD (G1) compared to 

advanced fibrosis (G2) (Table 4). The orthogonal machine learning method resulted in a 

model whose final feature set had a high degree of concordance with the features in the RF 

based model and with a similarly high AUC (Figure S1).

Microbial metabolism and function

The comparison between metabolites detected and metabolites predicted from the microbial 

pathways reconstructed from stool metagenome data yielded 89 metabolites (Table S1, 

Figure S2) and included several known to be produced by both host and microbes. A 

differential analysis identified 11 metabolites whose abundances (peak intensities) are 

significantly different between mild/moderate NAFLD (G1) and advanced fibrosis (G2) 

(Wilcoxon rank sum corrected for FDR and α = 0.05). (Figure 3) In this set, two metabolites 

(associated with nucleoside metabolism) were enriched in mild/moderate NAFLD (G1), 

while nine metabolites (associated with amino acids and carbon metabolism) were enriched 

in advanced fibrosis (G2). Though its differential abundance was not statistically significant 

(Table S1), the metabolite with the highest fold increase in advanced fibrosis (G2) was 3-
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phenylpropanoate, a metabolite produced by anaerobic bacteria. (Moss et al., 1970; Wikoff 

et al., 2009)

We did not identify any pathways, protein families, or enzymes whose differential 

abundances across mild/moderate NAFLD (G1) and advanced fibrosis (G2) were 

statistically significant (after multiple test correction). However, an examination of pathway 

abundances showed that advanced fibrosis (G2) had an increased abundance of pathways 

associated with carbon metabolism and detoxification, while mild/moderate NAFLD (G1) 

had an increased abundance of pathways associated with nucleotide and steroid degradation 

(Figure 3, Tables S2–S3). An evaluation of the protein families and enzymes associated with 

Short-Chain Fatty Acid (SCFA) production suggested that mild/moderate NAFLD (G1) had 

higher abundances of enzymes associated with lactate, acetate, and formate, while advanced 

fibrosis (G2) had higher abundances of enzymes for butyrate, D-lactate, propionate, and 

succinate (Figure 3, Tables S2–S3). The trend for the abundances of ethanol metabolism 

enzymes in G1 or G2 was not as clear, with enzyme EC 1.1.1.1 (Alcohol dehydrogenase) 

increased in G2, while enzyme EC 1.1.1.2 (Alcohol dehydrogenase NADP(+)) was 

increased in G1.

Validation of model and microbial signature

The resulting AUC of the models made by the trained RF on data from the 16 healthy older 

twin individuals was 0.81. Furthermore, the presence of a strong microbial signature was 

found by two orthogonal methods. We built a new RF model for Cohort B (NASH cirrhosis/

advanced fibrosis [n=16] and control [33] samples) who all were 60 years or older. The 

patient data and species abundances were used to train this model in the same manner 

described and had an AUC of 0.88 after a feature elimination step (9 features selected, p-

value < 0.0001). From the nine microbial species selected by this model (Table S4), seven 

overlap with the 37 species selected by our original model and this overlap was statistically 

significant (p-value < 0.0008). A similar microbial signature was further validated by 

applying SVM to the original dataset, and looking for the overlap of selected features. The 

trained SVM selected 18 species as the most important predictors (Table S5) and 12 of those 

species overlapped with the species found as features in the original RF model (p-value < 

0.00006).

Sensitivity analyses

We conducted sensitivity analyses after adjustment for diabetes and the results remained 

unchanged. We also assessed HbA1c as a continuous trait and the models remained robust 

and consistent. We also assessed whether presence of metformin use had any significant 

effect on the model as recent studies have suggested that it may modify the gut microbiome 

(Forslund et al., 2015; Mardinoglu et al., 2016). The results remained consistent even after 

adjustment for metformin use with adjusted AUROC 0.94.

DISCUSSION

Utilizing this well-characterized cohort, we describe the diagnostic test accuracy of a panel 

of gut microbiome-derived biomarkers for the detection of advanced fibrosis in NAFLD. 
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The novelty of this study is as follows: approaches to non-invasive detection of advanced 

fibrosis are major unmet need and here we present proof of concept data to support the 

development of stool based tests to screen for advanced fibrosis or cirrhosis in future. In this 

study, we found that the gut microbiomes in NAFLD is dominated by members of 

Firmicutes and Bacteroidetes, followed by Proteobacteria and Actinobacteria in much lower 

abundances (Table 3). However, as the disease progresses from mild/moderate NAFLD to 

advanced fibrosis, the Proteobacteria phylum has a statistically significant increase in 

abundance while the Firmicutes phylum decrease.

At the species level, E. rectale (2.5% median relative abundance) and B. vulgatus (1.7%) 

were the most abundant organisms in mild/moderate NAFLD while B. vulgatus (2.2%) and 

E. coli (1%) were the most abundant in advanced fibrosis. None of the patients with 

advanced fibrosis had ascites or any evidence of hepatic decompensation but still had higher 

E. coli abundance (though the abundance increase was not statistically significant). This 

increased abundance of E. coli in advanced fibrosis has potential clinical implications. To 

our astonishment, these data suggest that E. coli dominance occurs much earlier in the stage 

of fibrosis progression and supports the hypothesis that dysbiosis may precede development 

of portal hypertension. Although this provides evidence of temporal association between E. 
coli and portal hypertension it does not imply causality.

We observed a decrease of Gram-positive Firmicutes and an increase of Gram-negative 

Proteobacteria (including E.coli) in patients with advanced NASH fibrosis. This suggests 

that the microbiota shifts toward more Gram-negative microbes. Fecal transplantation of 

Gram-negative bacteria including Proteobacteria resulted in a significant increase cholestatic 

liver fibrosis when compared with mice transplanted with Gram-positive bacteria. (De 

Minicis et al., 2014) In addition, several preclinical studies mechanistically showed that 

LPS, a cell wall component of Gram-negative bacteria, causes progression of liver fibrosis. 

(Affo et al., 2014; Bai et al., 2016; Liu et al., 2016; Seki et al., 2007) Lelouvier and 

colleagues have also recently reported that Proteobacteria are increased in morbidly obese 

individuals undergoing bariatric surgery who have presence of fibrosis(Lelouvier et al., 

2016). Thus, dysbiosis with predominant Gram-negative bacteria might contribute to liver 

fibrosis.

Our study builds on previous seminal studies conducted by other independent groups. Using 

quantitative genomics (similar to this study), Qin and colleagues characterized the gut 

microbiome of 98 Chinese patients with various etiologies of cirrhosis (predominantly viral 

hepatitis and alcoholic cirrhosis) of the liver that included both patients with compensated 

and decompensated cirrhosis, and compared it with 83 healthy controls. (Qin et al., 2014) 

They demonstrated that oral bacteria take over the gut microbiome in patients with cirrhosis 

with and without portal hypertension. Bajaj and colleagues have characterized the 

association of gut microbiome with hepatic decompensation in patients with diverse 

etiologies of liver disease. (Bajaj et al., 2014) Using 16S rRNA gene sequencing, Boursier 

and colleagues characterized the association between severity of NAFLD and gut dysbiosis 

in patients with biopsy-proven NAFLD. (Boursier et al., 2016) They imputed metagenomic 

functions from the 16S sequence data. The novelty of our study is that we utilized 

quantitative metagenomic sequencing in well-characterized patients with biopsy-proven 
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NAFLD to examine the diagnostic test accuracy of microbiome-derived signature for the 

presence of advanced fibrosis, and then we also assessed serum metabolites and integrated 

the stool microbiome data with the serum metabolomics. We aimed to specifically address 

the role of gut dysbiosis in the progression of liver disease to advanced fibrosis and cirrhosis 

before the onset of clinically significant portal hypertension.

Qin and colleagues studied metagenomics profiling in Chinese patients with cirrhosis due to 

diverse etiologies but mainly included patients with viral hepatitis and alcoholic liver disease 

with a small subset of patients who had NAFLD cirrhosis. (Qin et al., 2014) Liver histology 

data and detailed liver disease characterization were not available in that study, and no 

advanced MR imaging assessment or serum metabolomics was performed. Bajaj and 

colleagues conducted studies in a diverse group of patients with cirrhosis with or without 

hepatic decompensation and assessed association with 16S profiling. (Bajaj et al., 2014) 

Boursier and colleagues conducted a study using 16S RNA sequencing platform in patients 

with biopsy-proven NAFLD and imputed signature of the 16S derived profiling and assessed 

differences in NAFLD patients with either NASH and stage 2 or higher fibrosis versus those 

with stage 0–1 fibrosis. (Boursier et al., 2016) These seminal studies have provided novel 

insights into the understanding of microbiome in liver disease. Our study fills the gap in 

knowledge by providing a metagenomics-based profiling in extremely well-characterized 

patients with biopsy-proven NAFLD who were further phenotyped using advanced MR 

imaging to examine the diagnostic accuracy of a panel of stool microbiome derived 

biomarker panel to detect advanced fibrosis. We then integrated the stool microbiome with 

metabolomics conducted in serum of these patients. This is the first study in NAFLD to 

integrate stool metagenomic profiling with serum metabolomics in this population. 

Therefore, albeit the results are preliminary, the study is novel in it’s design and innovative 

in characterization of NAFLD.

We acknowledge the following strengths and limitations of our study. Limitations of the 

study include single center study with expertise in clinical investigation of NAFLD that may 

potentially limit generalizability of the findings, relatively small cohort size for a clinical 

study, and hurdles in development of an easy to use diagnostic test using these methods to 

diagnose advanced fibrosis. It is possible that there are additional microbial species that 

could be used as indicators of disease status that were missed by virtue of the chosen cohort 

or the depth of sequencing performed in this study, and finally, the association does not 

suggest causality. We acknowledge that this study may be underpowered despite the fact that 

till date it is the largest metagenomics stool microbiome profiling in patients with biopsy-

proven NAFLD. Therefore, further multicenter studies including larger number of patients 

with biopsy-proven NAFLD are needed to validate these findings.

Strengths of the study included prospective study design, detailed phenotyping of the 

biopsy-proven NAFLD cohort as well as the age-balanced subset assessment, utilization of 

metagenomics sequencing rather than 16S rRNA gene sequencing (which is known to have 

major limitations in terms of data interpretation) with serum metabolomics, and assessment 

of accuracy using AUROC. Here, we describe an investigation of stool metagenomes from a 

well phenotyped NAFLD cohort and identify 37 microbial species that are differentially 

present in the different stages of the disease.
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It is also plausible that some of the initial findings were reflecting differences in age, and 

may not be specific to fibrosis stage. This study only provides preliminary evidence of an 

association between microbiome and advanced fibrosis in NAFLD. These data do not 

suggest causality. Further studies are needed to assess the how and if these microbial species 

play a role in gut permeability, perturbing liver inflammation, and/or cross-talk with serum 

metabolites to induce liver injury to affect disease progression in NAFLD.

Implications for future research and clinical practice

The results suggest that microbial biomarkers can be used to diagnose metabolic and fibrotic 

diseases and present an adjunct tool to current invasive approaches to determine stage of 

liver disease. We believe that our study sets the stage to explore the potential role of a stool-

based test to detect advanced fibrosis in the future. The metagenomics signature may also be 

used in conjunction with other noninvasive serum/plasma or imaging based tests to detect 

fibrosis, advanced fibrosis and cirrhosis. It is plausible that further studies on the bacterial 

dysbiosis may lead to new approaches to inhibit bacterial derived pathways that in turn lead 

to disease progression in NAFLD. Further studies are needed to validate the clinical utility 

of the proposed microbiome-derived signature to detect advanced fibrosis as well as 

candidacy for anti-fibrotic treatment trials in NAFLD.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rohit Loomba (roloomba@ucsd.edu).

Experimental Model and Subject Details

Human subject

UCSD NAFLD Cohort: Training set: 86 patients with biopsy-proven NAFLD were 

included. The baseline characteristics are detailed in Table 1. Based on histology 

assessment, NAFLD patients were classified into two groups: Group 1 (G1) (n=72) – mild/

moderate NAFLD patients with stage 0–2 fibrosis, and Group 2 (G2) (n=14) – advanced 

fibrosis NAFLD patients with stage 3–4 fibrosis. Serum samples from 56 individuals (50 

from Group 1 and 6 from Group 2) were used to generate metabolite profiles.

Normal Cohort Derived from Older Twins: age validation: 16 healthy adult controls 

derived from the twin study who are 60 years or older.

Cohort B: Cohort B was created to address the observed skew in age for patients with 

advanced fibrosis, of patients that are all 60 years or older from multiple cohorts. The 49 

patients in Cohort B consist of 17 G1 and 14 G2 patients from the UCSD NAFLD Cohort, 

16 healthy patients from the normal cohort derived from older twins (single twin from each 

pair), and two biopsy-proven cirrhotic patients from a familial cirrhosis study. The numbers 

of healthy and NAFLD cirrhosis patients were 33 and 16, respectively.
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Sample size and subject allocation to experimental groups—This is a pilot proof 

of concept study including 86 patients with biopsy-proven NAFLD (72 in mild/moderate 

group and 14 in advanced fibrosis group. We were able to detect clinically meaningful 

differences between the sub-populations. The validation cohort (B) including 49 subjects 

had mild/moderate NAFLD and 14 with advanced fibrosis. Furthermore, 33 patients with 

cirrhosis/advanced fibrosis and 16 normal controls were included.

Patient consent—All patients provided a written informed consent and the study protocol 

was approved by the UCSD Institutional Review Board (approval number: UCSD 

IRB111298).

Inclusion criteria for UCSD NAFLD Cohort—Participants were included in the study 

in they met the following criteria: 1. 18 years or older, 2. Fat accumulation in the liver 

(steatosis) involving at least 5% of hepatocytes on routine stains, 3. No evidence of other 

acute or chronic liver disease, 4. Absence of regular or excessive use of alcohol. Regular or 

excessive alcohol is defined as an average alcohol intake of more than 14 drinks of alcohol/

week in men or more than 7 drinks of alcohol/week in women.

Exclusion criteria for UCSD NAFLD Cohort—Participants were excluded from the 

study if they met any of the following criteria 1. Clinical or histological evidence of 

alcoholic liver disease, 2. Total parenteral nutrition for more than 1 month within a 6 month 

period before baseline liver biopsy, 3. Short bowel syndrome, 4. History of gastric or 

jejunoileal bypass preceding the diagnosis of NAFLD. Bariatric surgery performed 

following enrollment is not exclusionary. Liver biopsies obtained during bariatric surgery 

cannot be used for enrollment because of the associated surgical or anesthetic acute changes 

and the weight loss efforts that precede bariatric surgery, 5. History of biliopancreatic 

diversion, 6. Evidence of advanced liver disease defined as a Child-Pugh-Turcotte score 

equal to or greater than 10, 7. Evidence of chronic hepatitis B as marked by the presence of 

HBsAg in serum (participants with isolated antibody to hepatitis B core antigen, anti-HBc 

total, arenot excluded), 8. Evidence of chronic hepatitis C as marked by the presence of anti-

HCV or HCV RNA in serum, 9. Low alpha-1-antitrypsin level and ZZ phenotype, 9. 

Wilson’s disease, 10. Known glycogen storage disease, 11 Known dysbetalipoproteinemia 

or known phenotypic hemochromatosis (HII greater than 1.9 or removal of more than 4 g of 

iron by phlebotomy) or prominent bile duct injury (florid duct lesions or periductal sclerosis) 

or bile duct paucity or chronic cholestasis or vascular lesions (vasculitis, cardiac sclerosis, 

acute or chronic Budd-Chiari, hepatoportal sclerosis, peliosis) or Iron overload greater than 

3+, 12. Zones of confluent necrosis, infarction, massive or sub-massive, pan-acinar necrosis, 

13. Multiple epithelioid granulomas, 14. Congenital hepatic fibrosis, 15. Polycystic liver 

disease, other metabolic or congenital liver disease, 16. Evidence of systemic infectious 

disease, 17. Known HIV positive, 18. Disseminated or advanced malignancy, 19. 

Concomitant severe underlying systemic illness that in the opinion of the investigator would 

interfere with completion of follow-up.

Inclusion criteria for Normal Cohort Derived from Older Twins—Participants were 

included in the study: (1) if they were twins at least 18 years old who provided written 
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informed consent. The zygosity of the majority of twin pairs as monozygotic (MZ) or 

dizygotic (DZ) had been previously confirmed via genetic testing before the participants 

enrolled in the study. (2) Aged 60 years or older. (3) MRI-PDFF estimated liver fat content 

of less than 5% (therefore, documenting absence of NAFLD). (4) MRE estimated liver 

stiffness of less than 3 Kpa (therefore, documenting absence of any fibrosis).

Exclusion criteria for Normal Cohort Derived from Older Twins—Participants 

were excluded from the study if they met any of the following criteria: (1) significant 

alcohol intake (>10 grams/day in females or >20 grams/day in males) for at least three 

consecutive months over the previous 12 months, or if the quantify of alcohol consumption 

could not be reliably ascertained; (2) clinical or biochemical evidence of liver diseases other 

than NAFLD, including hepatitis B, hepatitis C, alpha-1 antitrypsin deficiency, 

hemochromatosis, Wilson’s disease, autoimmune hepatitis, polycystic liver diseases, 

cholestatic liver diseases, and vascular liver diseases; (3) chronic illnesses associated with 

hepatic steatosis, including human immunodeficiency virus infection, type I diabetes 

mellitus, celiac disease, cystic fibrosis, lipodystrophy, dysbetalipoproteinemia, and glycogen 

storage diseases; (4) use of drugs known to cause hepatic steatosis, including amiodarone, 

glucocorticoids, methotrexate, L-asparaginase, and valproic acid for at least three out of the 

previous six months; (5) history of bariatric surgery, including roux-en-Y gastric bypass and 

gastroplasty; (6) presence of systemic infectious illnesses; (7) females who were pregnant or 

nursing at the time of the study; (8) contraindications to MRI, including metal implants, 

claustrophobia, and body circumference greater than that of the imaging chamber; (9) any 

other condition(s) which, based on the principal investigator’s opinion, may significantly 

affect the participant’s compliance, competence, or ability to complete the study.

Method Details

Study design and recruitment—This is a prospective cohort study of consecutive 

biopsy-proven NAFLD patients who were participating in a biobanking initiative at the 

University of California at San Diego NAFLD Research Center between January 2012 to 

December 2013. Patients in this biobank had a confirmed diagnosis of NAFLD based on 

clinical, Magnetic Resonance, and histologic assessments. Patients underwent routine 

research visits at which time a detailed history, physical exam, assessment of alcohol use, 

fasting laboratory assessment, advanced Magnetic Resonance examination, and liver biopsy 

were performed, as per standard of care. At the time of each research visit, patients provided 

stool and fasting serum samples. These were collected and immediately stored in a −80*C 

freezer.

Liver histology—Liver histology assessment was done using the NASH CRN Histologic 

Scoring System by an experienced blinded GI pathologist. All biopsies were assessed for the 

following three parameters: Steatosis was graded 0–3, lobular inflammation was graded 0–3, 

ballooning was graded 0–2. Presence of NASH was defined as a pattern that was consistent 

with steatohepatitis including presence of steatosis, lobular inflammation and ballooning 

with or without peri-sinusoidal fibrosis. Fibrosis stage was classified into five staged from 

0–4. Advanced fibrosis was defined as stage 3 (bridging fibrosis) or stage 4 (cirrhosis).
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DNA extraction—A 3-mL volume of lysis buffer (20 mM Tris-HCl pH 8.0, 2 mM Sodium 

EDTA 1.2% Triton X-100) was added to 0.5 grams of stool sample, and the sample vortexed 

until homogenized. A 1.2 mL volume of homogenized sample and 15 μL of Proteinase K 

(Sigma Aldrich, PN. P2308) enzyme was aliquoted to a 1.5 mL tube with garnet beads (Mo 

Bio PN. 12830-50-BT). Bead tubes were then incubated at 65°C for 10 minutes and then 

95°C for 15 minutes. Tubes were then placed in a Vortex Genie 2 to perform bead beating 

for 15 minutes and the sample subsequently spun in an Eppendorf Centrifuge 5424. 800 μL 

of supernatant was then transferred to a deep well block and DNA extracted and purified 

using a Chemagic MSM I (Perkin Elmer) following the manufacturer’s protocol. Zymo 

Onestep Inhibitor Removal kit was then performed following manufacturer’s instructions 

(Zymo Research PN. D6035). DNA samples were then quantified using Quant-iT on an 

Eppendorf AF2200 plate reader.

Primary outcome—Primary outcome measure was to examine the diagnostic accuracy of 

a gut-microbiota derived metagenomic signature for the presence of advanced fibrosis in 

NAFLD.

The rationale for advanced fibrosis as the primary outcome is that advanced fibrosis is 

associated with significantly increased risk of all-cause as well as liver-related mortality, 

hepatocellular carcinoma and need for liver transplantation. (Angulo et al., 2015; Ekstedt et 

al., 2015; Younossi et al., 2015)

Library Preparation and Sequencing—Nextera XT libraries were prepared manually 

following the manufacturer’s protocol (Illumina, PN. 15031942). Briefly, samples were 

normalized to 0.2 ng/μl DNA material per library using a Quant-iT picogreen assay system 

(Life Technologies, PN. Q33120) on an AF2200 plate reader (Eppendorf), then fragmented 

and tagged via tagmentation. Amplification was performed by Veriti 96 well PCR (Applied 

Biosystems) followed by AMPure XP bead cleanup (Beckman Coulter, PN. A63880). 

Fragment size for all libraries were measured using a Labchip GX Touch Hi Sens. 

Sequencing was performed on an Illumina HiSeq 2500 using SBS kit V4 chemistry.

Metagenome data annotation—Microbiome sequence data were processed as 

previously described. (Jones et al., 2015) The annotation pipeline generated relative genome 

abundance estimates of the constituent microbes in the samples and relative abundances of 

protein families (COGs, Pfams, TIGRFAMs, and ECs). As part of the annotation process, 

data from each metagenomic sample was also assembled to generate contigs. Contigs were 

assigned taxonomy and organized into species bins. The annotation information was then 

used to carry out metabolic reconstructions of the assembled species using Pathway Tools. 

(Karp et al., 2002) ORFs were generated from assembled contigs and unassembled singleton 

reads using MetaGene (Noguchi et al., 2006). The relative abundance of a protein family is 

sum of ORF abundances. The relative abundance of a pathway is defined to be the sum of 

relative abundances of all species where that pathway was reconstructed.

Metabolite Profiles—Metabolites were identified using Metabolon’s mass spectrometry 

based metabolic profiling of serum samples (Guo et al., 2015). Serum samples from 56 
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individuals (50 from Group 1 and 6 from Group 2) were used to generate metabolite 

profiles.

Quantification and Statistical Analysis

Development of a model utilizing stool derived metagenome profiles to 
predict advanced fibrosis—To build a model capable of distinguishing samples 

belonging to mild/moderate NAFLD from those of advanced fibrosis, we developed a 

custom machine learning process that employed Random Forest (RF) analysis (Breiman, 

2001; Liaw, 2002). The set of input features for model building consisted of metagenome 

features and patient metadata features. Features from metagenome data consisted of the 

number (richness) and relative abundances of 152 constituent species, and microbiome 

diversity (Shannon diversity). The patient metadata consisted of age, gender, race, and BMI. 

The first step in building an RF model consisted of training 300 RFs and then selecting the 

top features from the top-performing model. A feature elimination step was then done to 

optimize the performance of subsequent RF models. The statistical significance of the final 

set of selected features was assessed by Monte Carlo simulation using 10,000 models that 

were each trained on 40 randomly selected features and comparing their predictive value on 

the dataset.

Analysis of microbial function using metagenome and metabolome data—
Next, we explored the plausible function of the metagenome derived gut microbiota profile 

of advanced fibrosis in NAFLD. Metagenome data were used to assess the functional and 

metabolic potential of the microbial communities associated with the two groups, via a 

quantification of the relative abundances of protein families and enzymes in the samples and 

the relative abundances of the pathways reconstructed from species bins generated from 

assembled data. These data were integrated with serum metabolite data to evaluate microbial 

metabolism. Metabolites detected in serum samples include those that are endogenous or of 

microbial origin. (Guo et al., 2015) To further evaluate those metabolites that may be of 

microbial origin, the full set of metabolites detected from the 56 serum samples were 

intersected with the set of metabolites predicted from the microbial pathways reconstructed 

from the stool metagenome data.

Model Validation—We used an additional source of data to validate the performance of 

the metagenome derived model to differentiate mild/moderate NAFLD from advanced 

fibrosis. Within our original data set, age was determined to be a possible confounder 

masking the microbial signature of advanced fibrosis. In order to show that the metagenome-

derived model was not biased by age, we applied the RF model to a previously published 

and well-phenotyped twin cohort dataset. (Loomba et al., 2015) A priori, we selected a 

single twin (as twins are known to have a significantly shared microbiome) from a pair of 

twins who were 60 years of age or older and healthy based upon a normal liver fat content 

without hepatic steatosis as determined by MRI PDFF <5% (no NAFLD) and absence of 

fibrosis as determined by an MRE < 3 Kpa (no fibrosis) (N=16, Table S1)(Cui et al., 2016; 

Loomba et al., 2015; Zarrinpar et al., 2016).
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Microbial Signature Validation—In order to further validate the existence of a signature 

to distinguish between mild/moderate NAFLD (G1) and advanced fibrosis (G2), we used an 

orthogonal machine learning method based on Support Vector Machine to build a classifier 

from the same input feature set.

Random Forest Analysis: The Random Forest algorithm was used for two purposes: 1) to 

model microbial signatures of liver fibrosis; and 2) to select important species that may 

contribute most to the progression of liver fibrosis. Species relative abundances and patient 

data, also referred to as features, were analyzed using the Random Forest package in R 

(Breiman, 2001; Liaw, 2002). A forest is trained by supervised learning in which each tree in 

the forest finds an ideal split for a set of randomly chosen features such that the predicted 

outcome of each sample is the same as the expected outcome. The data partition found by 

every tree in a forest is used to vote on a predicted overall outcome of each sample. The 

voting strategy of Random Forest is documented in the literature to avoid the over fitting of 

data due to the random sampling of features by each tree. Using every tree to vote on an 

outcome prevents any single tree that may have memorized the data from having a dominant 

prediction. For our study, outcomes are disease or no disease. AUC or Area Under the 

Receiver-Operator Curve measured the accuracy of trained forests. AUC is a widely used 

estimator of true positive and false positive prediction rates. Variable or species importance 

lists from those forests with the highest AUCs were selected for further analysis.

Training Data: Our dataset consisted of sample diversity, sample richness, and the relative 

genome abundances of species detected in 86 stool samples collected from patients in a 

Registry Cohort. Age, Gender, Race, and BMI of each patient were also included in the 

training set. For this study, individuals were categorized into two groups based on the 

severity of fibrosis. The first group (Group 1) consisting of individuals with mild/moderate 

fibrosis (Stage 0–2) and the second group (Group 2) consisting of individuals with advanced 

fibrosis (Stage 3–4). Most patients (72) were in Group 1 and 14 patients were part of Group 

2. To reduce the level of noise that may be present in the relative abundance data, 

abundances that were less than 10−4 were set to zero and a species had to be present in more 

than 70% of the patient stool samples to be considered as an input feature.

To reduce the effect that correlated data may have on training we further filtered the species 

abundance data by hierarchical clustering. We used the cor function in R to calculate the 

Spearman correlation coefficients from species abundance data. The correlation matrix was 

converted to a dissimilarity matrix before using the hclust function for a complete linkage 

clustering of the dissimilarity matrix. The cor and hclust functions are part of the R STATS 

package. The resulting tree from the clustering was cut at a height of 0.1 and the species that 

was the closest to all other species within a cluster was chosen as a representative species 

from that cluster. When this procedure was applied to the initial set of 152 species, it 

resulted in 136 representative species, which were subsequently used for the training phase. 

(See Table S6 for a list of the species clusters generated by our procedure.)

We developed a series of steps to train a Random Forest with the best overall accuracy of 

classification, which we report as AUC. We trained 300 forests, containing 1001 trees each, 

with the relative genome abundances of species that passed abundance and prevalence 
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filtering as previously described. In addition, the Shannon Diversity Index and richness of 

each sample, and the age, BMI, gender, and race of each patient were also included in the 

training set. Due to the small number of patients in Group 2 in comparison to Group 1, 

training was done with stratified sampling in which features from an equal number of 

samples from each group were randomly sampled and used to train each tree. A trained 

forest produces a variable importance list based on mean decrease in Gini index. For our 

dataset the variable importance list is a list of species, sample indices, or patient 

measurements that contributed most to the correct classification or the correct group 

assignment of every sample. The species importance list from the forest with the highest 

AUC is selected for Iterative Feature Elimination, which is described next.

Iterative Feature Elimination (IFE) and Forest/Feature Selection: Features (species, 

sample indices, and patient data) from the feature importance list described in the previous 

section were iteratively eliminated to find a set of features that trains a forest with the 

highest overall accuracy of sample classification. The feature importance list was ordered 

from highest to lowest Mean Decrease in Gini index and the least important species was 

removed. A random forest was trained with the remaining features in the feature importance 

list and an AUC is calculated. Removing least important features, training a forest with the 

remaining features, and calculating an AUC was continued until all of the features from the 

importance list were removed. The features used to train a forest with the highest AUC were 

used as the final feature importance list. In the case where there are two or more forests with 

the highest AUC, the forest with the largest number of features was chosen. The species that 

trained the forest with the highest AUC after the feature elimination step are reported in the 

final model.

Statistical Significance of Species Selection: To determine the significance of the final 

species importance list, we used a Monte-Carlo simulation approach in which we created a 

null distribution of AUCs from forests trained on randomly chosen features. The number of 

randomly chosen features is the same number of features found by the Iterative Feature 

Elimination step as described in the previous section. AUCs are calculated for 10,000 forests 

trained on randomly selected features and is used to form a null distribution from which to 

compare against the significance of the top features selected by iterative feature elimination 

(IFE features). A p-value associated with the IFE features is the fraction of times that the 

AUC of forests trained on randomly selected sets of features were higher than the AUC of 

the forest trained by the IFE features.

Linear Support Vector Machine: Linear support vector machine (linear SVM) is used for 

two procedures: (1) feature selection, i.e. selection of important patient data and microbial 

species, and (2) classifier training with selected features. Feature selection is done with L1 

norm regularization and classifier training is done with L2 norm regularization. Dataset used 

for linear SVM is the same as for Random Forest classification. Group 1 with mild/moderate 

fibrosis is assigned with class label “−1” and Group 2 with advanced fibrosis is assigned 

with class label “1”. Feature set consists of patient data, including sex, age, BMI, race 

(White, Asian, Hispanic) and referred to as metadata, and microbial species present in more 

than 70% of the 86 samples in the registry cohort. Linear SVM module 
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sklearn.svm.LinearSVC from Python is applied and a grid search for penalty parameter C in 

range 2−5 to 25 is performed to pick the best estimator parameters. Stratified 2-fold cross-

validation is used to configure training and testing datasets. ROC-AUC is used as the scoring 

method to evaluate accuracy of the classifier on testing dataset.

Feature Selection with L1 Norm: Linear SVM with L1 norm penalty is used for feature 

selection on feature set containing numeric metadata (age, BMI), binary metadata (female, 

Hispanic, Asian, White), and log-transformed relative abundances of 152 microbial species. 

24 features are selected with non-zero coefficients under L1 regularization, including 4 

metadata (age, female, Asian, Hispanic) and 20 microbial species. These selected features 

are used as new feature set for the next step training of linear SVM classifier.

Significance of SVM Selected Feature Set: To determine the significance of the set of 

selected features, a null distribution of ROC-AUC scores is created in the following 

procedure: (1) randomly choose 20 microbial species from 152 species list, (2) combine 4 

metadata and 20 random microbial species as a new feature set, (3) train linear SVM with 

L2 norm using the new feature set, (4) calculate AUCs using stratified 2-fold cross-

validation, (5) repeat random species selection 10,000 times to form the null distribution. P-

value is obtained by comparing AUC of the selected feature set to the null distribution 

(Figure S1).

Concordance of RF and SVM models on the biopsy proven NAFLD cohort: The trained 

SVM selected 18 species as the most important predictors (Table S1) and 12 of those species 

overlapped with the species selected by the Random Forest method.

Statistical test for difference in relative abundance: Wilcoxon Rank Sum test was used to 

assess differential abundance. Multiple test correction was used when appropriate and tests 

were controlled for false discovery rate at significance level of 0.05.

Age-Balanced Dataset: We observed that all patients in the advanced stages (stages 3 and 

4) of fibrosis from the biopsy-proven registry cohort (present cohort, 86 patients), were 60 

years of age or older. The skew in age was not as extreme for patients in Group 1 such that a 

wider range of ages was observed for patients with either Stage 0, 1, or 2. To address the 

observed skew in age for patients with advanced fibrosis, we created a second cohort, 

referred to as Cohort B, of patients that are all 60 years or older from multiple cohorts. The 

49 patients in Cohort B consist of 17 G1 and 14 G2 patients from the present cohort, 16 

healthy patients from a cohort of twins (single twin from each pair), and two biopsy-proven 

cirrhotic patients from a familial cirrhosis study. The numbers of healthy and NAFLD 

cirrhosis patients are 33 and 16, respectively, Table S4).

Data and Software Availability

Data resources—The metagenomic sequence data were deposited at NCBI under 

Bioproject accession PRJNA373901, available from https://www.ncbi.nlm.nih.gov/

bioproject/373901.
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Figure 1. 
Boxplots of the relative abundances of 37 species selected for the random forest model used 

to distinguish samples in the mild/moderate group (G1) from those in the advanced fibrosis 

group (G2). Sample diversity and patient age and BMI were also selected as important 

features by the random forest model (boxplots not shown).
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Figure 2. 
Performance of the Random Forest model and Ordination of the NAFLD samples. (A) 

Receiver Operating Characteristic (ROC) curve of the final Random Forest model 

constructed using the relative abundances of the 37 selected species together with Shannon 

diversity, age, and BMI, which were also selected as important features by the training 

process. (B) Principal Component Analysis ordination of the NAFLD samples. Samples 

from the mild/moderate group (G1) are in brown while samples from the advanced fibrosis 

group (G2) are in blue. The samples were plotted using the first two principal components 

PC1 and PC2. These components, respectively, account for 34.3% and 19.6% of the total 

variance.
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Figure 3. 
Overview of metabolomic and metagenomic analyses of Biopsy-proven NAFLD patients. 

Serum and stool samples from a cohort of 86 patients were analyzed for their metabolic and 

functional content. [Left] The metabolic profiles of 56 serum samples detected several 

differentially abundant metabolites, after multiple test correction. These are highlighted, 

with G1 enriched in brown and G2 enriched in blue. [Center] ORF sequences identified from 

whole genome sequencing of 86 stool samples were used to compute relative abundances of 

enzymes involved in SCFA production. Several enzymes were enriched in either G1 (brown) 

or G2 (blue), though they were not statistically significant after multiple test correction. 

[Right] Metabolic pathways were reconstructed from whole genome sequencing of 86 stool 

samples. Pathway abundance was calculated by summing the abundances of species in 

which the pathway was reconstructed. Several pathways were enriched in G1 (brown) or G2 

(blue), though these were not statistically significant after multiple test correction.
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Table 3
Taxonomic Composition

Median and standard deviations of relative abundances of top 4 phyla found in all 86 samples and 

representative species from the first 3 phyla.

Phylum G1 Median (SD) G2 Median (SD) p-value

 Firmicutes 58.81% (20.8) 42.61% (23.9) 0.01520

 Proteobacteria 1.85% (15.3) 4.54% (22.9) 0.04004

 Bacteroidetes 23.62% (18.1) 28.46% (27.4) 0.57840

 Actinobacteria 2.67% (4.1) 2.02% (7.4) 0.78340

Species

 Ruminococcus obeum CAG:39 0.06% (0.54) 0.01% (0.02) 0.00005*

 Ruminococcus obeum 0.29% (0.90) 0.11% (0.15) 0.00009*

 Eubacterium rectale 2.56% (5.66) 0.12% (1.35) 0.00009*

 Faecalibacterium prausnitzii 1.63% (4.07) 0.34% (3.07) 0.01961

 Escherichia coli 0.29% (15.8) 0.99% (25.3) 0.44330

 Bacteroides vulgatus 1.76% (4.56) 2.19% (7.04) 0.85610

*
Significant p-value after multiple test correction
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Table 4
Important species selected by Random Forest

Species list, mean decrease in Gini index and log ratios of median species abundances in G2 and G1. The log 

ratio was not determined (ND) for a few species due to zero median values in G2.

Species MeanDecreaseGini log2 (G2/G1)

Dorea sp. CAG:317 0.06 2.50

Bacteroides cellulosilyticus 0.11 1.86

Bacteroides finegoldii 0.31 1.77

Bacteroides dorei 0.18 1.59

Streptococcus parasanguinis 0.14 1.49

Clostridium symbiosum 0.15 1.35

Clostridium sp. 7_3_54FAA 0.16 1.34

Clostridium bolteae 0.36 1.03

Clostridium hathewayi 0.14 0.88

Bacteroides stercoris 0.12 0.87

Bacteroides caccae 0.10 0.68

Eubacterium biforme 0.06 −0.50

Subdoligranulum sp. 4_3_54A2FAA 0.05 −1.00

Bacteroides sp. 1_1_30 0.09 −1.05

Faecalibacterium sp. CAG:82 0.10 −1.16

Clostridium sp. L2–50 0.07 −1.16

Blautia sp. KLE 1732 0.12 −1.22

Clostridium sp. CAG:43 0.14 −1.38

Firmicutes bacterium CAG:56 0.14 −1.39

Ruminococcus sp. CAG:17 0.15 −1.46

Ruminococcus obeum 0.56 −1.47

Alistipes putredinis 0.09 −1.48

Roseburia inulinivorans 0.22 −1.53

Ruminococcus sp. CAG:90 0.10 −1.64

Bacteroides pectinophilus 0.35 −1.89

Roseburia intestinalis 0.19 −2.05

Coprococcus comes 0.18 −2.10

Oscillibacter sp. CAG:241 0.36 −2.26

Firmicutes bacterium CAG:83 0.27 −2.69

Dorea longicatena 0.24 −2.77

Firmicutes bacterium CAG:129 0.25 −3.00

Ruminococcus obeum CAG:39 2.37 −3.53

Blautia sp. CAG:37 0.11 −3.82

Eubacterium rectale 0.68 −4.40

Firmicutes bacterium CAG:176 0.05 ND

Firmicutes bacterium CAG:110 0.13 ND

Holdemania filiformis 0.21 ND
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