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Abstract

Objective—Improve pooled viral load (VL) testing to increase HIV treatment monitoring 

capacity, particularly relevant for resource-limited settings.

Design—We developed mMPA (marker-assisted mini-pooling with algorithm), a new VL 

pooling deconvolution strategy that utilizes information from low-cost, routinely-collected clinical 

markers to determine an efficient order of sequential individual VL testing and dictates when the 

sequential testing can be stopped.

Methods—We simulated the use of pooled testing to ascertain virological failure status on 918 

participants from three studies conducted at the Academic Model Providing Access to Healthcare 

(AMPATH) in Eldoret, Kenya, and estimated the number of assays needed when using mMPA and 

other pooling methods. We also evaluated the impact of practical factors such as specific markers 
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used, prevalence of virological failure, pool size, VL measurement error, and assay detection 

cutoffs on mMPA, other pooling methods, and single testing.

Results—Using CD4 count as a marker to assist deconvolution, mMPA significantly reduces the 

number of VL assays by 52% (CI=48–57%), 40% (CI=38–42%), and 19% (CI=15–22%) 

compared with individual testing, simple mini-pooling, and mini-pooling with algorithm (MPA), 
respectively. mMPA has higher sensitivity and negative/positive predictive values than MPA, and 

comparable high specificity. Further improvement is achieved with additional clinical markers 

such as age and time on therapy, with or without CD4 values. mMPA performance depends on 

prevalence of virological failure and pool size but is insensitive to VL measurement-error and VL 

assay detection cutoffs.

Conclusions—mMPA can substantially increase the capacity of VL monitoring.
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Introduction

Monitoring and maintaining VL suppression in HIV-infected individuals on antiretroviral 

therapy (ART) is crucial to control the spread of HIV and to reduce HIV-related morbidity 

and mortality1–5. In resource-limited settings (RLS), diagnoses of ART failure based on 

clinical and CD4 count criteria result in high misclassification rates6–12, leading to World 

Health Organization (WHO) recommendation of routine VL testing for ART monitoring 

where available13. Despite this recommendation, VL testing in many RLS is still constrained 

by cost, technology and capacity, and the feasibility of routine VL testing varies widely14,15. 

Although it is expected that more HIV care programs will establish or increase capacity for 

VL monitoring with time, and point of care VL testing and associated price reductions are 

emerging16, VL testing will most likely remain limited and expensive in RLS for years to 

come, particularly with the expected continued global increase in ART access17. Thus, 

improved VL testing capacity combining efficiency, diagnostic accuracy and high clinical 

utility is important to increase access to this clinically essential diagnostic test.

In settings where VL monitoring is limited, the VL test is typically used as confirmation for 

treatment failure based on CD4 or clinical criteria18. We have developed methods for 

targeted triage of VL testing19, which was subsequently applied in a South African cohort20. 

Another approach to optimizing utilization of limited VL assays is pooled testing, which has 

long been applied to qualitative assays that yield binary results (e.g. positive versus negative) 

for ascertaining individual disease status or estimating disease prevalence21–26, including 

HIV infection27–29. Pooled testing also can be used on quantitative assays such as VL that 

yield a measured value. The simplest pooling strategy involves a single test on a pooled 

sample that combines equal amounts of samples from several subjects, which determines 

whether further testing of all individual samples (i.e. deconvolution of the pool) is needed. 

This basic approach is often referred to as mini-pooling (MP), to distinguish it from more 

complex pooling strategies such as hierarchical22,30 and matrix pooling31,32. May et al33 

improved the MP strategy by testing the individual samples sequentially at the 
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deconvolution stage using an algorithm to decide when sequential testing can be stopped. 

This method is referred to as “mini-pooling with algorithm” (MPA)14,31,34–38.

If the rank ordering of VL values in a pool was known, the number of VL tests needed to 

resolve that pool would be minimized. We hypothesize that information on low-cost, 

routinely-collected clinical markers (RCMs) that are correlated with VL, such as CD4 count, 

CD4%, ART adherence, treatment history, and time on ART, can be used to rank samples in 

a pool, and thereby reduce the number of assays needed for deconvolution. For VL testing, 

which uses quantitative assays, we develop a pooling strategy called ‘marker assisted mini-

pooling with algorithm’ (mMPA) that uses a predicted VL based on RCMs to rank order 

individual samples. By testing samples with a higher risk of virological failure first, we show 

that mMPA requires, on average, fewer VL assays for deconvolution than MPA, without 

sacrificing diagnostic accuracy. Applied broadly, this approach has potential to substantially 

increase the capacity of comprehensive VL monitoring. The proposed algorithm is a method 

of informative retesting, first proposed by Bilder and colleagues for qualitative 

assays22,23,39. Use of a quantitative assay introduces a modification of the deconvolution 

algorithm as well as issues such as assay measurement error and lower limit of detection 

(LLD), which must be incorporated into assessments of algorithm performance.

Methods

Definitions of Virological Failure and Pool Positivity

At the individual level, virological failure is defined as VL exceeding a threshold value C. In 

RLS, the WHO recommends using C = 1,000 copies/mL (for brevity, units are omitted 

henceforth). When K samples are combined for a pooled test, pool positivity is defined using 

a threshold of

to account for the dilution effect. For example, for a pool of size K = 3, Cpool = 1000/3 = 

333. If the pool VL is ≤ 333, one can deduce that no individual sample can have VL > 1000, 

and no further tests are needed. However if a pool has VL > 333, one or more individuals 

may have VL > 1000, prompting the need for individual tests. See May et al 33 for more 

examples.

mMPA Procedure

The mMPA strategy uses information from RCMs that are correlated with individual VL to 

develop a risk score S for rank ordering individual samples. The score is expressed as an 

explicit function of the RCMs. Two examples include the value of a single marker such as 

concurrent CD4 count; and predicted VL derived from a statistical model using multiple 

markers as inputs. The latter can be developed by fitting a prediction model on a 

representative sample of individuals where both the RCMs and VL have been measured.
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Given the risk scores, if sequential individual testing is indicated based on the pool VL, then 

mMPA assays the individual samples sequentially in the decreasing rank order of their 

estimated risks. Thus, samples with higher risk of virological failure are tested first. Though 

ordering by S cannot guarantee that the individual sample with the highest VL is tested first, 

correlation between S and VL makes this more likely, and higher correlations imply higher 

likelihood of correct ordering. A schematic overview of mMPA is given by a numerical 

example in Figure 1. In general, after testing each individual sample, the average VL value 

among the remaining samples can be deduced. The remaining (say K′) samples can be 

regarded as a “sub-pool”. Thus, if the sub-pool VL is less than C/K′, the sub-pool is 

negative and no more individual tests are needed; otherwise we continue testing the next 

individual sample. So intuitively by rank ordering and testing high-risk individuals first, the 

virological status of each individual can be quickly ascertained.

Data Sources

Our empirical comparison of mMPA with other testing strategies is based on simulating the 

application of each VL testing strategy in a combined cohort of patients enrolled in three 

studies at the Academic Model Providing Access to Healthcare (AMPATH) in Eldoret, 

Kenya: The “Crisis” study (n=191)40, conducted in 2009–2011 to investigate the impact of 

the 2007–2008 post-election violence in Kenya on ART failure and drug resistance; the 

“2nd-line” study (n=394)41, conducted in 2011–2012 to investigate ART failure and drug 

resistance among patients on 2nd-line ART; and the “TDF” (tenofovir) study (n=333)42, 

conducted in 2012–2013 to investigate the impact of WHO guidelines changes to 

recommend TDF-based 1st-line ART, on ART failure and drug resistance (see 

Supplementary Material for further details). The individual studies and this combined 

analysis were reviewed by the Lifespan and AMPATH ethics review committees.

In each study, demographic, clinical, laboratory and VL data were collected for all 

participants. We use these data to calculate four candidate risk scores: (1) concurrent CD4 

count; (2) predicted VL value generated by fitting a generalized additive model (GAM)43 of 

log-10 VL to gender, age, CD4 count, CD4%, time on current ART, and WHO staging; (3) 

predicted VL from fitting a GAM to the same predictors as in (2), but without CD4 count 

and CD4%; and (4) predicted VL generated from a random forests model (RF)44 using the 

same predictors as (2). Scenario (3) is relevant for settings where CD4 counts are limited or 

not routinely collected45, which is the case for some programs that have adopted yearly 

monitoring of VL.

Simulation Study to Compare Testing Strategies

For each HIV testing strategy, we calculate the average number of tests required (ATR) to 

establish individual-level virological failure status per 100 individuals. The ATR for direct 

individual VL testing is 100; pooling methods will generally have ATR < 100, with lower 

values indicating greater efficiency. Generally, the number of VL tests needed for a fixed 

sample depends on the order in which individuals are placed into pools. Therefore, to obtain 

ATR for a single sample, we implement the pooling algorithm on 200 random permutations 

of the sample, and calculated the average number of VL tests needed over the 200 
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permutations. Using permutations, we also calculate the sensitivity, specificity, and negative 

and positive predictive values (NPV and PPV) associated with each VL testing strategy.

For each pool formed by K individuals, the pool VL is simulated using the average value of 

the individual VLs. For individuals with undetectable VL (n=584), we impute values as 

follows: for those with VL<40 (n=557), we impute a uniform random value between 0 and 

40; next, for those with VL<400 (n=27), we sample a random VL value from among those 

with VL<400 (to avoid dependence on distributional assumptions).

To study robustness of each monitoring method, our evaluation further assesses the impact 

of the following factors on ATR and diagnostic accuracy: choice of risk score used by 

mMPA, prevalence of virological failure, pool size, assay measurement error, and assay 

LLD.

Impact of risk score on ATR—Risk scores having a higher correlation with VL are 

expected to lead to higher testing efficiency for mMPA. Efficiency gain depends on the 

markers used to calculate the risk score and the method used to translate marker information 

into a score. The composite risk scores (2)–(4) (as described above) are generated using two 

types of models: generalized additive model43, which allows nonlinear predictive effects of 

continuous markers; and random forests44, a tree-based approach machine learning method 

that allows interactions and nonlinear predictor effects.

Having the actual VL measurements also allows us to calculate the theoretical best possible 

ATR for mMPA by using ranks of true VL values as a risk score. This “oracle” risk score is 

also included in our comparisons to provide a benchmark for the deconvolution algorithms.

Because mMPA uses risk scores to rank-order individual samples for sequential testing, we 

use rank (Spearman) correlation to quantify the relative strength of each risk score.

Impact of virological failure prevalence on ATR—Testing efficiency of mMPA 
depends on the prevalence of virological failure in the population. Higher prevalence implies 

higher proportion of positive pools, which generally reduces the advantage of all pooling 

strategies (including mMPA). In addition to using the WHO-recommended threshold C = 

1000, which corresponds to 16% failure prevalence in our sample, we further consider 

thresholds of C = 500, 1500, and 3000, yielding prevalences of 18%, 14%, and 11%, 

respectively.

Impact of pool size on ATR—Pool size is another important parameter because larger 

pool sizes are technically more difficult to resolve and potentially more susceptible to 

measurement errors33. Moreover, pool size is a parameter for defining pool positivity (i.e. 

C/K). In our study, we consider pool sizes ranging from K = 3 to 10.

Impact of measurement error—Individual VL assays can be subject to measurement 

error, reducing diagnostic accuracy. To study its impact, we add random deviations to 

individual and pool VL values on the log scale. Deviations are generated using log-normal 

distributions with mean zero and standard deviation σ. Three scenarios are considered: (1) σ 

LIU et al. Page 5

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 0, or no measurement error; (2) σ = 0.12, applicable to commonly-used assays33; and (3) σ 
= 0.20, likely representing an upper bound33. The impact of measurement error on the VL 

testing methods is quantified in terms of sensitivity, specificity, PPV, and NPV.

Impact of lower limit of detection of VL assays—VL assays used for treatment 

monitoring typically have LLD between 20 and 400 13,46. The LLD impacts pooled testing 

in two ways. First, for a given virological failure threshold C, LLD dictates the maximum 

allowable pool size because of the definition of Cpool; e.g., if C = 1000 and LLD = 100, then 

the allowable pool size is K = 10. Second, LLD impacts the second-stage pool 

deconvolution, because the deconvolution algorithm of mMPA involves a sequence of 

subtractions of individual VLs from K times the pool VL to determine whether tests of 

remaining samples are needed (Figure 1). When an individual sample has a VL < LLD, the 

true VL is only known to be between 0 and LLD. In this case, it can be shown (see 

Supplementary Material) that a conservative approach is to treat individuals below LLD as 

having VL = 0 and continue individual testing. Using this approach, assays with higher LLD 

will, on average, increase the number of tests needed by MPA and mMPA.

Results

Participant Characteristics

Data were available from 918 participants, whose characteristics are summarized in Table 1. 

Overall, the demographic, clinical and laboratory characteristics were similar between the 

three studies, with the exceptions of types of ART and prevalence of VL > 1000. Table 2 

summarizes the average number of tests required (ATR) for individual testing, MP, MPA 
and mMPA for pool size K = 5, assuming LLD=0 and no measurement error (scenarios 

using other values of LLD and measurement error are addressed below). We implemented 

mMPA using each of the four versions of the risk score as described in Methods.

Deconvolution of VL Pooling with mMPA and Risk Score Impact

When applied to this combined cohort, mMPA requires between 46 and 50 assays to 

diagnose 100 individuals, depending on the risk score being used (Table 2). The most 

efficient risk score is derived using GAM with gender, age, CD4 count, CD4%, time on 

current ART, and WHO staging as predictors (ATR=46, 95% CI 41 to 50); however, a 

GAM-based score without CD4 count still yields ATR=50 (95% CI 46 to 54). Compared to 

other pooling methods, mMPA reduces the ATR relatively by 19% (95% CI 15 to 22%) 

compared to MPA, and by 40% (95% CI 38 to 42%) compared to MP; all reductions are 

statistically significant as evidenced by the 95% confidence intervals excluding zero. 

Moreover, ATR for mMPA is relatively close to the best possible ATR of 37 based on the 

oracle risk score where correct ranks are known. The superior performance of mMPA has 

similar patterns when applied individually to the three studies (Supplementary Table 1).

In the next sections, for simplicity, we used CD4 count as the risk score for mMPA.

Impact of Virological Failure Prevalence and Pool Size—The prevalence of 

virological failure in the combined cohort was 16% based on the WHO recommended VL > 
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1000 threshold. To study the effect of prevalence on ATR, we applied threshold values of 

500, 1500 and 3000, yielding prevalences 11%, 14% and 18%, respectively. We also varied 

the pool size from 3 to 10. Figure 2 depicts testing efficiency of mMPA with individual 

testing (IND), MP and MPA in terms of ATR under various failure prevalences and pool 

sizes, demonstrating the advantage of using mMPA in terms of ATR. Both mMPA and 

MPA have lower ATR than IND and MP, especially when virological failure prevalence is 

low. MP may need more VL tests than IND when the prevalence is high and a large pool 

size is used (Figure 2a). In general, mMPA is most advantageous when prevalence is low; 

for our data, when using a pool size of 5 or larger, mMPA has significant lowest ATR 

among all VL testing strategies.

Figure 2 also shows that the impact of pool size on pooled testing efficiency is non-linear, 

and the optimal pool size that achieves the lowest ATR depends on the prevalence of 

virological failure. In general, pooling methods can achieve the best testing efficiency with a 

larger pool size when the prevalence is lower. This nonlinear pattern and low prevalence 

preferences are consistent with findings of other pooled testing procedures26,33. For this 

combined cohort, the optimal pool size for mMPA is 5 when the prevalence is 18%, 6 when 

the prevalence is 14–16%, and 7 when the prevalence is 11%. mMPA maintains its superior 

performance for all pool sizes considered here.

Impact of VL Assay Measurement Error—Figure 3 shows diagnostic accuracy as a 

function of virological failure prevalence for each testing method for assay-level 

measurement errors SD = .12 on the log-10 scale. All methods have high specificity (>99%). 

Sensitivity of mMPA ranges between 80–90%, lower than IND and MP, but greater than 

MPA (<80%). NPV for mMPA exceeds 95% for all prevalences considered, better than 

MPA and only slightly lower than IND and MP. Moreover, mMPA has the highest PPV 

among all methods (though all are over 95%). mMPA outperforms MPA on all four 

accuracy measures because it requires fewer VL assays than MPA, which implies fewer 

subtractions during deconvolution and therefore fewer opportunities for measurement error 

to affect diagnostic decisions. Similar patterns in diagnostic accuracy are observed when the 

assay-level measurement error has a standard deviation of 0.20 (log-10 scale) 

(Supplementary Figure 1).

Impact of LLD—Theoretically a high LLD increases ATR for MPA and mMPA. In our 

data, the impact is negligible (Supplementary Figure 2) because the majority 

(557/918=61%) had VL<40. Thus treating those with VL below the LLD as VL=0 had little 

impact on the deconvolution process and subsequent individual-level diagnoses resulting 

from pooled testing.

Discussions

mMPA is an informative retesting strategy to improve deconvolution of pooled HIV VL 

assays for ART monitoring. It uses an algorithm that relies on information from routinely-

collected clinical information to rank-order samples contributing to the pool, resulting in 

faster and more efficient deconvolution and fewer VL tests than other approaches. The 
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efficiency gains realized by mMPA persist across variations in virological failure 

prevalence, pool size, assay measurement error, and LLD.

Bilder and colleagues 22,23,39 developed single- and multi-stage informative retesting 

algorithms for pooled testing using qualitative assays, and provided a comprehensive 

evaluation of their operating characteristics. The mMPA proposed here is designed for 

quantitative assays; the algorithm itself is similar to “informative Sterrett” (IS) algorithm47 

for qualitative assays, in which positive pools lead to an ordered sequence of tests on 

individual samples and on pools formed from remaining samples (quantitative assays do not 

require this latter step). There are important differences such as a modified deconvolution 

algorithm using sequential subtractions, assay measurement error, and assay limit of 

detection that are related to the implementation of mMPA.

In light of expanding VL monitoring in RLS, pooled VL testing methods, and MPA in 

particular, have demonstrated high potential to increase capacity of individual-level 

monitoring31,33,34,36–38,48. Our study demonstrates that by incorporating sequential ranked 

deconvolution, mMPA can further improve the efficiency of pooled VL testing. Analysis of 

data from western Kenya demonstrates reductions of 52% relative to individual testing and 

by 19% relative to MPA. In terms of laboratory capacity and frequency of individual-level 

monitoring in programs with comparable characteristics, mMPA could double the number 

of virological failure ascertainments (a 108% increase in capacity) relative to individual 

testing; or increase by 23% the capacity relative to MPA. Moreover, mMPA has greater 

sensitivity, PPV, and NPV than MPA, and equally high specificity. Consequently, 

programmatic incorporation of mMPA would allow patients to get more, and perhaps more 

frequent (e.g. twice yearly rather than the recommended annual) VL monitoring. Such 

improvement in treatment monitoring capacity would provide more reliable guidance to 

physicians in clinical care and reduce the risk of maintaining patients on ineffective ART.

mMPA incorporates an estimated risk score using routinely-collected clinical markers. 

Though we show the advantage of using composite risk scores from multiple markers, 

including one which does not use CD4 values, the majority of our analyses focused on CD4 

count as the risk score for its simplicity. We show that CD4 count alone, although inadequate 

to determine virological status, still contains valuable information that could significantly 

improve the efficiency of pooled VL testing. Developing risk scores for risk assessment and 

prediction has been an important topic in areas such as statistics and machine learning. We 

are exploring the use of methods such as generalized boosting49, classification and 

regression trees50, and ensemble techniques such as super learner51 to develop risk scores 

with even better diagnostic properties.

Some limitations of this study point to future research directions. First, our analysis relies on 

a simulated application of the methods to patients participating in three separate research 

studies, as VL data from routine clinical care in RLS are still limited. This data aggregation 

provides a large sample size and heterogeneous 1st- and 2nd-line ART exposure for 

evaluating different testing strategies (our focus), but the combined cohort is not necessarily 

a representative sample of all patients in care. Degree of improved capacity depends on 

correlation between risk score and VL, which could differ in a randomly-selected patient 
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population. Second, variables such as time, cost and practical constraints associated with 

mMPA testing, deconvolution and implementation, are not considered in this simulation 

study, yet are important in assessing the feasibility and benefit of this approach, particularly 

in resource limited settings. These limitations have motivated a comparative evaluation of 

mMPA performance using actual patient samples, currently ongoing.

Despite some limitations, this study demonstrates the potential for mMPA to substantially 

improve capacity for VL monitoring relative to individual testing and other VL pooling 

strategies, a particularly important issue in light of urgent demand for expanding virological 

monitoring in RLS. To enable its application to specific settings, we have developed a 

software package called ‘mMPA’ using R52. The package allows HIV care facilities to 

evaluate the capacity of ART monitoring for their patients when using pooled testing to meet 

their context (e.g. virological failure prevalence, available clinical markers, pool size, and 

detection cutoff). More information about the package is provided in Supplemental Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic overview of MP, MPA, and mMPA using a numerical example of pooling K = 
3 individual samples with VLs of 300, 2500, and 50 copies/mL respectively
The figure provides an example of VL pooling of samples from K = 3 patients, with 

individual VLs of 300, 2500 and 50. With a threshold of C = 1000, only the subject with 

VL=2500 has virologic failure. Deconvolution is based on the three methods used in this 

paper: (a) mini pool (MP); (b) mini-pool + algorithm (MPA); and (c) marker-assisted mini-

pool + algorithm (mMPA). Each method incorporates two stages, the first incorporating VL 

testing of the pooled sample and the second incorporating deconvolution, outlined by text 

boxes. In the first stage, common for all three methods, the pool is “positive” because its VL 

of 950 is greater than the pool threshold (C/K) = 333, prompting the second stage. Using 

MP (a), all three individuals are then tested, for a total of 4 VL assays. Using MPA (b), 
sequential random testing of individual samples and a deconvolution algorithm determine 

the need for additional testing. In this example a total of 3 VL assays are needed. Using 

mMPA (c), with a risk score indicates that the second subject has the highest likelihood of 

VL failure and is thus tested first, only two VL assays are needed. { } denotes testing on the 

pool, and [ ] testing on an individual sample.
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Figure 2. Impact of virological failure prevalence and pool size on pooling deconvolution 
methods
The figure demonstrates the impact of pool sizes K (X axis; from 3–10) and viral failure 

prevalence ((a)=18%; (b)=16%; (c)=14%; and (d)=11%) on the ATR (y axis) according to 

individual testing (IND; circles), MP (squares), MPA (plus signs) and mMPA (triangles). 

CD4 is used as a risk score for mMPA. The gray bounds indicate point-wise 95% 

confidence intervals obtained using the bootstrap method (with 500 resamples) where the 

intervals are the 2.5 and 97.5 percentiles of the bootstrap distributions.
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Figure 3. Impact of VL assay measurement error on diagnostic accuracy of pooling 
deconvolution methods
The figure demonstrates the impact of VL assay measurement errors on individual testing 

(IND; circles), MP (triangles), MPA (squares) and mMPA (plus signs). CD4 is used as a 

risk score for mMPA. The impact of measurement error on pooling deconvolution is 

quantified in terms of (a) sensitivity, (b) specificity, (c) PPV, and (d) NPV. The measurement 

error is assumed to have a log normal distribution with a zero mean and a standard deviation 

of 0.12 on the log10 scale. PPV = positive predictive value. NPV = negative predictive value.
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Table 1

Characteristics of participants according to studya.

Crisis (n = 191) 2nd Line (n = 394) TDF (n = 333) Total (n = 918)

Age (yr) 42 [36, 50] 42 [36, 49] 41 [36, 48] 42 [36, 49]

Gender

 Female 62% 60% 55% 59%

 Male 38% 40% 45% 41%

Viral Load (VL) 44 [<40, <400] <40 [<40, 430] <40 [<40, <40] <40 [<40, 192]

VL > 1000 15% 21% 10% 16%

CD4 Count (NA=19) 361 [249, 503] 282 [182, 419] 336 [226, 470] 314 [210, 453]

CD4% (NA=19) 23 [17, 28] 17 [12, 23] 21 [15, 28] 19 [14, 26]

Most Recent CD4 376 [262, 553] 273 [165, 409] 321 [210, 467] 311 [201, 458]

Most Recent CD4% 20 [16, 26] 16 [11, 21] 2 [15, 27] 18 [13, 25]

Chg of CD4/yr b −14.3 [−121, 94] 0.5 [−75, 170] 0.0 [−63, 112] 0.0 [−85, 127]

Chg of CD4%/yr b 2.2 [.0, 5.3] 2.0 [.0, 6.9] .9 [−1.3, 6.5] 1.7 [.0, 6.5]

Yrs on Current ART 2.7 [2.1, 4.4] 1.1 [.6, 3.3] 1.7 [1.2, 2.2] 1.8 [.9, 2.7]

Yrs on ART 4.3 [3.6, 5.1] 5.9 [4.4, 7.4] 2.1 [1.4, 4.6] 4.5 [2.6, 6.2]

ART adherence c

 Most 0.0% 0.8% 0.3% 0.4%

 Some 1.6% 5.1% 1.8% 3.2%

 None 98.4% 94.1% 97.9% 96.4%

WHO Stage (NA=4)

 Stage 1 18% 14% 24% 19%

 Stage 2 18% 16% 16% 17%

 Stage 3 46% 48% 43% 45%

 Stage 4 18% 22% 17% 19%

ART

 1st line 100% 0% 100% 57%

 2nd line 0% 100% 0% 43%

a
Continuous variables are summarized by median and interquartile range (IQR), and categorical variables by percentages. Numbers inside [ ] are 

IQR;

b
Change = (value at enrollment - most recent before enrollment)/(time between the two visits);

c
ART adherence of last week by the self-report percentage: Most (>50%), Some (<50%), None (0%).

ART = antiretroviral therapy; chg = change; NA = not available; TDF = tenofovir; WHO = World Health Organization; yr = year.
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