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Abstract

Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of 

hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell 

proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In 

this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation 

and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and 

D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced 

doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced 

apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse 

model, alectinib resulted in decreased tumor growth and prolonged survival time. These results 

indicate that alectinib may be a promising therapeutic agent for the treatment of NB.
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1. Introduction

Neuroblastoma (NB) is the most common childhood extracranial malignant tumor [2, 31]. 

With current treatments, the outcomes for low- and intermediate-risk NB patients have 

improved. However, the prognosis for patients with high-risk NB remains dismal. Due to the 

lack of effective therapies, identification of novel therapeutic targets for high-risk NB is 

urgently needed [20, 36].

Anaplastic lymphoma kinase (ALK), known as ALK tyrosine kinase receptor or cluster of 

differentiation 246 (CD246), has been identified as one of the major oncogenes in tumor 

pathogenesis [8, 11, 12, 16, 21, 26, 51]. In NB, high expression levels of ALK closely 

correlates with poor outcomes, especially in high-risk NB [22, 42, 49]. It is reported that 

ALK with activating mutations in its tyrosine kinase domain occur in most cases of 

hereditary NB [17, 33]. In addition, ALK-activating point mutations have been identified in 

approximately 8% of investigated NB tumors [1]. In prior studies, inhibition of ALK led to a 

significant decrease in cell proliferation in ALK-positive cancers, including non-small cell 

lung cancer (NSCLC) [26, 27, 29], anaplastic large cell lymphoma (ALCL) [6, 34] and NB 

[15, 44, 50, 52]. ALK-targeted chemotherapies have been shown to downregulate PI3K/Akt 

signaling, leading to cell apoptosis and tumor regression [4, 15, 51, 52].

Alectinib (CH5424802) is an orally available, highly selective, potent second-generation 

inhibitor of ALK [13, 43, 46, 53]. It exhibits ten-fold greater potency in kinase assays than 

the first generation of ALK inhibitor crizotinib [23, 39]. Alectinib is derived from a 

carbonitrile in physical structure and shows potent inhibitory effects against tumors addicted 

to ALK activity, such as NSCLC which expresses the EML4-ALK fusion protein [30, 32, 

38, 39, 54]. Unlike other ALK inhibitors, the crystal structural analysis of alectinib exhibits 

only one hinge hydrogen bond with kinase, indicating that this compound may achieve 

higher selectivity for ALK [39]. In prior studies, alectinib has shown substantial inhibitory 

effects against tumors with ALK mutations, including ALKL1196M, ALKL1152R, ALKF1174L, 

and ALKR1275Q [28, 35, 40, 48, 55]. Furthermore, chemoresistant cells harboring crizotinib-

mediated ALK mutations ALK F1174L [10, 47] are sensitive to alectinib. Alectinib 

demonstrated a favorable safety profile and clinically meaningful response in patients with 

ALK-positive metastatic NSCLC who progressed on crizotinib and, therefore, was granted 

accelerated approval by the United States Food and Drug Administration (FDA) on 

December 11, 2015 [25]. Because of the established oncogenic role of ALK in NB [3], and 

the potent inhibitory efficacy of alectinib against advanced/recurrent ALK-mutated tumors, 

we hypothesize that alectinib is a promising treatment for NB.

In this study, we evaluate the inhibitory effects of alectinib in vitro in NB cell lines and in 
vivo in two mouse models of the disease. Our results demonstrated that ALK inhibitor 

alectinib suppresses ALK-induced PI3K/Akt/mTOR signaling and induces apoptosis in both 

ALK wild-type (WT) and ALK mutant NB cells. These results suggest that alectinib is a 
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potential therapeutic compound for NB patients and should be investigated further in this 

devastating pediatric malignancy.

2. MATERIALS AND METHODS

2.1 Cell lines

IMR-32, SH-SY5Y and LA-N-6 cell lines were cultured in RPMI 1640 medium (Lonza, 

Walkersville, MD, USA), 20% (v/v) heat-inactivated Fetal Bovine Serum (FBS) (SAFC 

Biosciences, Lenexa, KS, USA), and 100 units/mL penicillin/streptomycin. Kelly, NB-19 

and SK-N-AS were grown in RPMI 1640 medium (Lonza, Walkersville, MD, USA), 10% 

(v/v) heat-inactivated FBS (SAFC Biosciences, Lenexa, KS, USA), and 100 units/mL 

penicillin/streptomycin. All cells were maintained in a humidified incubator at a constant 

temperature of 37 °C and 5% CO2.

2.2 Antibodies and Reagents

Alectinib (HY-13011) was purchased from MedChem Express (NJ 08852, USA). 

Doxorubicin (Dox, D1515) and anti-β-Actin antibody (A2228) were purchased from Sigma 

(Sigma-Aldrich Corp, St. Louis, MO, USA). Anti-PARP (9532 S), anti-Caspase-3 (9662S), 

anti-phospho-Akt (4060S), anti-Akt (9272), anti-phospho-S6 (4858S), anti-S6 (2217S), anti-

Mouse (7076S) and anti-Rabbit (7074S) antibodies were purchased from Cell Signaling 

Technology (Cell Signaling Technology, Danvers, MA, USA).

2.3 Cell viability assay

Cell viability experiments were performed with the Cell Counting Kit-8 (CCK-8, Dojindo 

Laboratories, Rockville, MA, USA) according to the manufacturer’s instructions. All assays 

were conducted in replicates of six in 96-well plates. The absorbance at 450 nm of each well 

was measured by the Synergy™ 4 Hybrid Microplate Reader (Biotek). The IC50 value based 

on the cell viability data was calculated with Prism 5 (Graphpad Software Inc., La Jolla, 

CA).

2.4 Flow Cytometry and Propidium Iodide (PI) Staining Assay

Cells were seeded into 6-cm dishes with 1 × 106 cells/dish. Twenty-four hours later, cells 

were treated with 10 μM alectinib for 0 or 24 hours. Cells were then trypsinized and 

resuspended in RPMI-1640 medium followed by centrifugation at 450 g for 5 min (4 °C). 

Cells were then washed with cold 1× PBS with 1% BSA twice, and resuspended at a density 

of 1 × 106 cells/ml in 1× binding buffer (51-66121E; BD Biosciences, San Jose, CA, USA). 

Afterwards, 100 μl of cell suspension was transferred into a new tube and stained with 10 μl 

of 10 μg/mL Propidium Iodide solution (40017; Biotium, Inc.). The cells in the tubes were 

gently vortexed and incubated for 15 min at RT (25 °C) in the dark. Unstained cells were 

used as a negative control, and untreated cells were used as a control for treated cells. Then 

flow cytometry analyses were performed on a LSR-II flow cytometer (BD Biosciences) 

using BD FACDiva software v.6.0.
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2.5 Colony Formation Assay

A 5% (w/v) base agar layer was prepared by adding agar (214220, Difco Laboratories, 

Detroit, MI, USA) into distilled water and then autoclaving the mixture for 50 min before 

cooling in a 56 °C water bath. The 2 mL bottom agar layer was made of 0.5% agar and 

media solution, and added to each well until semi-solid. The 1.5 ml top agar layer was made 

of 0.3% agar and media solution, and each NB cell line was counted and added to the 

mixture at 1 × 104 cells/well along with the indicated concentrations of alectinib. Cells were 

grown at 37 °C for 2 to 3 weeks, and subsequently stained with 500 μL of 5 mg/mL 

Thiazolyl Blue Tetrazolium Bromide (MTT, M5655, Sigma). After 4 hours, images were 

captured by the microscope and colonies were counted. Each assay was performed in 

triplicate.

2.6 Western blot analysis

2×106 cells were plated in 60 × 15 mm tissue culture dishes and cultivated in a humidified 

incubator for 24 h. Cells were then treated and harvested. Pellets were washed twice with ice 

cold PBS and then lysed on a rotator at 4 °C for 30 min in cooled RIPA buffer (150 mM 

NaCl, 50 mM Tris-HCl at pH 7.4, 50 mM sodium fluoride, 1 mM EDTA, 1 mM 

dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, 0.1 mM sodium 

orthovanadate, 10 μg/mL leupeptin, 1% NP-40, 0.25% sodium deoxycholate, and 

phosphatase inhibitor cocktail 2 and 3 (p5726 and p0044, Sigma)). Lysates were then 

centrifuged at 13,000 rpm for 15 min, and supernatants were collected. Protein concentration 

of each sample was quantified by the Bradford reagent (Bio-Rad Laboratories, Hercules, 

CA, USA). Lysates (100 μg protein) were separated by the SDS-PAGE, and then transferred 

to PVDF (polyvinylidence fluoride) membranes (BioRad). Membranes were blocked in 5% 

milk for 1 h at room temperature, and then incubated with the indicated primary antibodies 

overnight at 4°C. The membranes were then incubated with anti-mouse or anti-rabbit IgG 

conjugated with horseradish peroxidase at room temperature for 1 h. Chemiluminescent 

visualization was detected by The ECL-Plus Western detection system (GE Health Care, 

Buckinghamshire, UK).

2.7 Orthotopic mouse model of NB

All experimental protocols were approved by the Institutional Animal Care and Use 

Committee of the Baylor College of Medicine. Female athymic NCR nude mice were 

purchased from Taconic (Taconic, Hudson, NY, USA) and maintained under pathogen-free 

conditions. The preclinical mouse model of NB was established using orthotopic (intrarenal) 

implantation of the NB cells as described previously [9]. 1.5 × 106 human luciferase-

transduced NGP cells in 0.1 ml of PBS were surgically injected into the left renal capsule 

and toward the superior pole of the left kidney of the animal. Several weeks later, mice 

bearing similar-sized tumors were randomly divided into two groups and treated with either 

DMSO or alectinib (25 mg/kg, intraperitoneal injection once daily). Three days later, the 

mice were sacrificed and the tumors were harvested and lysed for immunoblotting.
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2.8 TH-MYCN transgenic Mouse Model of NB

All experimental protocols were approved by the Institutional Animal Care and Use 

Committee of the Baylor College of Medicine. Homozygous TH-MYCN transgenic mice 

were identified via PCR genotyping. At four weeks of age, these mice were randomly 

divided into groups and treated with 25 mg/kg alectinib or an equal volume of DMSO every 

other day by i.p. injection for three weeks. Mice were then sacrificed when they were 7 

weeks old or kept until death. The survival time of each group was recorded, and tumor and 

corresponding kidneys were photographed and weighed. The inhibitory effects of alectinib 

on the tumor of TH-MYCN transgenic mice was conducted as followings: seven-week-old 

homozygous TH-MYCN transgenic mice were treated with 25 mg/kg alectinib or an equal 

volume of DMSO i.p. once daily for two days. At the end of treatment, the mice were 

sacrificed and the tumors were harvested. The tumor tissues were then lysed for protein 

immunoblotting with the indicated antibodies.

2.9 Statistical Analysis

The results were presented as mean ± standard deviation (SD). A two-tailed Student’s t-test 

was used to determine the statistical significance among control and drug treatment groups. 

P <0.05 was considered as statistically significant.

3. Results

3.1 ALK inhibitor alectinib suppresses cell proliferation in both ALK-WT and ALK-mutant 
NB cells

First, we hypothesized that treatment of NB cells in vitro with the ALK inhibitor alectinib 

would result in decreases in cell viability. To test this hypothesis, we examined relative cell 

viability in NB cells treated with alectinib with CCK-8 assays. We selected six NB cell lines, 

including three ALK-WT cell lines (IMR-32, NB-19, and SK-N-AS) and three ALK-mutant 

cell lines (Kelly, SH-SY5Y, and LA-N-6). The results show that cell viability was greatly 

reduced by alectinib treatment in all six cell lines tested (Figure 1A), and there were 

morphological changes in the NB cells (Figure 1C). The IC50s of the cell lines tested ranges 

from 3.181 μM to 9.6 μM. ALK mutated cells Kelly and SH-SY5Y were relatively more 

sensitive to the treatment of alectinib and showed greater inhibition of cell growth. In 

addition, alectinib showed potent inhibitory effects on ALK-WT cells (Figure 1B) with 

IC50s ranging from 4 to 9.4 μM. These results indicated that alectinib significantly inhibits 

cell growth in both ALK-WT and ALK-mutant NB cells.

3.2 ALK inhibitor alectinib inhibits colony formation abilities of NB cells

The ability to form colonies in an anchorage-independent manner in soft agar is regarded as 

one of the characteristics of cancer cells [7]. To evaluate if alectinib inhibits anchorage-

independent colony formation of NB cells, we conducted soft agar assays with the same six 

NB cell lines, including ALK-WT and ALK-mutant cells. Our results show that the number 

of colonies were significantly reduced in all alectinib-treated groups, indicating that alectinib 

inhibited colony formation in all NB cell lines tested (Figure 2A, 2B).
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3.3 Alectinib inhibits ALK-mediated PI3K/Akt/mTOR signaling and induces apoptosis in NB 
cells

In prior studies of NB, gain-of-function mutations in ALK primarily signal through the 

activation of the PI3K/Akt/mTOR pathways [1]. We aimed to determine if alectinib inhibits 

the activation of PI3K/Akt/mTOR signaling by blocking ALK in NB. We measured the 

phosphorylation levels of Akt in six NB cell lines including three N-myc amplified cells, 

NB-19, IMR-32 and Kelly, and three N-myc non-amplified cells, SH-SY5Y, LA-N-6 and 

SK-N-AS. Our results show that alectinib effectively suppresses the phosphorylation levels 

of Akt at S473 and S6 at S235/236 in all cell lines tested (Figure 3). We observed that the 

phosphorylation of Akt and S6 was inhibited in Kelly and SH-SY5Y cells (Figure 3), 

indicating that ALK-mutant cell lines are relatively more sensitive to alectinib compared to 

ALK-WT cell lines. In addition, treatment with alectinib greatly induced apoptosis in all NB 

cells tested, as shown by caspase 3 and PARP cleavages (Figure 3). Consistent with these 

results, the flow cytometry analysis showed that alectinib could induce cell death in Kelly, 

NB-19, SH-SY5Y and SK-N-AS cell lines (Supplement 1A). These findings demonstrate 

that alectinib induced apoptosis by blocking PI3K/Akt/mTOR pathways in both N-myc 
amplified and N-myc non-amplified NB cells.

3.4 ALK inhibitor alectinib enhances dox-induced apoptosis in NB

Because of the genomic instability and heterogeneity, cancer cells can rapidly recover from 

oncogene addiction, resulting in failure to achieve long-lasting efficacy with monotherapies. 

Therefore, combined cancer therapies were designed and demonstrated better efficacy 

compared to single agent therapies [18]. Thus, we evaluated the combined effect of alectinib 

with the traditional chemotherapeutic drug doxorubicin (dox) on cell viability in a panel of 

six NB cell lines, including ALK-WT cell lines, ALK-mutant cell lines, and the 

chemoresistant LA-N-6 cell line. Our results showed that alectinib enhanced dox-induced 

cytotoxicity in all cell lines tested, including in LA-N-6 cells, which are resistant to dox 

alone (Figure 4A). In addition, we observed that alectinib greatly increased dox-induced 

PARP and Caspase 3 cleavages in all cells tested including LA-N-6 (Figure 4B). These 

results show that alectinib enhances dox-induced apoptosis and even overcomes acquired 

chemoresistance to dox in NB cells.

3.5 ALK inhibitor alectinib induces apoptosis in xenograft NB mouse model

Having shown the inhibitory effects of alectinib on NB cells in vitro, we evaluated the in 
vivo effects of the drug on apoptosis in orthotopic xenograft mouse models of NB. Mice 

bearing xenograft tumors generated with NGP cells were randomly divided into two groups 

and treated with either alectinib or dimethylsulfoxide (DMSO) (carrier control) for 3 days at 

a dose of 25 mg/kg intraperitoneally daily, tumors were harvested and analyzed for 

PI3K/Akt/mTOR signaling and apoptotic effectors. Our results show that, in contrast to 

tumors treated with DMSO, tumors treated with alectinib exhibited significantly decreased 

levels of p-Akt and p-S6. Furthermore, we observed increased PARP and Caspase 3 

cleavages in tumors treated with alectinib compared to controls (Figure 5A). These results 

suggest that alectinb inhibites the PI3K/Akt/mTOR pathways and induces apoptosis in a 

xenograft mouse model of NB.
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3.6 ALK inhibitor alectinib suppresses of tumor growth in the TH-MYCN transgenic mouse 
model

To determine if alectinib could successfully inhibit NB tumor development, we assessed the 

efficacy of alectinib in the TH-MYCN transgenic mouse model, which is the most widely 

used murine NB model [37]. We observed that treatment with alectinib resulted in decreased 

tumor growth in TH-MYCN transgenic mice when compared with the control animals 

treated with placebo (Figure 5C, 5D). In addition, alectinib induced PARP and Caspase 3 

cleavages in TH-MYCN tumor tissue and blocked PI3K/Akt/mTOR signaling as shown by 

the loss of phosphorylation of Akt at S473 and S6 at S235/236 (Figure 5B). Furthermore, 

compared with DMSO treatment, alectinib exposure prolonged the survival time of TH-
MYCN transgenic mice (Figure 5E, Supplement 1B). These data suggest that alectinib 

inhibits NB tumor growth, as well as induces ALK inhibition-mediated apoptosis and blocks 

PI3K/Akt/mTOR in the TH-MYCN transgenic mouse model.

4. Discussion

Constitutively activated ALK plays an oncogenic role in a variety of tumors, including 

NSCLC, ALCL, and NB [5, 45]. In NB, ALK-related aberrations are closely linked with 

poor clinical outcome, especially in high-risk NB [24]. Herein, we evaluated the effects of 

the ALK inhibitor alectinib in NB. Our results indicate that alectinib shows significant 

inhibitory activity against NB cells by suppressing cell proliferation and inducing apoptosis 

through the inhibition of PI3K/Akt/mTOR signaling. In addition, alectinib enhances dox-

induced apoptosis and increases sensitivity to dox treatment in vitro. Furthermore, treatment 

of alectinib blocks PI3K/Akt/mTOR pathways and, in turn induces apoptosis in two murine 

models of NB, a xenograft mouse model and the TH-MYCN transgenic model. Most 

notably, alectinib successfully inhibited tumor development in the TH-MYCN transgenic 

NB mouse model, resulting in slowed or regressed tumor growth as well as prolonged 

lifespan of the animals. Since we observed potent efficacy of alectinib combined with dox in 
vitro, we hypothesize that combining alectinib with current therapeutic agents would 

enhance efficacy and improve outcomes.

Inhibition of ALK signaling is an effective therapeutic strategy for cancer. The clinical 

efficacy of crizotinib, a first generation of ALK inhibitor, has been demonstrated in several 

cancer types, including ALK-mutated NB, ALK-rearranged NSCLC and ALK-positive 

ALCL [39]. On August 26, 2011, crizotinib was approved by the FDA for treating ALK-

rearranged NSCLC, which is regarded as one of the milestones for clinical development of 

small molecular inhibitors in cancer therapy [14]. However, with prolonged exposure, 

crizotinib treatment might lead to the development of mutations within the ALK tyrosine 

kinase domain [41]. In prior studies, crizotinib-induced ALK activations have been detected 

in approximately 10% of cases of NB, most commonly as ALKR1275Q and ALKF1174L [41]. 

Therefore, to overcome acquired drug resistance generated by treatment with crizotinib, and 

to effectively treat tumors with crizotinib-induced ALK mutations, the second and third 

generation of ALK inhibitors have been developed.

Based on our experiments, the ALK inhibitor alectinib shows significant inhibitory effects 

on both ALK-WT and ALK-mutant NB cells. Importantly, ALK-mutant cells Kelly (N-myc 
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amplified, ALKF1174L mutation) and SH-SY5Y (N-myc non-amplified, ALKF1174L 

mutation) were more sensitive to alectinib. These results are encouraging since ALKR1275, 

ALKF1174 and ALKF1245 account for more than 85% of ALK mutations in NB [19, 52]. In 

addition, MYCN amplification is reported as a crucial factor driving NB tumor development 

[31]. However, our results show that there were no obvious differences in the effects of 

alectinib between N-myc amplified and N-myc non-amplified NB cells. These results 

suggest that the cytotoxicity and sensitivity of alectinib are dependent more on ALK 
activation status, rather than on the N-myc amplification status in NB.

Our findings may have important clinical implications for NB patients who develop acquired 

resistance for crizotinib. The crizotinib-resistant ALKF1174L and ALKR1275Q mutations that 

arise de novo during crizotinib treatment in NB could result in acquired chemoresistance 

[10]. Thus alectinib may be very effective treatment option since it induces apoptosis in 

Kelly and SH-SY5Y, both of which harbor the ALKF1174L mutation. This result indicates 

that alectinib is able to overcome crizotinib-induced chemoresistance. Our study supports 

further work evaluating the efficacy of alectinib in NB patients, especially in patients whose 

tumors have become resistant to crizotinib. The efficacy of alectinib as a single agent 

therapy or in combination with conventional agents should be further investigated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Alectinib treatment strongly induces apoptosis in human neuroblastoma cells.

Alectinib inhibits neuroblastoma tumorigenesis.

Alectinib is able to overcome crizotinib-induced chemoresistance.
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Figure 1. 
Alectinib shows anti-proliferation effects on NB cell lines. (A) Six NB cell lines were 

treated with increasing concentrations of alectinib for 72 hours. Cell viability was assessed 

by CCK-8 assay. Data was represented as % vehicle ± S.D. with P < 0.05 (*), P < 0.01 (**), 

or P < 0.001 (***) indicated. (B) The IC50 values of alectinib in each cell line listed were 

calculated based on the data collected in the cell viability assays in (A). ALK status in NB 

cell lines was also shown. (C) Morphological changes of the six different NB cell lines 

treated with concentrations (0, 1, 5 μM) of alectinib were shown.
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Figure 2. 
Alectinib suppresses anchorage-independent growth of NB cells. (A) A panel of six NB cell 

lines were grown on soft agar with 0, 1, or 5 μM of alectinib for 2 to 3 weeks. Cells were 

stained with crystal violet to visualize colonies. (B) Colonies were counted and colony 

numbers were represented as % vehicle ± S.D. with P < 0.05 (*), P < 0.01 (**) or P < 0.001 

(***) indicated.
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Figure 3. 
Alectinib inhibits PI3K/Akt/mTOR signaling and induces apoptosis in NB cells. NB-19, 

Kelly, IMR-32, SH-SY5Y, SK-N-AS and LA-N-6 cells were treated with 10 μM alectinib 

for various time points as indicated. The anti-β-Actin antibody was used as a loading control 

for whole cell extracts.
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Figure 4. 
Alectinib enhances the cytotoxic effect of dox on NB cell lines. (A) Six NB cells were 

seeded and incubated with the indicated concentrations (0, 0.1, 0.5, 1, 2 μM) of dox or 5 μM 

alectinib for 24 hrs. Cell viability was then measured by CCK-8 assay. Cell viabilities were 

represented as % vehicle ± S.D. with P < 0.05 (*), P < 0.01 (**) or P < 0.001 (***) as 

indicated. (B) NB-19 and SH-SY5Y cells were treated with either Dox (0.2 μM), alectinib (5 

μM), or a combination of both for 12 hrs; IMR-32, Kelly and SK-N-AS cells were treated 

with either dox (0.5 μM), alectinib (5 μM), or a combination of both for 12 hrs; LA-N-6 

cells were treated with either dox (2 μM), alectinib (5 μM), or a combination of both for 12 

hrs. PARP and Caspase 3 cleavages were examined.
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Figure 5. 
Alectinib induces apoptosis in an orthotopic mouse model of NB and the TH-MYCN 
transgenic mouse model. (A–B) NGP-luciferase xenograft mouse bearing tumors (A) and 

the TH-MYCN transgenic mice bearing tumors (B) were treated with DMSO or 25 mg/kg of 

alectinib daily for 3 days. Then tumors were harvested and analyzed for apoptotic marker 

and for Akt and S6 phosphorylation. (C–D) Four-week-old TH-MYCN transgenic mouse 

were treated with DMSO or 25 mg/kg of alectinib every other day until the end of seven-

week-old (11 times). Then mice were sacrificed, tumors and corresponding kidneys in each 

group were photographed (C) and weighted (D). (E) Four-week old TH-MYCN transgenic 

mouse were treated with DMSO or 25 mg/kg of alectinib every other day for another three 
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weeks (11 times). Mice were kept until natural death, the survival time points of control and 

treatment groups were recorded.
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