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Summary

Molecular alterations involving PI3K/AKT/mTOR pathway (including mutation, copy number, 

protein, or RNA) were examined across 11219 human cancers representing 32 major types. Within 

specific mutated genes, frequency, mutation hotspot residues, in silico predictions, and functional 

assays were all informative in distinguishing the subset of genetic variants more likely to have 

functional relevance. Multiple oncogenic pathways including PI3K/AKT/mTOR converged on 

similar sets of downstream transcriptional targets. In addition to mutation, structural variations and 

partial copy losses involving PTEN and STK11 showed evidence for having functional relevance. 

A substantial fraction of cancers showed high mTOR pathway activity without an associated 

canonical genetic or genomic alteration, including cancers harboring IDH1 or VHL mutations, 

suggesting multiple mechanisms for pathway activation.

Introduction

The PI3K/AKT/mTOR signaling pathway is one of the main growth regulatory pathways in 

both normal cells and cancer (Hennessy et al., 2005; Mayer and Arteaga, 2016). This growth 

pathway begins with class IA phosphatidylinositol-3-kinases (PI3Ks), which are 
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heterodimers consisting of p110 catalytic and p85 regulatory subunits. Growth factor 

receptor tyrosine kinases (RTKs) activate PI3K through phosphorylation of adaptor proteins 

such as IRS1/IRS2 (Engelman et al., 2006). These adaptor proteins bind the amino-terminal 

domain of the PI3K p85 regulatory subunits through YXXM motifs, to reverse its inhibition 

of the p110 catalytic subunit, and leads to movement of the p85–p110 heterodimer to the cell 

membrane where p110 can phosphorylate phosphatidylinositol-4,5-bisphosphate (PIP2) to 

generate phosphatidylinositol-3,4,5-trisphosphate (PIP3). RAS family members can also 

activate PI3K (Mayer and Arteaga, 2016). The primary negative regulator of PI3K activation 

is the phosphatase PTEN, which dephosphorylates PIP3 at the 3′ position (Keniry and 

Parsons, 2008), with a secondary negative regulator being INPP4B (inositol 

polyphosphate-4-phosphatase type II B). PIP3 recruits several pleckstrin homology (PH) 

domain–containing proteins to the membrane, including AKT and PDK1. AKT is 

phosphorylated at Thr308 by PDK1 and at Ser473 by mTOR complex 2 (mTORC2), which 

increases its kinase activity. AKT directly and indirectly phosphorylates many downstream 

proteins, including the GSKs, p27KIP1, FoxO transcription factors, MDM2, and BAD, to 

enhance cell survival and growth (Manning and Cantley, 2007). Furthermore, AKT 

phosphorylates TSC2 at multiple sites, to inhibit the GTPase-activating protein (GAP) 

function of the TSC protein complex (consisting of TSC1, TSC2, and TBC1D7) toward 

Rheb, a RAS family member (Dibble and Manning, 2013; Laplante and Sabatini, 2012). 

Rheb-GTP binds to mTOR complex 1 (mTORC1) to activate its kinase activity toward the 

S6Ks, 4E-BP1, and other substrates, leading to enhancement of multiple anabolic 

biosynthetic pathways that enable production of the building blocks (e.g. nucleotides) and 

macromolecules (e.g. ribosomes) required for cell size increase and mitosis (Dibble and 

Manning, 2013).

Multiple genetic events have been described that lead to activation of the PI3K/AKT/mTOR 

pathway in cancer (Thorpe et al., 2015). Activating mutations in PIK3CA, which encodes 

the PI3K p110a catalytic subunit, are common in many cancer types (Samuels et al., 2004; 

Thorpe et al., 2015). There are highly focal hotspots of mutation in PIK3CA, E542 and E545 

in the helical domain and H1047 and G1049 in the kinase domain, which activate the kinase 

through different mechanisms. Other PI3K p110 isoforms are rarely mutated in cancer 

overall, but PIK3CA and PIK3CB, as well as the class II PI3K PIK3C2B are all amplified in 

one or more cancer types (Thorpe et al., 2015). PIK3R1 and less commonly PIK3R2, which 

encode the p85α and p85β regulatory subunits of PI3K, are commonly mutated, resulting in 

reduced ability to inhibit PI3K p110a (Cheung et al., 2011; Thorpe et al., 2015). PTEN is 

subject to both genomic deletion and small point mutations that inactivate its function, and is 

one of the most commonly mutated cancer genes overall (Keniry and Parsons, 2008). AKT1 
is occasionally activated by mutation at a single site, E17K (Carpten et al., 2007). 

Inactivating mutations in both TSC1 and TSC2 have been identified in cancer at low 

frequency (Hornigold et al., 1999), as well as activating mutations in MTOR (Grabiner et al., 

2014). RHEB mutations are rare but focal at Y35, suggesting a driver effect.

With the recent conclusion of the data generation phase of The Cancer Genome Atlas 

(TCGA), there is opportunity for systematic analyses of the entire TCGA pan-cancer cohort, 

including analyses focusing on specific oncogenic pathways. The aim of our study was to 

take a comprehensively examine the entire PI3K/AKT/mTOR pathway and its components 
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in the over 10,000 human cancers and 32 cancer types profiled by TCGA, these data 

involving multiple molecular profiling platforms, including proteomics.

Results

Proteomic analysis of PI3K/AKT/mTOR pathway

Our study involved 11219 human cancer cases representing 32 different major types, for 

which TCGA generated data on one or more of the following molecular characterization 

platforms (Table S1): whole exome sequencing (WES, n=10224 cases), whole genome 

sequencing data (WGS, n=1363), somatic DNA copy by SNP array (n=10845), RNA-seq 

(n=10224), and Reverse Phase Protein Array (RPPA). We used RPPA proteomic platform to 

analyze 7663 patient samples from 31 cancer types (with no data available for AML 

patients). The RPPA dataset comprised 225 high-quality antibodies that target 166 total 

proteins and 56 phosphorylated proteins. In this study, we carried out data normalization and 

batch correction to allow for direct comparisons between different cancer types. In general, 

mRNA levels were significantly correlated with protein levels, but strong correlations 

between mRNA and phospho-protein levels involving PI3K/AKT/mTOR pathway members 

were not observed (Figure S1A). In this study, we regarded mTOR signaling as a separate 

pathway from PI3K/AKT, where the former integrates information from the PI3K/AKT, 

Ras/MAPK, and LKB1/AMPK pathways (Laplante and Sabatini, 2012). Following previous 

studies (Akbani et al., 2014), we developed pathway signatures for both PI3K/AKT and 

mTOR components, based on member proteins selected by literature review, as a means of 

assessing the overall level of pathway activity given the variations of individual members.

For each tumor, RPPA signatures for PI3K/AKT and mTOR were summarized into activity 

scores (Figure 1A and Table S2). On average, mTOR scores differed by tumor lineage, with, 

for example KICH (kidney chromophobe) tumors showing the lowest levels of mTOR 

activity, and with PCPG (pheochromocytoma and paraganglioma) showing the highest levels 

(followed by GBM and LGG, or glioblastoma and lower grade glioma, respectively); at the 

same time, within each tumor type a wide range of activity levels were evident (Figure 1B). 

Across tumor profiles, PI3K/AKT and mTOR activity scores were highly significantly 

correlated (Pearson’s r=0.50, p~0), though many cancer cases showed high mTOR activity 

but low PI3K/AKT activity or vice versa (Figures 1A and 1B), indicative of a certain degree 

of decoupling between the two pathway branches. Individual members of the PI3K/AKT 

signature were strongly correlated in protein expression with each other across cancers 

(Figure 1C). mTOR pathway-related members were also highly inter-correlated (Figure 1C), 

with distinct clusters involving 4EBP1- and S6-related features, respectively, and with 

phospho-RICTOR negatively correlated with phospho-mTOR (r=−0.14, p<1E-30). Other 

protein features strongly correlated with PI3K/AKT/mTOR signaling included members of 

the MAP Kinase pathway (Figures S1B and S1C). When considering a number of additional 

RPPA features for proteins understood to act peripherally on PI3K/AKT or mTOR signaling, 

these tended to show weaker correlations with PI3K/AKT and mTOR features (Figure 1C). 

INPP4B and AMPK were negatively correlated with mTOR activity as expected, while 

within subsets of tumors other proteins would presumably have pathway-related roles that 

may not be reflected in more global analyses.
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Somatic DNA alterations involving PI3K/AKT/mTOR pathway

We examined gene mutations (using WES, n=10224 cases) and somatic DNA copy 

alterations (by SNP 6.0 arrays, n=10845 cases), focusing on genes in the canonical 

PI3K/AKT/mTOR pathway (Figure 2A and Table S3). Frequencies of somatic alteration for 

key genes in the pathway were tabulated across all cancers as well as within each cancer 

type according to TCGA project (Figure 2B and Table S4). A number of genes in the 

pathway were found significantly mutated or copy altered in pan-cancer analyses (Chang et 

al., 2016; Kandoth et al., 2013; Lawrence et al., 2014; Zack et al., 2013), including PIK3CA 
(14% mutated across all cancers; 6% amplified), PTEN (9% mutated; 7% deletion or two-hit 

loss), PIK3R1 (4% mutated), PPP2R1A (2% mutated), AKT1 (1% mutated), AKT1 (3% 

amplified), TSC1 (2% mutated), STK11 (2% mutated; 1% deletion or two-hit loss), 

RICTOR (3% amplified), and MTOR (4% amplified). With the notable exception of AKT3, 

copy number alterations of PI3K/AKT/mTOR pathway member genes were highly 

correlated with their mRNA expression (Figure S2A). When overlaid with mutation 

frequency data from human tumors, the model of PI3K/AKT/mTOR pathway (Figure 2A) 

can indicate which pathway members or interactions may be most relevant in the context of 

cancer. However, even genes with a low frequency of DNA alterations (e.g. AKTS1, 

MAPKAP1, MLST8, PDK1) may be critical in individual cancer cases or in specific cancer 

types or subtypes not included here in which they may be more commonly altered.

Genomic rearrangements represent another class of somatic alterations impacting gene 

function. Out of 1363 cases with WGS data available (1218 by low-pass sequencing), 63 

cases (~5%) harbored a rearrangement within pathway suppressor genes PTEN (39 cases), 

INPP4B (14), STK11 (5), TSC1 (2), TSC2 (2), PIK3R1 (2), or PPP2R1A (2)(Figure 2C). By 

structural variation (SV), copy loss (partial or total), or mutation, PTEN was found altered in 

40% of cancers with both RPPA and WGS data, with PTEN protein expression most 

impacted in tumors with SV, homozygous loss, or nonsense/indel/frameshift mutations 

(Figure 2D). In addition to PTEN, SVs within STK11 and TSC1 were also associated with 

decreased expression (Figure S2B). Furthermore, high-level and low-level copy number loss 

for several pathway genes were strongly correlated with reduced mRNA levels (Figure S2B), 

and 20 cases harbored candidate gene fusions involving PIK3CA, AKT1, AKT2, AKT3, or 

MTOR (Figure S2C and Table S3).

Recurrently mutated residues in key genes associated with protein activation

A large proportion of mutations identified in driver genes that activate PI3K/AKT/mTOR are 

of low occurrence, highlighting the need to functionally annotate the long tail of infrequent 

mutations present in heterogeneous cancers (Dogruluk et al., 2015). For example, PIK3CA 
is the gene most commonly activated by mutation in the cancer genome, with mutations 

being most frequent at positions E542, E545, and H1047 (Figure 3A); on the other hand, 

13% of PIK3CA mutations observed occurred in a single case and showed no significant 

pattern of occurrence. Somatic copy alteration represents another potential mechanism for 

altering gene function, where for example, amplification of PIK3CA impacts p110α protein 

expression (Figure 3B). Previous pan-cancer sequence analyses (Chang et al., 2016) have 

identified recurrent mutational hotspots, where such hotspots would presumably have greater 

impact on protein function. In the case of PIK3CA, 73% of somatic, nonsilent mutation 
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variants identified in TCGA pan-cancer cohort involved a hotspot residue as identified by 

Chang et al., while 13% of PIK3R1 mutations and 7% of MTOR mutations involved a 

hotspot residue (Figure 3C). In addition, algorithms such as Mutation Assessor (Reva et al., 

2011) have predicted the likely functional impact of somatic mutation, e.g. based on 

evolutionary conservation of the affected amino acid in protein homologs.

As the above genes as well as PTEN presumably act upon AKT (Figure 2A), phospho-

protein expression of AKT was examined in relation to tumor groups as defined by somatic 

alteration of a key gene (Figure 3D). For each gene considered, mutations were separated on 

the basis of whether or not a prediction of mutation functionality could be made (by residue 

hotspot or by Mutation Assessor or by manual literature review or by nonsense/frameshift/

indel involving PTEN or PIK3R1). For each of the genes considered (AKT1, MTOR, 

PIK3CA, PIK3R1, PTEN), tumors harboring mutations that were predicted to have 

functional effects had elevated phospho-AKT levels on average, as compared to tumors that 

did not harbor an alteration; in addition, tumors with mutations not predicted to be 

functional showed either a lesser effect or no significant effect on phospho-AKT. PTEN 
copy losses were also associated with AKT activation, while, interestingly, PIK3CA 
amplifications and copy alterations involving other specific genes (Figure S3) were not.

In addition to analysis of significantly mutated residues and of phospho-protein expression, 

functional studies using cell lines represents another way to annotate mutations in terms of 

their oncogenic potential. Using MCF10A and Ba/F3 cells, 69 different nonsilent PIK3CA 
mutation variants were functionally assessed in vitro for their activating potential (Figures 

4A and S4 and Table S5). Most variants tested showed some level of functionality (from 

weak to strong) in at least one of the two cell lines, while 14 variants showed no functional 

effects and two showed inhibitory or inactivating effects. The degree of growth activation 

varied considerably, with the three highly recurrent PIK3CA site (E542, E545, H1047) 

mutants showing some of highest degree of activity in this assay. In another experiment, 35 

different nonsilent PIK3R1 mutation variants were functionally interrogated in Ba/F3 cells 

(Figure 4B). When the results of the functional studies were aligned with data from TCGA, 

a significant trend was observed for both PIK3CA and PIK3R1, whereby variants that were 

associated with functionality in vitro had a higher frequency of occurrence in human tumors 

(Figure 4C), suggesting that natural selection favored tumor development for those variants 

with greater functional effects. Most variants showing some functionality also had higher 

phospho-AKT on average, as compared to tumors with the corresponding wild-type gene 

(Figures 4A and 4B), though variants associated with higher phospho-AKT were not 

necessarily associated with higher phospho-TSC2 (downstream in the pathway from AKT).

Transcriptomic analysis of PI3K/AKT/mTOR pathway

Signaling pathways that influence cell growth transduce signals to the nucleus, leading to 

activation or deactivation of the transcription of specific genes (Hanahan and Weinberg, 

2000). Previously, we had defined a PI3K/AKT/mTOR transcriptional (mRNA) signature, 

based on the set of genes either induced or repressed by PI3K or mTOR inhibitors 

(Creighton et al., 2010). We applied this signature to the Library of Integrated Network-

based Cellular Signatures (LINCS) database (Duan et al., 2014) of perturbational expression 
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profiles across multiple cell and perturbation types. In the LINCS L1000 expression dataset 

(consisting of ~1000 genes), the PI3K/AKT/mTOR mRNA signature was inversely 

associated with the transcriptional responses of cell lines to PI3K/AKT/mTOR inhibitors 

(Figure 5A). We evaluated the signature against the LINCS expression profiles of cells 

treated with shRNAs for ~6K different genes; knockdown of pathway effectors (e.g. MTOR, 

RPTOR) resulted in gene signature patterns inversely correlated to those of our PI3K/AKT/

mTOR signature, while knockdown of pathway suppressors (e.g. PTEN, INPP4B) resulted 

in signature patterns positively correlated with those of our signature (Figure 5B and Table 

S6). Notably, knockdown of MYC and KRAS also suppressed the PI3K/AKT/mTOR 

signature; furthermore, when scoring TCGA pan-cancer mRNA profiles for pre-defined 

signatures of PI3K/AKT/mTOR, MYC, and k-ras, cancers scoring high for PI3K/AKT/

mTOR also tended to score high for MYC and k-ras (Figures 5C, S5A, and S5B), suggesting 

that multiple oncogenic signaling pathways may converge on similar sets of transcriptional 

targets. The above mRNA signatures would represent more than cell proliferation processes, 

given how the signatures were originally derived (Creighton et al., 2010), the lack of cell 

cycle regulators in the top LINCS shRNA results (Figure 5B), and the signature association 

with key alterations in human tumors (Figure 5C).

As a means of identifying a transcriptional signature associated with PI3K/AKT/mTOR 

pathway, we examined datasets from Garnett et al. (Garnett et al., 2012), which included 

both gene expression and drug sensitivity data for 131 drugs on a set of 594 human cancer 

cell lines. In order to derive gene expression correlates of sensitivity to pathway inhibition, 

IC50 values for 11 different inhibitors to PI3K/AKT/MTOR were normalized and averaged 

to obtain a single drug sensitivity score across cell lines. After correcting for expression 

differences specific to tumor type, 146 genes were significantly associated (p<0.01, 

generalized linear model) with pathway inhibitor sensitivity (Figure 5D and Table S6). 

Across cell lines, this inhibitor sensitivity signature correlated significantly with PI3K/AKT 

phosphoprotein levels (Figure 5E), but showed little overlap with the above CMAP signature 

(from Figure 5A). Furthermore, when scoring TCGA pan-cancer mRNA profiles for the 

above signatures, tumors that scored high for the inhibitor signature tended to score low for 

the CMAP signature and vice versa, and PI3K/AKT proteomic score (but not mTOR score) 

was again highly correlated with the inhibitor signature score (Figures 5E, S5C, and S5D).

Molecular correlates of patient survival involving PI3K/AKT/mTOR pathway components

Molecular correlates of cancer patient survival can offer insights into the pathways and 

processes underlying more aggressive disease 

(The_Cancer_Genome_Atlas_Research_Network, 2013). For specific cancer types (e.g. 

breast and lung adenocarcinoma), the PI3K/AKT/mTOR pathway has been associated with 

aggressive disease (The_Cancer_Genome_Atlas_Network, 2012; 

The_Cancer_Genome_Atlas_Research_Network, 2013). In this present study, we sought to 

define survival correlates in pan-cancer analyses, leveraging the large numbers of patients 

available (these numbers helping to balance the relatively short patient follow-up times that 

characterize a number of individual TCGA projects). As some cancer types are inherently 

more aggressive than others (Hoadley et al., 2014), we carried two separate tests for each 

molecular feature examined: an “uncorrected” test across all cancers regardless of type and a 
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“corrected” test incorporating cancer type (by TCGA project) as a covariate. Features more 

strongly associated with an aggressive cancer type but having a survival association that was 

not independent of cancer type (PIK3CA mutation, for example (Hoadley et al., 2014)) may 

show significance for the uncorrected but not the corrected survival test.

Numerous protein expression or genomic alteration features involving PI3K/AKT/mTOR 

pathway members were significantly associated with patient outcome in pan-cancer analyses 

(Figure 6A), a number of these features remaining significant after correcting for cancer 

type. Features significantly associated with worse patient outcome, independent of cancer 

type, included STK11 mutation, STK11 copy loss, PTEN copy loss, PIK3CA amplification, 

and higher phospho-4EBP1 expression. Focusing on PTEN and STK11 copy alterations, 

these features were found significant within several individual cancer types, with the 

aggregated patterns across cancer types denoting pan-cancer significance (Figure 6B). 

Interestingly, for both PTEN and STK11, low level deletion (approximating partial copy 

loss) but not high level deletion (approximating total loss) was associated with significantly 

worse outcome compared to wild-type (Figures 6C and 6D); loss of one copy combined with 

somatic mutation of the other copy was associated with the poorest outcome. For both PTEN 
and STK11, neither high-level deletion nor mutation without copy loss could be associated 

with worse outcome, where in this instance, survival differences by tumor type were a likely 

confounder (e.g. 65% of the PTEN mutation with no copy alteration group were UCEC—or 

uterine corpus endometrial carcinoma—cases). As a group, gene transcription targets of the 

PI3K/AKT/mTOR pathway (based on the signature described in Figure 5A) were also 

associated with worse patient outcome (Figure 6E).

Genetic/genomic alteration classes in relation to PI3K/AKT/mTOR pathway activation

We then sought to examine the effects on pathway activation of some key genomic events in 

the tumors in which they occurred (including mutations represented in Figure 2A and copy 

alterations involving PIK3CA, PTEN, and STK11). Of the 7099 tumor cases examined (with 

both mutation and protein data), 4468 (63%) harbored at least one nonsilent somatic 

mutation or copy alteration involving PI3K/AKT/mTOR pathway (Figures 7A and S6A). 

Another set of 764 tumors showed high levels of phospho-AKT (>0.5 standard deviations, or 

SD, of pS473 from the median across samples) but without any of the genetic or genomic 

alterations associated with the above 4468 tumors, and another set of 394 tumors showed 

low levels of phospho-AMPK (<-0.5SD) without an associated genetic or genomic 

alteration. In comparison to a set of tumors that did not show pathway alteration at the DNA 

or protein level (an “unaligned” set, n=1058), mutation or copy alteration of individual 

PI3K/AKT/mTOR pathway members in general could be associated with higher PI3K/AKT 

or mTOR signaling as measured by protein arrays (Figures 7B and S6B). Notably, STK11 
alteration or low phospho-AMPK was strongly associated with high mTOR signaling but not 

with high PI3K/AKT signaling, consistent with the LKB1/AMPK pathway acting on mTOR 

independently of PI3K/AKT (Figure 2A). Mutations associated with Receptor Tyrosine 

Kinase (RTK) signaling were not strongly associated with PI3K/AKT/mTOR activation 

(Figures 7A and 7B), indicative of decoupling between PI3K/AKT/mTOR and RTK. Low-

level as well as high-level copy losses of PTEN and STK11 could be associated with greater 

mTOR signaling.
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PI3K/AKT/mTOR pathway activity, when measured at the protein level, was explained by 

known mutations or copy alteration in most but not all of the cases examined, suggesting 

additional, unexplained or underappreciated mechanisms of pathway activation. Focusing on 

the “High P-AKT” tumor group (n=764), with high phospho-AKT but lacking a DNA 

alteration classically associated with PI3K/AKT activation, these tumors were highly 

enriched for specific cancer types including LGG, PRAD, KIRC, and PCPG (Figure 7C), as 

well as for IDH1 mutations (associated primarily with LGG, i.e. gliomas) and VHL 
mutations (associated with renal cancers). A set of microRNAs could also help distinguish 

the “High P-AKT” group (Figure S6C). Proteins that were highly expressed specifically 

within the High P-AKT group (Figure 7D) included phospho-ERK, phospho-SRC, and 

phospho-NDRG1. These mutations and proteins would suggest a model (Figure 7E), 

whereby mutant IDH1 may lead to high phospho-ERK (Chaturvedi et al., 2013), and SRC 

can activate PI3K (Chen et al., 2015; Su et al., 2016) and where activated mTOR signaling 

may activate transcription targets of hypoxia via HIF-1alpha (particularly in the absence of 

VHL), including NDRG1 and growth factors that may lead to a further increase ERK and 

PI3K signaling (Clark, 2009). Notably, VHL was recently found to directly suppress AKT 

activity (Guo et al., 2016), and generation of 2-hydroxyglutarate (2HG) by mutated IDH1/2 
was also recently found to lead to the activation of mTOR (Carbonneau et al., 2016); our 

data here would highlight the importance of both of the above relationships in the setting of 

human cancer.

Discussion

TCGA pan-cancer datasets have enabled us to examine human tumor correlations in the 

context of PI3K/AKT/mTOR, to an extent not previously possible. Our current model of the 

PI3K/AKT/mTOR pathway has developed over the course of numerous independent 

molecular biology studies, spanning decades of research. In large part, our understanding of 

the pathway members and interactions involved has been derived from experimental 

systems, including cell lines. While cell lines may uncover cause-and-effect relationships in 

vitro, the relevance of such relationships in the setting of human diseases such as cancer may 

not always be clear from these data alone. On the other hand, molecular data from human 

tumors provide correlative (though not necessarily causal) relationships that would have 

relevance to disease in the human setting. Most of the correlations observed in our study fit 

well with our understanding of PI3K/AKT/mTOR signaling, in particular the genetic or 

genomic alteration of specific genes having an impact on phospho-protein expression of key 

downstream intermediates. Genes or alteration classes that were previously underappreciated 

would also be found relevant in our study, including partial loss of PTEN or STK11 
(associated with both worse survival and increased mTOR signaling). Where gene mutation 

often inactivates one allele, loss of one allele by copy alteration, which is common across 

multiple cancer types for both PTEN and STK11, would presumably have the same impact 

on loss of gene function. IDH1 and VHL mutations would also be implicated here with 

PI3K/AKT/mTOR, where such alterations were associated with particularly high AKT/

mTOR signaling, and which genes might be put forth for consideration as part of the 

“canon” of what would be recognized to constitute the core standard model of PI3K/AKT/

mTOR pathway.
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The multiplatform molecular datasets offered by TCGA allow for a more comprehensive 

view of PI3K/AKT/mTOR pathway. Pathway alterations in cancer may be manifested at 

different levels of molecular complexity, from DNA to protein to transcriptional 

consequences. Integration with RPPA proteomic data allows us to assess the impact on 

pathway activation of mutations or copy alterations observed at the DNA level. As observed 

in this study, multiple oncogenic pathways in addition to PI3K/AKT/mTOR may regulate 

similar sets of transcriptional targets, where transcriptional patterns would represent a degree 

of separation from the pathway as manifested at the protein level. Phospho-protein levels 

may only be assessed by protein data and not mRNA data, which also represents an 

advantage of RPPA as compared to other proteomic approaches (Creighton and Huang, 

2015). Clear overall trends may be observed when integrating proteomic data with data from 

other platforms, though statistical trends (e.g. visualized as boxplots) would apply to groups 

of patients and not always to the individual patient, which has implications regarding 

personalized therapy. Various sources of biological noise, in addition to technical noise, may 

be present within human tumors, which give rise to variation in molecular signals. 

Widespread molecular aberrations involving numerous genes and pathways within a given 

tumor, clonal heterogeneity, microenvironmental influences, variable sample purity, and 

tissue-specific effects can all add noise to our ability to match protein signals with specific 

DNA alterations. The RPPA methodology may have limitations as well (e.g. antibody 

robustness, unknown history of sample material used to measure potentially labile 

phosphorylations, linearity of signal readout, etc.), and instances where proteomic signals 

would seem disconnected from other molecular profile features of a particular tumor may be 

difficult to interpret. The power of large sample numbers and the opportunities for data 

integration offered by TCGA pan-cancer cohort can aid greatly in detecting robust patterns 

relevant to our understanding aspects of pathway deregulation.

Results of this study include a comprehensive and annotated catalog of PI3K/AKT/mTOR-

associated variants across over 10,000 tumors, which may serve as an additional resource for 

assessing variants in the clinical setting. One of the challenges of applying personalized and 

precision medicine approaches to cancer therapy is the large number of gene alterations that 

may be found within a given patient’s tumor. Stratifying patients by mutation status, e.g. 

PIK3CA mutation, has been shown to increase response rates in clinical trials testing 

inhibitors to PI3K/AKT/mTOR pathway, though non-responders are still common (Ilagan 

and Manning, 2016). Not all genetic variants impacting a given gene would necessarily have 

a similar impact on its function, including a large fraction of observed PIK3CA variants. 

Oncogenic variants that are found to occur frequently or are associated with a significant 

pattern would seem likely to be functionally relevant. Other measures of predicting variant 

functionality include in silico structural predictions, in vitro functional assays, domain-

specific expertise, and protein expression, all of which were explored to varying extents in 

the present study. In practice, multiple measures may be needed, as no single measure may 

capture all of the variants likely to be functional. In addition, the RPPA proteomic platform 

would have potential for clinical applications to personalized therapy (Creighton and Huang, 

2015), and transcriptional signatures associated with inhibitor sensitivity in cell lines may be 

defined (Singh et al., 2009). The focused, comprehensive analysis on the PI3K/AKT/mTOR 
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pathway here will serve as a valuable resource for understanding its deregulation in cancers 

and how to maximize its clinical utility.

Experimental Procedures

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Chad J. Creighton (creighto@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—Cancer molecular profiling data were generated through informed 

consent as part of previously published studies and analyzed in accordance with each 

original study’s data use guidelines and restrictions.

Cell lines—Assay medium for survival assay were Advanced RPMI 1640 medium (Life 

Technologies) with 5% FBS (Life Technologies) and 1x GlutaMAX (Life Technologies) for 

Ba/F3 cells and MEBM Basal medium (Lonza) with 100 ng/ml Cholera toxin (Lonza) and 

52 ng/ml Bovine Pituitary Extract (BPE) (Lonza) for MCF10A cells.

METHOD DETAILS

TCGA patient cohort—The results here are based upon data generated by TCGA 

Research Network (http://cancergenome.nih.gov/). Molecular data from 11219 human 

cancers were aggregated from public repositories (Table S1). Tumors spanned 32 different 

TCGA projects, each project representing a specific cancer type, listed as follows: LAML, 

Acute Myeloid Leukemia; ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial 

Carcinoma; LGG, Brain Lower Grade Glioma; BRCA, Breast invasive carcinoma; CESC, 

Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, 

Cholangiocarcinoma; CRC, Colorectal adenocarcinoma (combining COAD and READ 

projects); ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and 

Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear 

cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular 

carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; DLBC, 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; MESO, Mesothelioma; OV, Ovarian 

serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma 

and Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin 

Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell 

Tumors; THYM, Thymoma; THCA, Thyroid carcinoma; UCS, Uterine Carcinosarcoma; 

UCEC, Uterine Corpus Endometrial Carcinoma.

Datasets—Proteomic data were generated by RPPA across 7663 patient tumors obtained 

from TCGA. RPPA methodology and quality control procedures have been described 

previously (Akbani et al., 2014; Li et al., 2017). In total, 225 high-quality antibodies 

targeting total (n=166), cleaved (n=2), acetylated (n=1) and phosphoproteins (n=56) were 

used. The entire set of RPPA Pan-Cancer samples was run in several different batches, 

resulting in potential batch effects on merging the sets; replicates-based normalization 
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(RBN) (Akbani et al., 2014), was therefore applied, using replicate samples run across 

multiple batches to adjust the data for batch effects. Data (“Level 4”) are available from The 

Cancer Proteome Atlas (http://tcpaportal.org/tcpa/).

RNA-seq and miRNA-seq data were obtained from The Broad Institute Firehose pipeline 

(http://gdac.broadinstitute.org/). All RNA-seq samples were aligned using the by UNC 

RNA-seq V2 pipeline (The_Cancer_Genome_Atlas_Research_Network, 2013). For 

miRNA-seq data, only sample profiles from the Hiseq platform were used (representing 

n=8690 cases).

DNA from each tumor or germline-derived sample was hybridized to Affymetrix SNP 6.0 

arrays as previously described (The_Cancer_Genome_Atlas_Research_Network, 2013)

(n=10845 tumor profiles in all). GISTIC 2.0 was applied to the transformed copy number 

data, with a noise threshold used to determine copy gain or loss. Low-level gene gain, high-

level gene amplification, low-level copy loss, or high-level copy loss were inferred using the 

“thresholded” calls as made by Broad Firehose pipeline (using +1, +2, −1, or −2, 

respectively). High-level amplifications denotes amplifications above the threshold and 

larger than the arm level amplifications observed for the given sample. Low-level copy 

deletions represent deletion above the threshold (approximating heterozygous deletions in 

the absence of whole genome doubling); high-level copy deletions denote copy losses above 

the threshold and greater than the minimum arm-level deletion observed for the sample 

(approximating homozygous deletions in the absence of whole genome doubling). Log 

(tumor/normal) copy values were used to evaluate correlations with survival in Figure 6A.

Somatic mutation calls were obtained from the publicly-available “MC3” TCGA MAF file 

(covering n=10224 patients, https://www.synapse.org/#!Synapse:syn7214402). This MC3 

set is a re-calling of uniform files from all TCGA projects, with variant calling using a 

standardized set of mutation callers. The BAM files used underwent a standardized local re-

alignment to hg19 (Genome Reference Consortium GRCh37), six calling algorithms were 

applied, and a number of automated filters were applied. Variants called by two or more 

algorithms were used in the study. Whole genome sequence analysis was carried out for 

1363 cases (with paired normal samples, high pass coverage for BRCA and OV cases, low 

pass for BLCA, CESC, CRC, ESCA, HNSC, LGG, LUAD, PRAD, SKCM, STAD, THCA, 

UCEC, and UVM). Genomic rearrangements were detected in all tumor and normal 

genomes by Meerkat (Yang et al., 2013). Five discordant read pairs support are required for 

each event. Each event was detected in tumor genome was filtered by all normal genomes to 

ensure it represented a somatic event.

Gene and protein signatures—Pan-cancer RPPA profiles were scored for a PI3K/AKT 

pathway signature, defined as the sum of normalized phosphoprotein levels of AKT (both 

S473 and T308 RPPA features), GSK3 (S9 and S21/S9 features), PRAS40, and phospho-

TSC2. RPPA profiles were also scored for an mTOR pathway signature, defined as the sum 

of phosphoprotein levels of mTOR, 4EBP1 (S65, T37/T46, and T70 RPPA features), 

P70S6K, and S6 (S235/S236 and S240/S244 features).
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Gene transcriptional signatures of PI3K/AKT/mTOR pathway were defined as described 

previously (Creighton et al., 2010): “Saal” PTEN loss signature, genes correlated with Pten 

protein levels in breast cancer; “CMap” PI3K/AKT/mTOR signature, genes modulated in 

vitro by inhibitors to PI3K or mTOR, according to CMap dataset (p<0.01, comparing PI3K/

mTOR-inhibited cells with the rest of the Cmap profiles); “Majumder” Akt signature, genes 

modulated in a mouse model of inducible AKT (p<0.01). MYC signatures (Coller and Bild) 

and the Bild Ras signature were from ref (Creighton, 2008), and the Settleman k-ras 

sensitivity signature were from ref (Singh et al., 2009). For a given gene transcription 

signature, we extracted the expression values from the TCGA gene expression array dataset. 

For each gene, we normalized expression values to standard deviations from the median 

across tumors. For signatures with “up” versus “down” genes, we computed our previously 

described “t-score” (Creighton et al., 2010) to score each tumor profile for relative 

manifestation of the signature.

For deriving a PI3K/AKT/mTOR drug sensitivity signature in cell lines (Figure 5D), we 

utilized the dataset from Garnett et al. (Garnett et al., 2012). For the 11 inhibitors to 

PI3K/AKT/mTOR represented in Garnett (including Rapamycin:MTOR, JW-7-52-1:MTOR, 

A-443654:AKT1/2/3, CHIR-99021:GSK3B, AZD6482:PI3Kb (P3C2B), AKT inhibitor 

VIII:AKT1/2, Temsirolimus:MTOR, MK-2206:AKT1/2, NVP-BEZ235:PI3K (class 1) and 

mTORC1/2, GDC0941:PI3K (class 1), and AZD8055:mTORC1/2), we normalized IC50 

values to standard deviations from median, then average to get single drug sensitivity score. 

Each gene was correlated in expression with the drug sensitivity score, first selecting for 

genes significant with p<0.01 by t-test on log-transformed data (1099 significant genes), 

then further selecting for genes remaining significant after correcting for tissue type 

differences using a regression model that incorporates tumor type as a confounder (146 

genes with corrected p<0.01).

In silico mutation evaluation—In assessing whether mutations may be more or less 

likely to have a functional effect on the resulting protein, a number of factors were 

considered. Somatic substitution hotspots (470 in total involving 275 genes), based on a 

previous pan-cancer analysis of 11119 human tumors (Chang et al., 2016), were 

incorporated into the present study where noted. Mutation Assessor calls predicting the 

functional impact (medium to high) of somatic mutation (Reva et al., 2011) were obtained 

from cBioPortal (Cerami et al., 2012). Manual review of variants involving AKT1/2/3, 

MTOR, PIK3CA, PTEN, RHEB, TSC1/2 was also carried out by domain experts in the 

analysis group. Mutations that were predicted as potentially functional by any of the above

—as well as mutations in tumor suppressor genes (e.g. PTEN, PIK3R1) classified as 

nonsense, frameshift, or indel—were evaluated separately with respect to comparing with 

AKT pS473 phospho-protein expression (Figure 3D).

Cell line viability assays—The effects of mutations on the function of PIK3CA and 

PIK3R1 were assessed in Ba/F3 and MCF10A by survival assay as previously described 

(Dogruluk et al., 2015) with lentiviral vector pHAGE used in the cloning. In Ba/F3, the 

PIK3CA mutations were assigned as “Strong activating (SA)” if the mutations have an 

activity higher than M1043I (known moderate driver); as “Moderate activating (MA)” if the 
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mutations have a similar or lower activity than M1043I; as “No difference from WT 

(NDFW)” if the mutations have a similar activity with WT; or as “Inactivating (INA)” if the 

mutations have an activity similar to negative controls (GFP/mCherry/Luciferase). The 

PIK3R1 mutations were assigned as “SA” if the mutations have a relative level of activation 

higher than that of PIK3CA M1043I comparing to negative controls; as “MA” if the 

mutations have a relative level of activation between PIK3CA M1043I and WT; as “Weak 

activating (WA)” if the mutations have a relative level of activation between PIK3CA WT 

and negative controls; or as “NDFW” if the mutations have a similar activity with WT. In 

MCF10A, the PIK3CA mutations were assigned as “SA” and “NDFW” by the same mean as 

in Ba/F3 model. The mutations were assigned as “MA” and “WA” if the mutations have an 

activity above and lower than 50% of that of M1043I, respectively.

Tumor classes by gene alteration—Genetic/genomic alteration classes in relation to 

PI3K/AKT/mTOR pathway alteration were defined (Figure 7A), in order to relate these to 

PI3K/AKT and mTOR activation, as defined by protein signature score. For AKT/MTOR/

PIK3CA/PIK3R1/PTEN mutations, “predicted functional” mutations from Figure 3D were 

used. An “other gene mutation” class of Figures 7A and 7B involved nonsilent mutations for 

other genes represented in Figure 2A (AKTS1, DEPDC5, DEPTOR, MAPKAP1, MLST8, 

NPRL2, NPRL3, PDK1, PRR5, RHEB, RICTOR, RPTOR, PIK3C2B). The RTK group 

represented cases with hotspot mutations in KRAS, BRAF, EGFR, or ERBB2, that were not 

also included in the other PI3K/AKT/mTOR-related groups. The set of genes previously 

found significantly mutated in pan-cancer analysis (Lawrence et al., 2014), were searched 

for enrichment of mutation events within the High P-AKT group (Figure 7C). When 

defining proteins that were highly expressed specifically within the High P-AKT group 

(Figure 7D), RPPA features were selected that were over- or under-expressed in the High P-

AKT compared to unaligned cases (p<0.05, t-test on log-transformed data) for at least four 

of the seven cancer types, and differentially expressed in High P-AKT compared to 

unaligned and to PI3K/AKT/mTOR or RTK-altered cases across all cancer cases (p<0.01 for 

each).

QUANTIFICATION AND STATISTICAL ANALYSIS

All p values were two-sided unless otherwise specified. Statistical significance was defined 

at the 0.05 threshold. All available TCGA data in the public domain at the time of this study 

was utilized, and no patients were deliberately excluded. Differential expression between 

comparison groups was assessed using t-test on log-transformed values. For visualization 

using heat maps and box plots, mRNA and protein expression values were z-normalized to 

standard deviations from the median across all tumor sample profiles.

Individual gene and protein features were evaluated for correlation with patient survival by 

univariate Cox analysis; in addition, a stratified Cox model was used to evaluate survival 

association when correcting for tumor type. For PTEN and STK11 copy alteration features 

(Log [tumor/normal] ratios), Cox regression analysis within each individual cancer type was 

carried out; then, in order to aggregate the results across cancer types, we used “metafor” R 

package to conduct meta-analyses, with a random-effects model used to estimate the overall 

effectiveness of the molecular feature. For Kapan-Meier plots, a stratified Log-rank test 
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evaluated differences between tumor groups after correction for tumor type. Patient survival 

data from TCGA were current as of March 31, 2016.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Our current model of PI3K/AKT/mTOR pathway has largely been derived from 

experimental systems. The Cancer Genome Atlas (TCGA) pan-cancer cohort represents 

an opportunity to explore these pathway relationships in the setting of human cancer. 

Cause-and-effect relationships embodied by the pathway model can manifest as 

correlations in human disease. Integration of genomic with proteomic data may benefit 

personalized and precision medicine approaches in helping to assess variants for potential 

clinical relevance. Manifestation of pathways at the transcription level is distinct from 

manifestation at the phospho-protein level, highlighting the importance of proteomic 

approaches. Over time, previously unrealized or underappreciated members or 

connections may be incorporated into the standard pathway model, where TCGA data 

may aid in the process of discovery or confirmation.
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Highlights

• Multiplatform-based survey of PI3K/AKT/mTOR across over 10,000 human 

cancers

• Distinct classes of somatic alteration associated with greater pathway 

activation

• Functional interrogation of specific mutations in PIK3CA and PIK3R1

• Support for inclusion of IDH1 and VHL mutations within the canonical 

pathway model
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Figure 1. Proteomic signatures of PI3K/AKT and mTOR across human cancers
(A) Heat map of RPPA features considered core to either PI3K/AKT or mTOR pathways 

across 7663 cancers. Red, higher expression (values normalized to standard deviations from 

the median across all cancers); blue, lower expression. PI3K/AKT and mTOR features were 

each summarized into pathway activity scores for each tumor profile (yellow, higher inferred 

activity; blue, lower activity; bright yellow/blue denotes change of 1 standard deviation, or 

SD, from the median). Cancer types (denoted by TCGA project name) are ordered by low to 

high average mTOR pathway score. (B) Box plots of PI3K/AKT (top) and mTOR (bottom) 

pathway activities scores, as inferred using RPPA data. Box plots represent 5%, 25%, 50%, 

75%, and 95%. (C) Pearson’s correlations between RPPA features across all cancers, 

involving features core to PI3K/AKT or mTOR pathways, as well as involving features 
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representing proteins that may act peripherally upon either pathway. See also Figure S1 and 

Tables S1 and S2.
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Figure 2. Somatic mutations and DNA copy and structural alterations involving components of 
the PI3K/AKT/mTOR pathway across human cancers
(A) Diagram of somatic mutation and copy number alteration (CNAs) frequencies involving 

components of the PI3K/AKT/mTOR pathway. Key genes (with significant or sizable 

frequencies of alteration) are indicated by rectangles, with the percentages of somatic 

mutations and CNAs shown in the left and right portions of each rectangle, respectively. 

Significantly altered genes (from (Chang et al., 2016; Kandoth et al., 2013; Lawrence et al., 

2014; Zack et al., 2013); percentages representing significant alterations are underlined) are 

bounded by orange lines. Red, potentially activating genetic alterations; blue, potentially 

inactivating genetic alterations. Copy loss represents either “high-level” deletion 

(approximating homozygous deletion) or mutation in combination with “low-level” deletion 

(partial loss). (B) By cancer type, percentages of somatic mutation or copy alteration for 

each indicated gene. Amplification denotes “high-level” copy gain. Numbers of cases denote 

representation on WES data platform. (C) Genomic rearrangements (represented in circos 

plot) involving PTEN, INPP4B, STK11, TSC1, TSC2, PIK3R1, or PPP2R1A, based on 

analysis of 1363 cases with WGS data. (D) Left: Alterations involving PTEN (somatic 

mutation, copy alteration, structural variation or SV) found in the set of 1093 cancers cases 

having both WGS and RPPA data available (protein values normalized to standard 

deviations, or SDs, from the median). Right: Box plot of PTEN protein expression by 

alteration class. Box plots represent 5%, 25%, 50%, 75%, and 95%. P values by t-test on 

log-transformed values. See also Figure S2 and Tables S3 and S4.
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Figure 3. Distributions of mutations in key PI3K/AKT/mTOR pathway genes and association 
with protein activation
(A) PIK3CA nonsilent, somatic variant frequencies and distribution across domain-

annotated p110α protein structure. “Recurrent” denotes mutation event observed in 2 or 

more tumor cases. “Hotspot” denotes recurrently mutated residues as identified by pan-

cancer sequence analyses (Chang et al., 2016). “MA” denotes “medium” or “strong” 

functional prediction by Mutation Assessor algorithm (Reva et al., 2011). (B) Box plot of 

p110α expression by PIK3CA alteration class (gene amplification, gain of 1–2 copies, 

mutation, or none of the above, i.e. “unaligned”). P values by t-test on log-transformed 

values. (C) Distributions of nonsilent and somatic variants within PIK3R1 (top) and MTOR 
(bottom) across their respective domain-annotated protein structures. (D) Box plot of AKT 

pS473 phospho-protein expression by mutation (“mut.”) or copy alteration class, with the 

“unaligned” cases having none of the listed alteration types. “p.f.” denotes “predicted 

functional” mutations (by hotspot or by Mutation Assessor analysis or by literature review or 

by nonsense/frameshift/indel involving PTEN or PIK3R1); “amp.” denotes high-level gene 

amplification; “low-lev.” and “high-lev.”, low-level and high-level copy deletions, 

respectively. P values by t-test on log-transformed values. n.s., not significant (p>0.05). Box 

plots represent 5%, 25%, 50%, 75%, and 95%. Points in box plots are colored according to 

tumor type as defined by TCGA project as indicated in (D). See also Figure S3.
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Figure 4. Functional assessment of specific PIK3CA and PIK3R1 variants by cell line viability 
assays
(A, B) Ba/F3 or MCF-10A cells were transfected with wild-type (WT) or indicated mutant 

cDNA of PIK3CA (A) or PIK3R1 (B) then cultured for 4 weeks and harvested for viability 

assay. The extent of functionality conferred by the variant is indicated by colorgram. NFE/

NDFW, no functional effect/no difference from wild-type. For the mutant variants assessed, 

corresponding human cancer data from TCGA are shown, including frequency of the variant 

(relative to other variants found for the same gene) and average protein expression for AKT 

pS473 and TSC2 pT1462. Hotspot residue, from ref (Chang et al., 2016). (C) For PIK3CA 
(left) and PIK3R1 (right), box plots of variant frequency in TCGA human tumors (relative to 

other variants found for the same gene) by functional assays results. P values by Mann-

Whitney U-test. Box plots represent 5%, 25%, 50%, 75%, and 95%. See also Figure S4 and 

Table S5.
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Figure 5. Survey of two distinct PI3K/AKT/mTOR-associated gene transcription signatures 
across human cancers
(A) A previously defined gene transcription signature of PI3K/AKT/mTOR (Creighton et 

al., 2010)(originally derived using the Connectivity Map, or CMAP, dataset) was re-

examined in the LINCS database of perturbational expression profiles, with PI3K/AKT/

mTOR inhibitor treatment group compared with control group. (B) The PI3K/AKT/mTOR 

“CMAP” signature was evaluated against the LINCS expression profiles of cells treated with 

shRNAs for ~6K different genes. In the plot shown, shRNAs are ranked according to the 

overall similarities in their induced expression patterns with those of the PI3K/AKT/mTOR 

signature; for example, for shRNAs represented on the left of x-axis, knockdown of the gene 

results in a pattern inverse of that of the PI3K/AKT/mTOR signature. Red, canonical 

promoter of PI3K/AKT/mTOR pathway; blue, canonical suppressor. (C) TCGA pan-cancer 

mRNA profiles (n=10224 cases) were each scored for various transcriptional signatures 

associated with PI3K/AKT/mTOR, MYC, or k-ras pathways (defined previously using 

experimental models). Pearson’s correlations between indicated transcriptional and 

proteomic signature scores across the pan-cancer profiles are indicated, along with 

correlations of the signatures with specific genomic alterations. (D) A gene expression 

signature of sensitivity to PI3K/AKT/mTOR inhibition in cancer cell lines, consisting of 146 

genes (p<0.01 by t-test and p<0.01 in regression model incorporating tumor type as a 

confounder), was derived using the Garnett et al. dataset (Garnett et al., 2012). (E) Top: For 
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cell lines with both RPPA and mRNA data (n=231), Pearson’s correlations between key 

PI3K/AKT/mTOR proteins and PI3K/AKT/mTOR inhibition sensitivity (as defined by 

either drug treatment or gene signature from(D). Bottom: TCGA pan-cancer mRNA profiles 

were each scored for the drug sensitivity signature from (D); Pearson’s correlations across 

the pan-cancer profiles, involving transcriptional and proteomic signature scores and 

selected genomic features, are indicated. See also Figure S5 and Table S6.
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Figure 6. Pan-cancer molecular correlates of patient survival involving PI3K/AKT/mTOR 
pathway components
(A) Pathway diagram representing molecular features at the levels of mRNA (using n=10152 

cancer cases in total with both mRNA and survival data), protein (n=7532), copy number 

(n=10685), and somatic mutation (n=10054). Red, significant correlation with worse patient 

outcome; blue, significant correlation with better outcome. “Tumor type corrected” survival 

p values denote significant correlation in model incorporating both the molecular feature and 

cancer type. P values < 0.05 correspond to an estimated False Discovery Rate (Storey and 

Tibshirani, 2003) of < 10%. (B) Forest plots of hazard ratios by tumor type (with 95% 

confidence intervals) for patient death for PTEN copy alteration (left) and for STK11 copy 

alteration (right). Hazard ratios based on log (tumor/normal) copy values; hazard ratio less 

than 1 (blue) denotes trend of copy loss with worse outcome. P value for overall survival 

correlation by meta-analysis fixed effects model. Asterisks denote cancer types that were 

individually significant (p<0.05). (C, D) Kaplan-Meier plot of overall survival of patients 

stratified by PTEN (C) or STK11 (D) alteration. Low del., low-level deletion (partial loss, no 

detected mutation); high del., high-level deletion (approximating total loss); mut., somatic 

nonsilent mutation (no copy loss); mut.+ del., copy loss combined with mutation. 

“Corrected” p values by stratified log-rank test incorporate cancer type as a confounder. 

Asterisks denote groups significantly different from wild-type (WT) group by stratified log-

rank test. (E) Kaplan-Meier plot of overall survival of patients stratified by PI3K/AKT/

mTOR transcriptional signature (“CMAP” signature). “Corrected” p values by stratified log-

rank test incorporate cancer type as a confounder.
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Figure 7. Tumor classes as defined by PI3K/AKT/mTOR-related alterations
(A) Tumor cases were separated into distinct groups on the basis of genetic or genomic 

alteration and of protein expression: 1) cases with nonsilent somatic mutation or copy 

alteration involving selected PI3K/AKT/mTOR pathway members as shown (left side, 

n=4468 cases), 2) additional cases with nonsilent mutation involving selected Receptor 

Tyrosine Kinase (RTK)-associated genes (n=415 cases), 3) cases with high phospho-AKT 

(“HIGH P-AKT”) but with none of the above somatic alterations (n=764 cases), 4) cases 

with LOW phospho-AMPK (“LOW P-AMPK”) but with none of the above somatic 

alterations (n=394 cases), 5) cases not aligned with any of the above (“unaligned,” n=1058 

cases). AKT/MTOR/PIK3CA/PIK3R1/PTEN mutations represent “predicted functional” 

mutations from Figure 3D. “Other mut.” track involves nonsilent mutations for other genes 

represented in Figure 2A (Methods and Figure S6). Protein values and proteomic scores 

normalized to standard deviations, or SDs, from the median. (B) Box plots of PI3K/AKT 

(top) and mTOR (bottom) pathway activity scores by alteration class. P values by t-test on 

log-transformed values. n.s., not significant (p>0.01). Box plots represent 5%, 25%, 50%, 
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75%, and 95%. (C) Enriched tumor types and mutations within the HIGH P-AKT group. P 

values by one-sided Fisher’s exact test. IDH1 and VHL mutation events were significant 

(p<1E-10 and p<0.01, respectively) when limiting the analysis to LGG and to KIRC/KIRP 

(renal) cases, respectively. (D) Top differentially expressed proteins in HIGH P-AKT group 

compared to unaligned and PI3K-altered groups (see Methods), not including core 

PI3K/AKT/mTOR members. (E) Diagram of interactions involving PI3K/AKT/MTOR 

pathway represented by selected features from (C) and (D) (Carbonneau et al., 2016; Dodd 

et al., 2015; Guo et al., 2016; Weiler et al., 2014), with differential protein expression 

patterns represented, comparing tumors in HIGH P-AKT group with tumors harboring 

PI3K/RTK genomic alteration or with unaligned tumors. P values by t-test on log-

transformed data. See also Figure S6.
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