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DNA methylation studies present a promising avenue for improving our understanding of 

common diseases and alleviating part of their public health burden. A commonly used 

approach involves testing sites in genes of interest for association with disease status. These 

genes are typically selected based on a priori ideas about their possible role in pathogenic 

processes. Compared with assaying many sites simultaneously, such candidate gene 

methylation studies are appealing because of their low costs. They also have the advantage 

of being relatively straightforward in terms of lab technical and statistical procedures. 

However, in this commentary we argue that specific properties of methylation studies 

present a serious challenge for the interpretation of findings originating from the candidate 

gene approach.

Common variation among large subsets of methylation sites

Recently a number of investigations assayed large sets of methylation sites simultaneously. 

A striking finding emerging from these studies is that the methylation statuses of large 

subsets of sites covary with each other [1,2]. This common variation is not restricted to 

specific chromosomal locations but involve methylation sites across the entire genome. 

Principal component analysis (PCA) provides a good approach to quantify this phenomenon. 
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PCA captures the common variation in methylation statuses among sites in a form of a set of 

uncorrelated components. The first principal component (PC) accounts for as much of the 

variation in the methylation data as possible, the second component captures as much of the 

remaining variance as possible in such a way that it is uncorrelated with the first component 

and so forth. Bell et al. performed PCA on methylation levels at 22,290 CpGs in 

lymphoblastoid cell lines from 77 individuals [1]. They found that the first PC explained 

22% of the variation in methylation, and the first three PCs together explained 33%. This 

large amount of variation explained does not seem to be an artifact of the specific approach. 

Whereas Bell et al. [1] used an array, Aberg et al. [2] used a sequencing based approach to 

assay all 28 million common CpGs in the human genome in a sample of 1497 subjects. 

Their first PC explained 27% of the variation in methylation, and the first three PCs together 

explained 36%. These findings seem consistent with observations that global methylation 

levels may vary among subjects as a function of, for example, demographic variables, life 

style, nutrition or disease status [3,4]. Such global variations are only possible when 

individuals differ at many sites in a similar fashion.

Impact on association testing

Association testing typically starts with calculating a test statistic for each of the investigated 

methylation sites. If the test statistic is greater than a critical value, the null-hypothesis, 

assuming that the site has no effect, is rejected. The error of rejecting the null-hypothesis 

when it is true results in a false positive. Not rejecting the null-hypothesis when it is false 

results in a false negative.

To gain more insight into the impact of the common variation on association testing, we first 

performed a simulation study. For simplicity, we used a single PC. Mimicking the empirical 

data, this PC explained 20% of the variation. We simulated datasets of 500 samples each. To 

assess the impact on association testing, we calculated inflation factor λ; the ratio of the 

median test statistic value across all sites to the median test statistic value expected under the 

null hypothesis. Thus, if for all tests the null hypothesis is true, λ would need to be 1 for 

accurate statistical inferences.

In a first scenario, the PC was uncorrelated with the disease. We observed λ = 0.873. This λ 
indicates that test statistics were substantially lower (or p-values higher) than expected under 

the null hypothesis. This implies an increased risk of false negatives. In the second scenario 

we allowed a correlation of 0.1 between the PC and the disease. We now observed λ = 

1.712. This λ suggests that test statistics were substantially higher (or p-values lower) than 

expected under the null hypothesis, implying an excess of false positives.

The simulation study clearly demonstrates the basic phenomena in a simplified scenario. In 

real life data there will likely be more than one strong PC, where some may be correlated 

with the disease and other not. The overall impact on the test statistics will be a sum of the 

effects of the individual PCs. In studies where PCs can be computed, an effective approach 

to correct for the test statistic inflation or deflation is to include the PCs as co-variates when 

performing the association tests. For example, inclusion of the PC as a co-variate reverted λ 
back to 1 in both scenarios from our simulation study. The only cautionary note about this 
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correction procedure involves the PCs that are correlated with the disease. Although these 

PCs may mainly capture confounding factors such as life style differences between cases 

and controls, this may not always be the case. For example, in addition to changing the 

methylation status of sites (e.g., side effects) that do not play any role in the disease, 

medications could also correct the aberrant methylation in sites that cause the disease. This 

approach of regressing out PCs is commonly used to avoid test statistic inflation caused by 

population stratification in genome-wide association studies with sequence variants. 

However, a major difference is that in methylation studies the PCs explain a much larger 

proportion of the variation. This has serious implications for candidate gene methylation 

studies.

Implications for candidate gene methylation studies

To give an impression of the implications for candidate gene methylation studies, we use 

findings from two real studies. Study 1 [Van den oord EJCG et al., Unpublished Data] 

involves a methylome-wide association study using samples from 75 patients and controls. 

In this study, five PCs explained most of the variation, where none of these PCs were 

associated with disease status. Consistent with the results from our simulation study, we 

observed λ = 0.89 when no PCs were included as co-variates in the association analyses. 

Study 2 involved the previously mentioned study by Aberg at al. conducting methylome-

wide association study in 1497 cases and controls [2]. The first seven PCs explained most of 

the variation. Three of these PCs were associated with case–control status. Again consistent 

with our simulations, we observed λ = 7.4 when no PCs were included as co-variates in the 

association analyses.

In candidate gene studies, it is fairly typical to use a threshold p-value of 0.05 for declaring 

significance. Assuming accurate test statistics (i.e., λ = 1), this implies a probability of 5% 

that the study will produce a false positive. If multiple sites are tested, researchers will often 

use a Bonferroni correction that divides this threshold p-value by the number of tests 

performed. Regardless of the number of tests that are performed, such as correction would 

still ensure a probability of less than 5% that the study produces one or more false positives.

If a candidate study would have been performed in the same study sample as was used in 

Study 1, where none of the PCs were associated with the disease and test statistics were 

deflated, we would observe fewer false positives than expected based on the used p-value 

threshold. For example, allowing a probability of 5% that a test will produce a false positive 

(p-value threshold of 0.05), we would observe 3.4% of the sites being significant. Allowing 

this probability to be 1% (p-value threshold of 0.01, e.g., Bonferroni correction if five sites 

were measured), we would observe that 0.5% of all sites are significant. If we used the 

sample from Study 2 instead, where three PCs were associated with the disease and test 

statistics were inflated, we would observe many more significant tests than we would expect 

based on the p-value threshold that is used. Rather than 5% (p-value threshold of 0.05), we 

would observe that 46.7% of all sites are significant. Even at a more stringent 1% level (p-

value threshold of 0.01), 31.3% of the sites would remain significant. Although a candidate 

gene study in this sample is very likely to produce a significant result, it would be 
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questionable whether that finding would provide any insight into the disease process or be 

caused by confounding effects.

These results suggest that depending on the correlations of PCs in the methylation data with 

diseases status, which would be unknown to the researcher in the case of a candidate gene 

study, we would see a higher than expect rate of false negatives or a flood of false positives.

Conclusion

In DNA methylation studies, large amounts of variation may be common among sites 

located across the entire genome. In candidate gene methylation studies where only few sites 

are assayed it is impossible to account for this variation through PCs or related statistical 

procedures. The implications depend on whether or not this common variation is associated 

with the disease. In the uncorrelated case, test statistics will be deflated resulting in too few 

sites with small p-values. In the correlated case, test statistics will be inflated resulting in too 

many sites with small p-values. Although candidate gene studies of sequence variants would 

in principle be affected by the same phenomena, a major difference is that in methylation 

studies the effects are much more severe because the correlations involve much larger 

subsets of sites. For example, we show on actual data that 30–50% of the tested methylation 

sites could be significant in candidate gene studies that use p-value thresholds of 0.01–0.05. 

Thus, results from candidate gene methylation studies are very difficult to interpret properly.

This lack of transparency is further enhanced by the fact that the choice of the p-value 

threshold in candidate gene studies often lacks proper statistical motivation. For example, 

because for the majority of tested sites the null hypothesis will be true, commonly used p-

value threshold of 0.05 or 0.01 will often result in many more false positives than true 

positives [5,6]. When many tests are performed, methods can be used to empirically find the 

p-value threshold that provides a desired balance between false and true positives [7]. 

However, because these methods cannot be applied in candidate gene studies, it remains 

unclear what proportion of the significant findings produced by these studies are true or 

false.

Due to the unclear interpretation of results, we argue that candidate gene methylation studies 

are at high risk of erroneous conclusions. Rather than using candidate gene methylation 

studies as a discovery tool to detect initial associations, they are possibly better used to 

follow up significant findings from studies that can provide the insight into and properly 

handle the variance which is common among large subsets of methylation sites. For 

example, they may provide technical validation using a different technology or, provided 

that independent samples from the same study population are used, perform replication 

studies that can be informed by the previously generated knowledge of the common variance 

structure.
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