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Purpose: To determine whether the addition of standardized uptake value (SUV) from PET scans to
CT lung texture features could improve a radiomics-based model of radiation pneumonitis (RP) diag-
nosis in patients undergoing radiotherapy.
Methods and materials: Anonymized data from 96 esophageal cancer patients (18 RP-positive
cases of Grade ≥ 2) were collected including pre-therapy PET/CT scans, pre-/post-therapy diagnostic
CT scans and RP status. Twenty texture features (first-order, fractal, Laws’ filter and gray-level co-
occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched
regions of the lung. Classifier performance (texture, SUV, or combination) was assessed by calculat-
ing the area under the receiver operating characteristic curve (AUC). For each texture feature, logistic
regression classifiers consisting of the average change in texture feature value and the pre-therapy
SUV standard deviation (SUVSD) were created and compared with the texture feature as a lone classi-
fier using ANOVAwith correction for multiple comparisons (P < 0.0025).
Results: While clinical parameters (mean lung dose, smoking history, tumor location) were not sig-
nificantly different among patients with and without symptomatic RP, SUV and texture parameters
were significantly associated with RP status. AUC for single-texture feature classifiers alone ranged
from 0.58 to 0.81 and 0.53 to 0.71 in high-dose (≥ 30 Gy) and low-dose (< 10 Gy) regions of the
lungs, respectively. AUC for SUVSD alone was 0.69 (95% confidence interval: 0.54–0.83). Adding
SUVSD into a logistic regression model significantly improved model fit for 18, 14 and 11 texture fea-
tures and increased the mean AUC across features by 0.08, 0.06, and 0.04 in the low-, medium-, and
high-dose regions, respectively.
Conclusions: Addition of SUVSD to a single-texture feature improves classifier performance on
average, but the improvement is smaller in magnitude when SUVSD is added to an already effective
classifier using texture alone. These findings demonstrate the potential for more accurate assessment
of RP using information from multiple imaging modalities. © 2017 American Association of Physi-
cists in Medicine [https://doi.org/10.1002/mp.12282]
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1. INTRODUCTION

Radiation pneumonitis (RP) is a symptomatic lung toxicity
caused by an inflammatory response to radiation.1 This
response allocates a cascade of cytokines to the radiation-
damaged tissue2 and can lead to the development of RP with

varying severity. Patients with thoracic malignancies who
undergo radiation therapy (RT) can thus develop a range of
RP symptoms, including cough, dyspnea, fever, and even
death.3 Therefore, development of a reliable method to pre-
dict future onset of RP is critical to assess patient-specific
risk associated with thoracic RT. Such an approach could
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help designate at-risk patients and facilitate earlier interven-
tion or earlier RP diagnosis and treatment by modifying the
radiation treatment plan or initiating steroid administration to
reduce the severity of eventual symptoms.

RP onset has been correlated with treatment variables such
as dose and the volume of lung irradiated,4 as well as lung
density or texture change as quantified by computed tomogra-
phy (CT). Our laboratory previously5 analyzed the dose-
dependent change in 20 CT texture features as potential pre-
dictors of RP. Linear modeling showed a significant relation-
ship between the change in texture feature values and
development of grade ≥ 2 RP for 12 of these 20 features,
even when controlling for dose. Earlier studies indicated that
CT-based texture features show promise as a means to distin-
guish between healthy and diseased lung tissue. Chabat
et al.6 illustrated textural differences in CT images between
three forms of obstructive lung disease and normal lung tis-
sue using a Bayesian classifier. Mattonen et al.7 demon-
strated the ability of texture features in CT images to predict
cancer recurrence in non-small cell lung cancer (NSCLC)
patients undergoing stereotactic ablative radiotherapy.

Although CT texture provides quantitative assessment of
structural changes in the lung induced by RT, the inflamma-
tory roots of RP have prompted a search for additional bio-
logical predictors of RP, including cytokines and other
immune response factors. Oh et al.8 and Craft et al.9 found
alpha-2-macroglobulin (a2M), an acute-phase protein
involved in the inflammatory response, to be the best candi-
date for a predictive biomarker of early RP onset. Naqa
et al.10 determined the post- to pre-therapy ratios of a2M and
interleukin-6 (IL-6) to be predictive of RP development in
NSCLC patients. Castillo et al.11,12 hypothesized that patients
with naturally stronger immune responses would also be
more susceptible to RP development and examined [18F]-2-
fluoro-2-deoxyglucose (18F-FDG) uptake levels in the lungs
from pre-therapy positron emission tomography (PET) scans
of NSCLC patients11 and esophageal cancer patients.12 The
functional data conveyed by the parameter SUV95, indicative
of pre-RT “background” lung inflammation, was found to be
predictive of subsequent symptomatic RP.11,12

The present study examined the association between
development of symptomatic RP in esophageal cancer
patients following RT and measures of the distribution of
standardized 18F-FDG uptake values in the lungs of those
patients prior to RT. It also assessed the improvement of a
new model for RP diagnosis, which combines dose-depen-
dent texture feature changes in CT as well as 18F-FDG uptake
in pre-therapy PET scans, over a model that incorporates only
CT texture feature changes.

2. METHODS AND MATERIALS

2.A. Patient population

A retrospective database of 106 esophageal cancer patients
who received curative RT at The University of Texas M.D.
Anderson Cancer Center was compiled as previously

reported in a study that assessed the utility of CT texture fea-
tures alone to study RP development.5 Each patient had a
pre-treatment CT scan, a treatment-planning scan and at least
one post-treatment CT scan available. Only 96 of these
patients also had pre-treatment standardized uptake value
(SUV) data and could be included in the present study.

The severity of RP for each patient at first presentation was
determined retrospectively through consensus of three clini-
cians using the Common Toxicity Criteria for Adverse Events,
version 4 (CTCAE v4), as described previously.5 Upon review
of clinical notes including baseline respiratory function, treat-
ment plan, and pre- and post-RT imaging, each patient was
assigned a binary value for RP status, which was evaluated up
until six months after completion of RT or until esophagec-
tomy: one indicated presence of symptomatic RP (Grade ≥ 2),
and 0 indicated absence of symptomatic RP (Grade < 2).

2.B. PET images

A subset of the PET images used by Castillo et al.12 were
acquired with calculated SUV values. For each patient, the
raw PET images were converted to SUV maps on a pixel-by-
pixel basis according to the following equation:

Standard Uptake Value ðSUVÞ
¼

18F-FDG count rate per mL � body weight ðgÞ
decay corrected 18F-FDG injected dose ðBqÞ

(1)

The voxels of the registered SUV map that were within the
boundaries of the lung ROI were then used to generate a his-
togram of SUV values, from which the following statistics
were calculated for each patient: the mean (SUVmean), maxi-
mum (SUVmax), standard deviation (SUVSD), and 50th, 60th,
70th, 80th, 90th and 95th percentile SUV values (SUV50–95).
This resulted in a single value for each statistic to characterize
the pre-treatment tracer uptake in the lungs. The degree of
overlap between high-uptake (e.g., SUV95 or higher) and
high-dose regions of the lung was not evaluated, as it had
been previously determined that this relationship did not con-
tribute to the risk of RP in the parent database.12

2.C. CT images

Changes between pre-treatment and post-treatment diag-
nostic CT images, all of which were acquired with intravenous
contrast, were analyzed as described previously.5 In summary,
following application of in-house automated lung segmenta-
tion and demons deformable registration between the pre- and
post-therapy diagnostic CT scans and treatment-planning
scans/dose maps of each patient, pairs of anatomically
matched 32 9 32-pixel ROIs were automatically placed in
the lungs (mean: 703 ROI pairs per patient). The dose-depen-
dent change in each of 20 texture features distributed among
first-order, fractal, Laws’ filter, and gray-level co-occurrence
matrix (GLCM) classes, described elsewhere,13 was computed
within each pair of ROIs. For each feature, a patient-specific
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average change in feature value was calculated in three dose
regions (0–10 Gy, 10–30 Gy, and > 30 Gy), according to:

DFVl
p;d ¼

1
Np;d

X
Np;d

i FVPost
p;d;i � FVPre

p;d;i

� �
(2)

where DFVl
p;d is the average change in that feature value over

all ROIs located in dose region d of patient p, Np,d is the num-
ber of ROIs located in dose region d of patient p, and FVPre

p;d;i
and FVPost

p;d;i are the computed feature values in ROI i of dose
region d in the pre-therapy and post-therapy scan of patient p,
respectively. While the prior study5 used a cohort of 106
patients, the present study used texture results from the subset
of 96 patients who also had pre-treatment SUV data.

2.D. Statistical analysis

2.D.1. Patient characteristic comparisons

Patient characteristics and treatment parameters were sum-
marized using frequency tables. Associations with symp-
tomatic RP were evaluated using the Chi-squared test for
categorical variables and the Mann–Whitney U-test for con-
tinuous variables. Groups with an incidence of fewer than
five patients were combined for Chi-squared testing. A
p-value < 0.01 was used to assess significance.

2.D.2. SUV variable selection

SUV variables with the highest ability to distinguish
between RP-positive and RP-negative patients were initially
identified using Student’s t-tests (P < 0.05). Correlation
among these SUV variable candidates was tested using Pear-
son’s product moment correlation. Of the correlated vari-
ables, only the one with the lowest p-value was chosen for
inclusion in the logistic regression model.

2.D.3. ROC analysis of single variables

Receiver operating characteristic (ROC) analysis was used
to evaluate the RP classification performance of mean lung
dose (MLD) and volume of lung receiving more than 20 Gy
(V20), which have both been previously used as dosimetric
predictors of RP.4 The area under the ROC curve (AUC) was
calculated for these variables. Additionally, ROC analysis
was used to evaluate the performance of each CT texture fea-
ture and SUV variable individually. AUC values for CT tex-
ture features were computed using the average change in each
feature from pre- to post-therapy diagnostic CT scans in each
dose region (low, medium, and high). AUC values were also
calculated for all pre-treatment SUV variables. Significance
of AUC values was indicated by 95% confidence intervals
(CIs) that did not overlap 0.5.

2.D.4. Regression modeling of multiple variables

Previous linear regression modeling on this database of
cases indicated that texture feature change was significantly

related to RP status, even when controlling for random
patient effects and mean dose in each ROI.5 Thus, logistic
regression models for RP as a function of two features were
constructed according to:

RP�DFVj þ SUV (3)

where RP is the binary radiation pneumonitis status
(grade ≥ 2 is positive), SUV is the SUV variable identi-
fied as described above, and DFVj is the mean dose-
dependent change in selected texture feature values
between the pre- and post-therapy CT scans. Models were
created for each of 20 texture features (j) across low-,
medium-, and high-dose regions. Analysis of variance
(ANOVA) was performed using a Chi-squared test at an
a = 0.05 level to determine whether addition of SUV to
DFV significantly improved model fit when corrected for
multiple comparisons using the Bonferroni approach
(P < 0.0025). Only two features at a time were included
in each regression model, as our previous modeling in
this database indicated that over-fitting occurs with more
than two features.5,14

2.D.5. ROC analysis of multiple variables

Patient data were divided into 50% training data and 50%
test data by random sampling, maintaining the ratio of RP-
negative to RP-positive cases [i.e., Fukunaga-Hayes
method].15 Following model training with the training data
using Eq. (3), each model was used to assess RP diagnosis
for each case in the test set, and an AUC value was calculated.
This partitioning and calculation process was repeated 1000
times, and the average AUC value and confidence intervals
over these iterations were obtained.

All statistical analysis was performed using Revolution R
v. 6.0.

3. RESULTS

Patient characteristics are summarized in Table I. Of the
96 patients, 19% developed RP grade ≥ 2. Patients with
tumor histology other than adenocarcinoma were more likely
to develop RP. Incidence of RP was not related to smoking
history, RT modality, MLD, V20, or the time interval
between CT scans and RT in our database (P > 0.01).

Figure 1 compares the pre- and post-therapy CT scans and
the pre-therapy SUV map of a patient who did not develop
symptomatic RP with those of a patient who developed grade
5 (fatal) RP.

SUV parameter values for the 96 patients are summarized in
Fig. 2. SUVSD differed the most between the RP-negative and
RP-positive groups (P = 0.015), while SUVmax differed second
most (P = 0.027). Because SUVSD was significantly correlated
with SUVmax (r = 0.806), SUVSD alone was selected for inclu-
sion in the model. The AUC values obtained from RP status
classification based on each SUV parameter alone are depicted
in Fig. 3, demonstrating that SUVmax and SUVSD are the only
parameters with AUC values significantly different from 0.5,
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equaling 0.71 (95% CI: 0.56–0.85) and 0.69 (95% CI: 0.54–
0.83), respectively.

Our previous work5 identified 12 CT texture features dis-
tributed among four feature classes that were associated with

RP status, even when controlling for mean dose in each ROI
using linear regression modeling (indicated with ‘a’ in
Table II). In the present study, ROC analysis for each CT tex-
ture feature in each dose region resulted in feature-averaged

TABLE I. Patient, treatment, and scan characteristics.

Parameter total (N) Parameter total (%) Symptomatica (N) Symptomatica (%) p-valueb

No of patients 96 100% 18 19% N/A

Gender 0.74

Male 83 86% 16 19%

Female 13 14% 2 15%

Median age (range) 62 yrs (29–81) yrs N/A 65.5 yrs (48.8–81) yrs N/A 0.27

Histology 0.005c

Adenocarcinoma 80 83% 11 14%

Squamous cell carcinoma 13 14% 5 38%

Neuroendocrine 2 2% 1 50%

Sarcoma 1 1% 1 100%

Sum of Squamous, Neuroendocrine, Sarcoma 16 17% 7 44%

Smoking history 0.55

Current 13 14% 1 8%

Former 64 67% 13 20%

Never 19 20% 4 21%

Tumor location 0.43d

Distal 56 58% 9 16%

GEJ 27 28% 4 15%

Middle 11 11% 4 36%

Proximal 2 2% 1 50%

Sum of GEJ, middle, proximal 40 42% 9 23%

Treatment modality 0.77

IMRT 55 57% 9 16%

3D-CRT 17 18% 4 24%

Proton 24 25% 5 21%

Treatment dose parameters

Median prescribed dose (range) 50.4 Gy (36–59.4) Gy N/A 50.4 Gy (45–50.4) Gy N/A 0.30

Median number of fractions (range) 28 (12–30) N/A 28 (25–28) N/A 0.37

Median MLD (range) 10.0 Gy (1.6–18.3) Gy N/A 11.3 Gy (1.6–15.7) Gy N/A 0.10

Median lung V20% (range) 17.6% (3.5–34.8) % N/A 20.9% (3.6–32.3) % N/A 0.16

Median interval between diagnostic CT scan and treatment

Pre-treatment scan to RT start (range) 25 days (0–45) days N/A 13 days (7–41) days N/A 0.03

Post-treatment scan from RT end (range) 38 days (21–75) days N/A 40 days (21–75) days N/A 0.07

Pre- and post-therapy CT scan parameters (N = 192)

Kilovoltage = 120 kVp 189

Kilovoltage = 140 kVp 3

Average slice thickness (range) 2.5 mm (2.0–4.0) mm

Average in-plane pixel resolution (range) 0.79 mm (0.66–0.98) mm

Incidence of RP

Grade 0 36 38%

Grade 1 42 44%

Grade 2 10 10%

Grade 3 5 5%

Grade 4 2 2%

Grade 5 1 1%

aSymptomatic RP grade ≥ 2.
bSignificance assessed at P < 0.01 using Chi-squared or Mann–Whitney tests.
cAdenocarcinoma versus sum of Squamous, Neuroendocrine, Sarcoma.
dDistal versus sum of GEJ, Middle, Proximal.
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AUC values > 0.5 as listed in Table II. For 17 of these fea-
tures, AUC values differed significantly from 0.5 in at least
one dose region (indicated with ‘b’ in Table II). However,

with the exception of the low-dose regions, these values were
generally higher (by 0.02 and 0.03 for medium- and high-
dose regions on average, respectively) than those obtained

FIG. 1. (From left to right) Spatially registered pre-therapy CT scans, post-therapy CT scans and pre-therapy SUV maps for two different patients. The patient in
the top row did not develop symptomatic RP. The patient in the bottom row developed grade 5 (fatal) RP. SUV color maps are presented on the same scale.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Mean SUV parameter values across patients, separated by RP status.
Error bars indicate one standard deviation. Significant differences between
groups using Student’s t-test (p < 0.05) are indicated with an asterisk (*).
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. AUC values for SUV variables as lone classifiers. (Error bars indi-
cate 95% CI of AUC). SUVmax and SUVSD are the only variables whose
AUC values are significantly different from 0.5.
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previously,5 likely due to the reduced database size. ROC
curves created for MLD and V20 resulted in AUCs of
0.625 (95% CI: 0.469–0.782) and 0.615 (95% CI: 0.469–
0.761), respectively, indicating no significant differences
from 0.5. This demonstrates that, unlike SUVSD or texture
features, MLD and V20 did not correlate with RP in our
database. To combine two discriminators, logistic regres-
sion models comprising one CT texture feature and SUVSD

were used, and AUC values of the classifiers were com-
puted. With the addition of SUVSD, AUC values improved
by 0.08, 0.06, and 0.04 on average in the low-, medium-,
and high-dose regions, respectively, over classification
based on the single-texture feature alone. ANOVA compar-
isons of these logistic regression models using Chi-squared
tests corrected for multiple testing (P < 0.0025) showed
SUVSD significantly improved model fit when added to 19
of the 20 CT texture features in at least one dose region
(indicated by ‘c’ in Table II). Adding SUVSD significantly
improved model fit for 18 texture features calculated in
low-dose regions, where the single-texture feature average
AUC was lower in value, compared with 11 texture fea-
tures calculated in high-dose regions.

4. DISCUSSION

Although the means and medians of SUV values for pixels
within the lungs do not appear to vary much between RP-
positive and RP-negative patients, the RP-positive group
tends to exhibit a greater frequency of high SUV values (as-
sociated with higher FDG uptake) in the lung (Fig. 1). This
tendency leads to selection of SUVSD as a viable candidate
for model improvement, while this variable’s correlation with
SUVmax justifies the exclusion of SUVmax from model build-
ing. Since the logistic regression models for RP assessment
improve significantly in at least one dose region when SUVSD

is individually paired with 19 of the 20 CT texture features, it
is highly likely that SUVSD provides information independent
from that provided by texture analysis. This finding was
expected, as SUV measures baseline lung inflammation prior
to RT, while CT texture feature changes are indicative of radi-
ation-induced reactionary biologic processes. Although tex-
ture change demonstrated in post-therapy CT scans may be
influenced both by radiation dose and by the development of
RP (which itself is affected by radiation dose), our prior work
has shown that CT texture change is related to RP

TABLE II. AUC values and 95% CIs for DFV with and without SUVSD in three dose ranges to assess feature performance in determining RP status.

Low dose (0–10 Gy) Medium dose (10–30 Gy) High dose (> 30 Gy)

Feature alone Feature + SUVSD Feature alone Feature + SUVSD Feature alone Feature + SUVSD

First-order features

70% quantilea 0.71b [0.58, 0.85] 0.79c [0.67, 0.90] 0.78b [0.66, 0.91] 0.82 [0.72, 0.93] 0.80b [0.68, 0.92] 0.83 [0.72, 0.94]

Mediana 0.70b [0.56, 0.84] 0.78c [0.66, 0.90] 0.75b [0.61, 0.89] 0.80c [0.69, 0.92] 0.78b [0.65, 0.91] 0.83 [0.72, 0.93]

Meana 0.68b [0.54, 0.83] 0.77c [0.63, 0.89] 0.76b [0.62, 0.89] 0.81c [0.70, 0.92] 0.79b [0.67, 0.90] 0.83c [0.72, 0.94]

Binned entropya 0.66b [0.51, 0.80] 0.74c [0.61, 0.85] 0.74b [0.61, 0.87] 0.78 [0.66, 0.90] 0.77b [0.64, 0.90] 0.80 [0.68, 0.91]

30% quantilea 0.68b [0.53, 0.83] 0.76c [0.64, 0.89] 0.72b [0.57, 0.87] 0.78c [0.66, 0.90] 0.76b [0.62, 0.90] 0.82c [0.71, 0.94]

Unbinned entropy 0.64b [0.50, 0.78] 0.70c [0.56, 0.83] 0.68b [0.54, 0.82] 0.73c [0.61, 0.85] 0.73b [0.60, 0.85] 0.77c [0.67, 0.88]

5% quantile 0.63 [0.48, 0.79] 0.71c [0.58, 0.83] 0.67b [0.52, 0.82] 0.73c [0.60, 0.85] 0.69b [0.55, 0.84] 0.76c [0.63, 0.89]

Minimum 0.61 [0.45, 0.77] 0.68c [0.53, 0.80] 0.60 [0.44, 0.76] 0.68c [0.55, 0.81] 0.70b [0.55, 0.84] 0.70c [0.56, 0.83]

Fractal features

Brownian dimensiona 0.67b [0.51, 0.83] 0.71 [0.57, 0.85] 0.74b [0.61, 0.87] 0.79 [0.68, 0.89] 0.81b [0.70, 0.92] 0.79c [0.67, 0.91]

Box-counting dimension 0.53 [0.36, 0.69] 0.65c [0.51, 0.78] 0.55 [0.39, 0.71] 0.66c [0.52, 0.79] 0.64 [0.48, 0.80] 0.72c [0.58, 0.84]

Fine box-counting dimension 0.55 [0.39, 0.71] 0.65c [0.51, 0.77] 0.54 [0.37, 0.70] 0.65c [0.51, 0.77] 0.58 [0.41, 0.75] 0.67c [0.53, 0.80]

Laws’ filter features

E5L5 entropya 0.62 [0.48, 0.76] 0.72c [0.56, 0.84] 0.74b [0.62, 0.86] 0.80c [0.70, 0.90] 0.80b [0.70, 0.90] 0.83c [0.73, 0.92]

R5L5 entropya 0.63 [0.49, 0.77] 0.73 [0.60, 0.86] 0.74b [0.61, 0.86] 0.78 [0.68, 0.89] 0.80b [0.68, 0.91] 0.81 [0.70, 0.91]

S5L5 entropya 0.62 [0.49, 0.76] 0.71c [0.56, 0.83] 0.73b [0.61, 0.86] 0.79c [0.68, 0.89] 0.79b [0.69, 0.90] 0.82 [0.72, 0.91]

W5L5 entropya 0.63b [0.50, 0.76] 0.73c [0.61, 0.83] 0.74b [0.61, 0.86] 0.79c [0.70, 0.89] 0.79b [0.68, 0.90] 0.81 [0.71, 0.91]

GLCM features

Sum averagea 0.68b [0.54, 0.83] 0.77c [0.65, 0.88] 0.75b [0.62, 0.88] 0.81 [0.70, 0.92] 0.79b [0.67, 0.90] 0.83 [0.73, 0.93]

Sum of squares variancea 0.69b [0.55, 0.83] 0.77c [0.65, 0.88] 0.76b [0.63, 0.89] 0.81 [0.70, 0.92] 0.79b [0.68, 0.90] 0.83 [0.73, 0.94]

Sum entropy 0.66b [0.52, 0.80] 0.71c [0.58, 0.83] 0.70b [0.56, 0.83] 0.75c [0.62, 0.87] 0.75b [0.63, 0.86] 0.78 [0.68, 0.89]

Difference entropy 0.60 [0.45, 0.75] 0.67c [0.53, 0.80] 0.64 [0.49, 0.79] 0.70c [0.57, 0.82] 0.68b [0.54, 0.82] 0.73c [0.61, 0.85]

Entropy 0.57 [0.42, 0.72] 0.67c [0.48, 0.81] 0.59 [0.44, 0.75] 0.68c [0.54, 0.80] 0.61 [0.46, 0.77] 0.68c [0.53, 0.80]

Average AUC 0.64 0.72 0.70 0.76 0.74 0.78

aSignificant relationship between change in feature value (DFV) and grade ≥ 2 RP (P < 0.0025).
b95% CI of AUC shown in brackets does not overlap 0.5.
cSignificant improvement of logistic regression model fit with addition of SUVSD using ANOVA (P < 0.0025).
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development even when controlling for dose.5 A more thor-
ough approach to determine independence of SUV variables
from CT texture changes would involve linear modeling of
texture feature change as a function of several variables,
including SUV parameters, to determine whether these radia-
tion-induced changes are affected by pre-RT lung inflamma-
tion. Our previous work demonstrated that use of three
features in this limited database does not significantly
improve the model fit, likely due to over-fitting.5,14 This result
may change if tested on a larger sample size with more posi-
tive cases.

The AUC values obtained from this study should be val-
idated using an independent patient cohort because this
data set was also used to select the SUV variable included
in the analysis. While the texture classifiers were selected
in an independent database,13 repeating ROC analysis on
an independent data set is still recommended due to the
low prevalence of positive cases among these patients. This
is particularly important given that a relatively slight but
representative reduction in this data set (two RP-positive
and eight RP-negative cases out of the initial 106 cases)
resulted in higher AUC values across features compared
with the results obtained by Cunliffe et al.5 Nevertheless,
the AUC value for DFV was significantly higher than 0.5
for 11, 15, and 17 texture features for low-, medium-, and
high-dose regions, respectively. Although there was an
insufficient number of RP events to parse the data set into
training and validation sets for selecting the SUV parame-
ter, such a partitioning was done when calculating confi-
dence intervals for the AUC values in Table II. The
bivariate model built using the 50%/50% data partition
resulted in the smallest 95% CIs for AUC values when
compared with a 75%/25% partition or leave-one-out cross
validation. Because it resulted in similar or slightly lower
AUC values, the 50%/50% data partition also ensured a
more conservative estimate of the AUC, which was prudent
given the small number of positive cases in our database.

This study analyzed a subset of data reported on by Cas-
tillo et al.,12 who demonstrated that SUV95 had AUC values
of 0.676 for classifying RP, which is comparable to the AUC
calculated in this study using SUDSD (0.69). In the present
study, SUVSD improved the AUC in a regression model pri-
marily when the CT texture feature under consideration was a
poor classifier by itself. That is, the utility of SUVSD was lim-
ited in the presence of other good classifiers of RP. This find-
ing was demonstrated by the less dramatic increase in
feature-averaged AUC of 0.04 for the high-dose regions,
where texture feature changes were more likely to occur and
provide diagnostic information. Significant improvements in
model fitting with the addition of SUVSD also occurred less
frequently in high-dose versus low-dose regions. On the other
hand, SUVSD improved AUC more frequently and by a wider
margin for low- and medium-dose measurements, where tex-
ture feature value change was less pronounced and thus a
poorer classifier. SUVSD had this effect despite the fact that,
on its own, its AUC value (0.69) was less than or equal to the
average AUC value across many texture features, which

attests to the independence of the SUV data from the CT tex-
ture data. Furthermore, SUV data were gathered from pre-
treatment scans alone, thus potentially providing prognostic
information to clinicians prior to the design of the radiother-
apy plan.

Dosimetric parameters such as V20 and MLD, which have
been shown to correlate with RP in large analyses utilizing
pooled, multi-institutional data for both standard frac-
tionated16,17 and hypofractionated photon treatments18 deliv-
ered with 3DCRT, IMRT or proton treatments,19 did not
reach significance in the current data set. While other dosi-
metric parameters such as V5 could have been studied, it is
unlikely that results would differ because dosimetric parame-
ters tend to be highly correlated.17 Furthermore, analysis of
the parent data set from which the data set in the present
study was obtained indicated no correlation of V5, V10,
V20, V30, or MLD with RP development, a finding that is
not expected to change in this smaller subset.12

Contrary to other studies,11,12 the present work demon-
strated that CT texture change correlates with RP develop-
ment. Other groups compared pre-treatment CT Hounsfield
unit (HU) statistics calculated over the entire lung volume to
SUV and determined that CT values were not associated with
RP. The present study calculated texture in many (> 700)
small regions of the lung and tracked the planned dose to
these regions, instead of characterizing CT texture throughout
the lung using a single HU statistic. Results demonstrated
that texture changes in high-dose regions are more strongly
associated with RP status. Furthermore, changes in texture
before and after treatment were quantified, thus controlling
for patient-dependent effects that may be indicative of
underlying co-morbidities or differences in CT acquisition
parameters.13 Finally, half of the features reported here were
higher order features that are mathematically derived
(i.e., agnostic features that do not correlate with changes that
are readily identified by eye), thus harnessing the full power
of radiomics.20

Future work would incorporate a larger and independent
patient cohort with a greater number of positive cases, par-
ticularly since PET-based features were identified and tested
in the same database. Further AUC analysis could include
linear modeling of AUC as a function of the number of
variables used to verify the effect of SUVSD as a predictor.
Other SUV variables could also be evaluated as predictors,
although Castillo et al. showed that SUV variables were
highly correlated, thus conjecturing that predictive models
would not improve with addition of more than a single
SUV parameter.12 The most relevant features could then be
combined into a single classifier, enabling evaluation of
false-positive/false-negative rates once a single cut-off value
along the ROC curve is identified. The time interval effects
on sensitivity and specificity could potentially be evaluated
in a larger data set which prospectively tracks RP develop-
ment. Such effects could not be studied in the current
data set due to the uncertainty in identifying the exact time
of RP development that resulted from retrospective data
collection.5
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The texture of SUV maps themselves could also be ana-
lyzed as a next step in texture analysis for prediction of RP.
Several studies have already examined relationships between
FDG-PET texture features and cancer outcomes. El Naqa
et al. have found texture-based features from SUV images to
be predictive of tumor response in head and neck and cervi-
cal cancers21 and more correlated with local control in
NSCLC patients than CT texture features.22 Yip et al. found
the temporal change in PET texture features before and after
chemo-radiation to be more predictive of patient response
than SUVmean or SUVmax.

23 Such PET-based radiomics
could easily be applied toward prediction of RP. However,
texture features from SUV images in the thorax suffer from
errors attributable to motion,22 and there is an evident need to
standardize the texture analysis methodology applied to SUV
images.24

This pilot study demonstrated that quantitative image
analysis (i.e., radiomics) has the potential to assess devel-
opment of symptomatic RP, particularly when a patient’s
baseline CT scan is used as a control. Similar to other stud-
ies of this clinical endpoint,5,12,17 our work is limited by
the uncertainty in RP diagnosis that is associated with ret-
rospective identification through the medical record. It
remains to be determined, ideally in a prospective clinical
trial, whether these quantitative techniques could impact
clinical care. Given the emergence of trials testing
immunotherapy drugs such as PD-1 inhibitors in conjunc-
tion with RT, for which there is an increased incidence of
RP induction,25 automated techniques that could identify
patients requiring closer clinical management could be used
as a secondary endpoint in such trials.

5. CONCLUSION

This study found SUVSD to be significantly correlated
with development of symptomatic (Grade ≥ 2) RP. When
distinguishing patients with symptomatic RP from those
without, inclusion of SUVSD in a logistic regression
model significantly improved model fit and increased the
AUC over the use of dose-dependent CT texture feature
changes as lone classifiers; this improvement was most
pronounced in lower dose regions. To our knowledge,
this is the first study to examine lung CT texture features
together with whole-lung FDG PET information as
potential predictors of treatment outcomes following
radiotherapy.
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