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Abstract

This paper describes a study to test the accuracy of a method that tracks wrist motion during eating 

to detect and count bites. The purpose was to assess its accuracy across demographic (age, gender, 

ethnicity) and bite (utensil, container, hand used, food type) variables. Data were collected in a 

cafeteria under normal eating conditions. A total of 271 participants ate a single meal while 

wearing a watch-like device to track their wrist motion. Video was simultaneously recorded of 

each participant and subsequently reviewed to determine the ground truth times of bites. Bite times 

were operationally defined as the moment when food or beverage was placed into the mouth. Food 

and beverage choices were not scripted or restricted. Participants were seated in groups of 2–4 and 

were encouraged to eat naturally. A total of 24,088 bites of 374 different food and beverage items 

were consumed. Overall the method for automatically detecting bites had a sensitivity of 75% with 

a positive predictive value of 89%. A range of 62–86% sensitivity was found across demographic 

variables, with slower eating rates trending towards higher sensitivity. Variations in sensitivity due 

to food type showed a modest correlation with the total wrist motion during the bite, possibly due 

to an increase in head-towards-plate motion and decrease in hand-towards-mouth motion for some 

food types. Overall, the findings provide the largest evidence to date that the method produces a 

reliable automated measure of intake during unrestricted eating.
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I. Introduction

More than half of the world population is overweight (39%) or obese (13%) [32]. Obesity is 

associated with increased risks for cardiovascular disease, diabetes, and certain forms of 
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cancer [13], and has become a leading preventable cause of death [15]. The study and 

treatment of obesity is aided by tools that measure energy intake, determined by the amount 

and types of food and beverage consumed. Existing tools include questionnaires about the 

frequency of food consumption, food diaries, and 24-hour recalls of the foods consumed 

during the day [5], [30]. However, these tools rely upon self-report and have a number of 

limitations, including high user and experimenter burden, interference with natural eating 

habits, decreased compliance over time, and underreporting bias [16], [30]. Experts in the 

field of dietetics have emphasized the need for technology to advance the tools used for 

energy intake monitoring [14], [27], [31].

Advances in body sensing and mobile health technology have created new opportunities for 

empowering people to take a more active role in managing their health [12]. Wearable 

sensors have significantly advanced the assessment of energy expenditure in the form of 

accelerometer-based physical activity monitors [34]. However, the development of a similar 

tool for monitoring energy intake has remained elusive. Researchers have investigated the 

automatic recognition of foods in images [3], [10], [20], [35] and sensors worn on the throat 

and ear area to detect swallowing events [2], [17], [18], [23], [24], [26]. Our group has been 

investigating using a wrist-worn configuration of sensors to detect periods of eating [9] and 

track hand-to-mouth gestures [8], [21]. One benefit of wrist-mounted sensors is that they can 

be embodied in a device that resembles a common watch. This makes the monitoring 

inconspicuous which helps promote long-term daily use [4].

In previous work our group developed a method that detects a pattern of wrist motion during 

the ingestion of a bite [7], [8]. An experimental evaluation of 49 people eating a meal of 

their choice in a laboratory setting found that the method counted bites with a sensitivity 

(ratio of true detections to total actual bites) of 86% and a positive predictive value (ratio of 

true detections to true detections plus false positives) of 81% [8]. The experiment also 

revealed that an inexpensive micro-electro-mechanical systems (MEMS) gyroscope was as 

accurate as a more sophisticated magnetic, angular rate and gravity (MARG) sensor in 

tracking the relevant motion pattern [8]. These experiments were conducted using wrist-

worn devices that were tethered to a stationary computer in order to facilitate the recording 

of raw motion data. Subsequently, the method was instantiated in a wearable version that 

resembles a watch. The watch executes the algorithm to detect the relevant motion pattern on 

a microcontroller. A button is pressed at the beginning of an eating activity (e.g. meal or 

snack) to begin bite counting, and pressed again at the end of the eating activity to end bite 

counting. The total bite count for the eating activity is stored for subsequent downloading to 

an external computer. To test its relevance for measuring energy intake, 77 people wore the 

device for 2 weeks and used it to automatically count bites during all eating activities [28]. 

Participants completed the automated self-administered 24 hour recall to measure 

kilocalories consumed [29]. A total of 2,975 eating activities were evaluated, an average of 

39 per participant. A comparison of automated bite count to kilocalories found an average 

per-individual correlation of 0.53, with 64 participants having a correlation between 0.4 and 

0.7 [28]. This range of correlation is similar to what has been found in evaluations of energy 

expenditure measured by accelerometer-based devices (pedometers, physical activity 

monitors) [33].
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This paper describes an experiment conducted to further evaluate the accuracy of the 

automated bite counting method. The goal was to record a large number of people eating a 

wide variety of foods and beverages to evaluate its accuracy in terms of demographic 

variables (gender, age, ethnicity) and bite variables (food type, hand used, utensil, 

container). One approach to such an experiment is to script activities and ask each 

participant to complete the script. For example, a participant could be asked to consume 5 

bites of 20 different types of food in a controlled order. This approach has been taken in 

some other studies of eating activities (e.g. [1], [18], [26]). Advantages to this approach 

include limiting the set of food types, simplifying the ground truth identification of events 

due to the use of a controlled script, and ensuring an equal quantity of each event type 

through repetition. However, this is unnatural in terms of food choices, eating pace, food 

order, and overall behavior during normal eating. Instead, we instrumented a cafeteria 

setting. Participants were allowed to select their own foods and eat naturally. This resulted in 

unequal distributions of bite variables which is offset by recording a large number of 

participants. Section II describes the experimental conditions and Section III describes the 

variations in the accuracy of the bite counting method due to demographic and bite 

variables.

II. Methods

A. Instrumentation

The experiment took place in the Harcombe Dining Hall at Clemson University. The 

cafeteria seats up to 800 people and serves a large variety of foods and beverages from 10–

15 different serving lines. Figure 1 shows an illustration and picture of our instrumented 

table [11]. It is capable of recording data from up to four participants simultaneously and is 

similar to others in the cafeteria so that its appearance would not be distracting. Four digital 

video cameras in the ceiling (approximately 5 meters height) were used to record each 

participant’s mouth, torso, and tray during meal consumption. A custom wrist-worn device 

containing MEMS accelerometers (STMicroelectronics LIS344ALH) and gyroscopes 

(STMicroelectronics LPR410AL) was used to record the wrist motion of each participant at 

15 Hz. Cameras and wrist motion trackers were wired to the same computers and used 

timestamps for synchronization. All the data were smoothed using a Gaussian-weighted 

window of width 1 s and standard deviation of  s.

B. Participants

The Clemson University Institutional Review Board approved data collection and each 

subject provided informed consent. A total of 276 participants were recruited and each 

consumed a single meal [22]. Participants were free to choose any available foods and 

beverages. Upon sitting at the table to eat, an experimental assistant placed the wrist motion 

tracking device on the dominant hand of the participant and interviewed them to record the 

identities of foods selected. The participant was then free to eat naturally. If additional 

servings were desired, the participant was instructed to notify the experimental assistant to 

assist with removing the wrist motion tracker before moving through the cafeteria to obtain 

more food or beverage, returning to the table to begin a new segment of recording. Each 
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such segment is referred to as a course. For 5 participants, either the video or wrist motion 

tracking data failed to record, and so are excluded from analysis. Total usable data includes 

271 participants, 518 courses with a range of 1–4 and average of 1.8 courses per participant. 

Demographics of the participants are 131 male, 140 female; age 18–75; height 50–77 in 

(127–195 cm); weight 100–335 lb (45–152 kg); self-identified ethnicity 26 African 

American, 29 Asian or Pacific Islander, 190 Caucasian, 11 Hispanic, 15 Other.

C. Ground truth

The goal of the ground truthing process was to identify the time, food, hand, utensil and 

container for each bite. Because our data set is so large and was collected during natural 

(unscripted) eating, the total process took more than 1,000 man-hours of work. Figure 2 

shows a custom program we built to facilitate the process. The left panel displays the video 

while the right panel shows the synchronized wrist motion tracking data. Keyboard controls 

allow for play, pause, rewind and fast forward. The horizontal scroll bar allows for jumping 

throughout the recording and additional keyboard controls allow for jumping to previously 

labeled bites. A human rater annotates a course by watching the video and pausing it at 

times when a bite is seen to be taken, using frame-by-frame rewinding and forwarding to 

identify the time when food or beverage is placed into the mouth. Figure 3 shows an 

example of a sequence of images surrounding a bite. Once the bite time is identified, the 

rater presses a key to spawn a pop-up window that allows the user to select from a list of 

foods recorded as having been eaten by the participant during the course, and a list of hand, 

utensil and container options. The process of ground truthing a single course took 20–60 

minutes.

In total, 374 different food and beverage types were chosen by participants. Food and 

beverage names were taken from the menus of the cafeteria. Some foods are given the 

generic name of the food line from which they are served due to the heterogeneous mixture 

of ingredients that could be custom selected by the participant, for example from a salad bar. 

In cases where a participant mixed 2 or more uniquely chosen foods, a single name was used 

that identified the combination. In cases where a participant ordered a custom version of a 

food in a food line, the modifier ‘custom’ was included in the name. Example food identities 

include salad bar, shoestring french fries, Asian vegetables, pasta tour of Italy, cheese pizza, 

homestyle chicken sandwich, hamburger, custom sandwich, garlic breadsticks, fried shrimp 

and grapefruit. Example beverage identities include whole milk, coca cola, water, sweet tea, 

coffee and apple juice. Figure 4 shows some example images of foods. Foods and beverages 

were served in four types of containers: plate, bowl, glass and mug. Four different utensils 

were used: fork, spoon, chopsticks and hand. Hand could be identified as left, right or both.

Two human raters independently labeled each course. A total of 22 raters contributed. Raters 

were trained during a 1 hour training session to understand the process and how to use the 

program for labeling. Quantifying rater agreement is complicated because labeling is a two 

step process. First, each rater had to decide when bites occurred. Second, they had to 

quantify food, hand, utensil and container for each bite. Therefore we developed a two stage 

approach to determining rater agreement.
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For each bite labeled by one rater, a ±1 sec window was searched for a corresponding bite 

from the second rater. If the food identity, hand, utensil and container all matched, then the 

bite was considered matched and the time index was taken as the average of the time 

indicated by the two raters. If a corresponding bite was found within the window but one or 

more of the variables did not match, then the bite was reviewed by a third rater who judged 

which variable values were correct. If no corresponding bite was found within the window, 

the third rater reviewed the bite to determine if it was missed by one of the raters or if it was 

off by more than 1 sec from a bite labeled by the other rater, in which case the third rater 

judged the correct time.

Using this process, rater performance can be evaluated using four metrics: mistaken identity 

(food identified incorrectly), time error (bite labeled more than 1 second from actual time), 

missed bite (the rater missed the bite completely) and data entry error (hand, utensil or 

container was mislabeled). Figure 5 shows some examples of foods that can be difficult to 

identify, for example when 2 or more foods of similar color and texture are served 

overlapping each other. Figure 6 illustrates an example of when the time of a bite can be 

difficult to determine due to the head of the participant obscuring the precise time of food 

intake. Data entry errors occurred most commonly when a rater mistakenly labeled a bowl as 

a plate or a mug as a glass, either of which would propagate to all the related bites in the 

course. Table I summarizes the errors found as judged by the third rater.

The usefulness of a fourth rater independently labeling each course and then comparing it to 

the union judged by the third rater was explored. After 71 courses were labeled, the process 

was stopped. In those 71 courses the following total errors were found: 17 missed bites, 0 

timing errors, 18 identity errors and 8 data entry errors (0.2% of the total bites). Given the 

large amount of time needed to independently label the data and the tiny amount of new 

errors discovered, it was determined that the quality of ground truth provided by two human 

raters and then judged by a third rater was sufficient.

D. Bite counting algorithm

The bite counting algorithm described in [8] is briefly repeated here for background. The 

algorithm detects a pattern of wrist roll motion associated with a bite through the detection 

of four events. First, the wrist roll velocity must surpass a positive threshold. Second, a 

minimum amount of time must pass. Third, the velocity must surpass a negative threshold. 

Finally, a minimum time must pass between the negative wrist roll for one bite and the 

positive wrist roll for the beginning of a next bite. The minimum times help reduce false 

positives during other motions. The algorithm for detecting a bite based on this motion 

pattern can be implemented as follows:

Let EVENT = 0

Loop

  Let Vt = measured roll vel. at time t

  If Vt > T1 and EVENT = 0

    EVENT = 1
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    Let s = t

  if Vt < T2 and t-s < T3 and EVENT = 1

    Bite detected

    Let s = t

    EVENT = 2

  if EVENT = 2 and t-s < T4

    EVENT = 0

The variable EV ENT iterates through the events just described. The parameters T1 and T2 

define the threshold for roll detections, the parameter T3 defines the minimum time between 

positive and negative rolls, and the parameter T4 defines the minimum time between bites.

E. Evaluation metrics

The evaluation method follows the procedure previously established [8]. Algorithm bite 

detections are compared to ground truth manually marked bites. Figure 7 illustrates the 

possible classifications. For each computer detected bite (small square in the figure), the 

interval of time from the previous detection to the following detection is considered. The 

first actual bite taken within this window, that has not yet been paired with a bite detection, 

is classified as a true detection (T). If there are no actual bite detections within that window, 

then the bite detection is classified as a false detection (F). After all bite detections have 

been classified, any additional actual bites that remain unpaired to bite detections are 

classified as undetected bites (U). This approach defines an objective range of time in which 

an actual bite must have occurred in order to classify a detected bite as a true positive. The 

window extends prior to the actual bite because it is possible in some cases for the wrist roll 

motion to complete just prior to the actual placing of food into the mouth. Sensitivity (true 

detection rate) is calculated as (total Ts)/(total Ts+ total Us). Because this method does not 

allow for the definition of a true negative, specificity (false detection rate) cannot be 

calculated. We therefore calculate the positive predictive value as a measure of performance 

regarding false positives. The positive predictive value (PPV) is calculated as (total Ts)/(total 

Ts+ total Fs).

F. Parameter Tuning

In the original experiment involving 49 people eating a meal in a laboratory setting, T1 = T2 

= 10, T3 = 2 and T4 = 8 were determined to be optimal [8]. It was also found that a range of 

values provided reasonable results. The present work reports results using these same values 

but also reports results using a shorter time for T4. During evaluation is was discovered that 

people ate faster on average in the cafeteria experiment than in the previous laboratory 

experiment. It was found that setting T4 = 6 produced a more balanced sensitivity and 

positive predictive value. This is further discussed in sections III–IV. III.

Results

Table II lists the sensitivities found across demographic variables age, gender and ethnicity. 

Sensitivity trended higher as age increased. Sensitivity for females was 10% higher than 

sensitivity for males. For ethnicity, sensitivity was highest for African Americans and lowest 
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for Asians/Pacific Islanders. Table II also reports the average eating rate for each 

demographic in seconds per bite (SPB). SPB trends lower for every demographic as 

sensitivity trends lower, suggesting that a faster eating rate results in lower sensitivity.

Figure 8 plots the sensitivity of the method for the foods of which more than 100 bites were 

consumed. The average sensitivity (75%) is given for reference. For most foods the 

sensitivity trends consistently in the range of 60–90%. For a small number of foods the 

sensitivity drops precipitously. For a food like ice cream cone the decrease in sensitivity is 

likely due to the natural minimization of wrist roll during consumption (for fear of having 

the ice cream fall out of the cone). Figure 8 also shows the average SPB of each food type. 

The correlation between SPB and sensitivity is 0.4 suggesting it has a mild effect.

To look for other potential causes of variability we manually observed the motion in the 

hundreds of hours of video to try to infer commonalities. In many cases a bite involves head-

towards-plate motion in combination with hand-towards-mouth motion. The former seems to 

be larger when a food is more prone to spillage, so a participant positions their head over the 

container to facilitate delivery of the food to the mouth (for example, compare figure 3 to 

figure 6). To explore this hypothesis we calculated the amount of motion of the wrist during 

a 2 second window centered on every bite and took the average value for each food type, 

finding a 0.4 correlation which again suggests a mild effect.

Table III summarizes the accuracies found across other bite type variables. Container 

sensitivity was fairly consistent with the exception of glass which was 9% lower than 

average. For utensils, chopsticks showed a relatively low detection rate (50%) but were also 

found to be used twice as fast (7 seconds per bite) as a fork or hand (14–15 seconds per 

bite). Handedness showed a small variation in sensitivity, while the use of both hands as 

opposed to a single hand reduced sensitivity by 8–9%.

Overall, across all 24,088 bites the sensitivity was 75% with a positive predictive value of 

89%. The algorithm parameters were originally determined using data recorded in a 

laboratory setting [8] in which the average eating rate was slower (n=49, seconds per bite = 

19.1 ± 6.4) compared to what was observed in the cafeteria setting (n=271, seconds per bite 

= 14.7 ± 5.6). We therefore experimented with shortening the parameter controlling the 

minimum time between detections of bites to 6 seconds. With this value the algorithm 

produced 81% sensitivity with a positive predictive value of 83%.

IV. Discussion

The primary goal of this study was to assess the accuracy of the bite counting method across 

a wide variety of demographics and food types. While minor variations occurred across most 

variables, the method showed robustness to this challenging data set. The original laboratory 

test found 81% sensitivity with 86% positive predictive value [8]. After tuning the algorithm 

to the faster eating pace observed in the cafeteria, the same sensitivity was achieved with 

only a 3% decrease in positive predictive value. This experiment provides the most 

comprehensive evidence to date that the method is reliable during normal unscripted eating.
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The experiment identified two areas where the algorithm could be improved. First, variations 

in eating pace affect the sensitivity. The bite detection algorithm includes a parameter (T4) 

that defines the minimum time between bites. It is intended to reduce false positives that 

may be caused by non-eating wrist motions. In our previous experiment in a laboratory (49 

people), we found that tuning T4 to 8 seconds provided the best average results [8]. In the 

cafeteria experiment reported in this paper (271 people), we found that tuning T4 to 6 

seconds provided the best average results. We also found that there were some differences in 

average eating rate across demographic variables (age, gender, ethnicity) that trended with 

bite detection sensitivity. In future work we intend to use those demographic variables to try 

to automatically adjust T4. We also intend to try to detect eating rate from the wrist motion 

tracking signals to automatically adjust to the individual. This would be similar to how a 

pedometer learns the stride duration of a person while running or walking and adjusts its 

step detection parameters accordingly.

Second, variations in the amount of wrist motion versus the amount of head-towards-plate 

motion affect the sensitivity. Two parameters of the algorithm are designed to detect the 

typical amount of motion. Again it may be possible to adjust these parameters in real-time to 

learn the typical amount of wrist motion of a person during a meal. This work provides the 

data set necessary to explore these ideas.

One limitation of the bite counting algorithm is that it requires a user to turn the method 

on/off at the beginning/end of a meal. However, in a previous study we analyzed data from 

77 participants consuming 2,975 meals over a 2 week period [28]. This demonstrated good 

compliance with remembering to use the device. Another potential limitation of the bite 

counting algorithm is its susceptibility to false positives caused by wrist motions unrelated to 

eating. However, in this experiment we did not script the eating activity or restrict the types 

of motions of the participants. People were instructed to eat as naturally as possible and thus 

the amount of non-eating wrist motions can be expected to be typical. In our previously 

published laboratory experiment, we manually reviewed the videos and counted non-eating 

wrist motions such as those caused by using a napkin, phone, or engaging in conversation, 

and found that they occurred between 67% of bites. Collectively our experiments 

demonstrate robustness to typical non-eating wrist motions during normal eating.

A strength of the experiment reported in this paper is that the eating recorded took place in 

an environment that was as natural as possible, and eating behaviors were completely 

unscripted and unrestricted. A weakness of this approach is that it requires a tremendous 

effort in labeling ground truth. In total over 1,000 man hours were invested in reviewing the 

videos and labeling the bites. We recruited 22 reviewers because of the large effort needed to 

complete the ground truthing process. Studies have shown that participants change their 

eating behavior in clinical settings [6], [19]. As this method is intended to be used in free-

living scenarios, a naturalistic evaluation of its accuracy is important. However, although we 

tried to make the cafeteria setting as natural as possible, it is still possible that behaviors in 

free-living environments could affect the accuracy of the method in ways that could not be 

captured with this study (e.g. grazing, other types of distraction). Future studies should 

examine the algorithm’s accuracy in these types of situations. V.
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Fig. 1. 
The table instrumented for data collection. Each participant wore a custom tethered device to 

track wrist motion.
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Fig. 2. 
A custom program created for manual labeling of ground truth bites. The left panel shows 

the video and the right panel shows the wrist motion tracking. Vertical purple lines indicate 

the times marked as bites, the vertical green line indicates the time currently displayed in the 

video. Variables (hand, utensil, container, food) are identified for each bite.
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Fig. 3. 
Example identifying the time index of a bite (frame 14).
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Fig. 4. 
Examples of foods. From left to right: cheese pizza; cereal Apple Jacks; chunky chocolate 

chip cookie; California chicken wrap, shoestring french fries; hamburger, shoestring french 

fries.
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Fig. 5. 
Examples of foods that are difficult to identify bite by bite. From left to right: collard greens, 

macaroni and cheese, corn bread; edamame, jasmine rice, stir fry; char sui braised pork, 

brown rice, peas and carrots; pork chop suey with white rice, turkey sliced; Mexican rice, 

refried beans, roast pork loin.
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Fig. 6. 
Example of difficulty identifying the time index of a bite due to obscuring head motion.

Shen et al. Page 16

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Classification of results.
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Fig. 8. 
Sensitivity and seconds per bite (SPB) for all foods of which participants consumed greater 

than 100 bites. Frequency (number of occurrences) of bites for food types in this figure 

ranged from 110 to 3,986. Average sensitivity (75%) highlighted for reference.
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TABLE I

Manual labeling error rates.

missed bites 900 (3.7%)

time error 1217 (5%)

identity error 714 (3%)

data entry error 1059 (4.4%)
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TABLE II

Sensitivity and seconds per bite (SPB) for age, gender, and ethnicity.

demographic #partic. #bites #detected (sensitivity) SPB

age

51–75 21 1634 1404 (86%) 18

41–50 33 2790 2227 (80%) 17

31–40 27 2531 1949 (77%) 15

24–30 76 7426 5326 (72%) 13

18–23 114 9707 7050 (73%) 13

gender

female 140 11811 9401 (80%) 15

male 131 12277 8555 (70%) 13

ethnicity

African American 26 1958 1583 (81%) 18

Caucasian 190 15990 12327 (77%) 15

Hispanic 11 1195 877 (73%) 13

Other 15 1635 1115 (68%) 14

Asian or Pac. Isl. 29 3310 2054 (62%) 12
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TABLE III

Sensitivity and seconds per bite (SPB) for container, utensils, and hand used.

bite variable #bites #detected (sensitivity) SPB

container

bowl 3939 3091 (79%) 15

mug 116 87 (75%) 17

plate 16434 12389 (74%) 15

glass 3599 2389 (66%) 19

utensil

fork 10308 8627 (83%) 16

spoon 2389 1711 (73%) 12

hand 10989 7419 (68%) 16

chopsticks 400 198 (50%) 7

hand used

l-handed using left hand 1363 1106 (81%) 15

r-handed using right hand 18344 14267 (78%) 15

l-handed using both hands 162 116 (72%) 19

r-handed using both hands 1233 860 (70%) 16
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