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Abstract

Fast beta (20–28 Hz) electroencephalogram (EEG) oscillatory activity may be a useful 

endophenotype for studying the genetics of disorders characterized by neural hyperexcitability, 

including substance use disorders (SUDs). However, the genetic underpinnings of fast beta EEG 

have not previously been studied in a population of African-American ancestry (AA). In a sample 

of 2382 AA individuals from 482 families drawn from the Collaborative Study on the Genetics of 

Alcoholism (COGA), we performed a genome-wide association study (GWAS) on resting-state 

fast beta EEG power. To further characterize our genetic findings, we examined the functional and 

clinical/behavioral significance of GWAS variants. Ten correlated single-nucleotide 

polymorphisms (SNPs) (r2>0.9) located in an intergenic region on chromosome 3q26 were 

associated with fast beta EEG power at P<5 × 10−8. The most significantly associated SNP, 

rs11720469 (β: − 0.124; P<4.5 × 10−9), is also an expression quantitative trait locus for BCHE 
(butyrylcholinesterase), expressed in thalamus tissue. Four of the genome-wide SNPs were also 

associated with Diagnostic and Statistical Manual of Mental Disorders Alcohol Dependence in 

COGA AA families, and two (rs13093097, rs7428372) were replicated in an independent AA 

sample (Gelernter et al.). Analyses in the AA adolescent/young adult (offspring from COGA 

families) subsample indicated association of rs11720469 with heavy episodic drinking (frequency 

of consuming 5+ drinks within 24 h). Converging findings presented in this study provide support 

for the role of genetic variants within 3q26 in neural and behavioral disinhibition. These novel 

genetic findings highlight the importance of including AA populations in genetics research on 

SUDs and the utility of the endophenotype approach in enhancing our understanding of 

mechanisms underlying addiction susceptibility.

INTRODUCTION

Human electroencephalography (EEG) noninvasively measures ongoing resting-state brain 

electrical activity. These oscillations are divided into frequency bands (delta (1–3 Hz), theta 

(4–7 Hz), alpha (8–12 Hz), beta (13–28 Hz) and gamma (>29 Hz)), with each band 

reflecting a different global brain state (for example, alpha activity reflects a relaxed state 

while beta EEG reflects an alert awake state1–3). Although local excitatory–inhibitory 

interactions underlying sensory and motor functions involve gamma-band oscillations, 

cognitive functions mediated by long-range cortical interactions often involve EEG activity 

in the beta range.3 Beta EEG is also associated with several externalizing disorders,4–10 

including alcohol and other substance use disorders (SUDs) and attention deficit 

hyperactivity disorder (ADHD). Given these associations, and the high degree of genetic 

influence observed in twin studies (49–85%11,12), beta EEG has been proposed as a useful 

endophenotype13 for identifying genetic factors underlying disorders characterized by 

disinhibitory traits.14
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Previous studies report differences in the magnitude of fast (>19 Hz) beta EEG among 

individuals with alcohol use disorders (AUD)4–6,15,16,17 and related problems (that is, SUD, 

ADHD). Further, fast beta EEG was superior to the severity of illness, major depression and 

conduct problems in predicting relapse in abstinent individuals with a history of AUD.5,17,18 

As elevated beta EEG is present in the offspring of alcoholics prior to the onset of risky 

drinking,4,15,19,20 researchers have hypothesized that excess beta power precedes the 

development of AUD and is likely related to an underlying genetic predisposition for 

developing AUD, rather than a consequence of heavy drinking. Begleiter and Porjesz4 have 

suggested that this may be an electrophysiological index of an imbalance in the excitation–

inhibition homeostasis in the cortex, which underlies a predisposition to develop AUD and 

related disorders.4,14,20 Further supporting this hypothesis is the association of beta EEG and 

other disorders characterized by behavioral disinhibition: externalizing behavior in 

children19 and adolescents,7 ADHD,10,21,22 internet addiction,8,9 and binge drinking in 

emerging adults.23

Despite the high heritability estimates provided by twin and family studies (49–85%11,12), 

there have been relatively few genetic studies of beta EEG, and to date, only one finding has 

replicated. An early analysis found linkage between beta EEG and a region of chromosome 

424 harboring variants in the gene that encodes GABA α2 (GABRA2).25 More recently, a 

study of 586 individuals of European ancestry with Diagnostic and Statistical Manual of 

Mental Disorders (DSM-IV) Alcohol Dependence (AD) and 603 controls26 replicated the 

association between beta activity and GABRA2 single-nucleotide polymorphisms (SNPs). 

To date, only two genome-wide association studies (GWASs) of beta EEG have been 

conducted.12,27 In a study of 322 Native-American individuals, there were no genome-wide 

significant associations reported for beta EEG.27 A recent GWAS of monopolar beta EEG in 

4026 European ancestry adolescent twins and their parents12 did not report any genome-

wide significant variants but replicated the previous associations observed with GABRA2.

Importantly, there have been no GWASs of EEG conducted in populations of AA, and thus 

the genetic architecture of EEG-related traits is not well described in AA populations. In 

addition to the public health importance of including all populations in research, conducting 

genetic studies in populations of AA is important because of the greater genetic diversity 

and the evolutionary differences in disease allele frequency and linkage disequilibrium (LD) 

patterns observed.28 Moreover, African-American drinkers consume less alcohol than Non-

Hispanic whites but experience more alcohol-related problems, including social 

consequences, illness and death,29–32 indicating a need to identify factors that mitigate risk 

for problem drinking. Because research examining how basic brain functioning is related to 

human behavior and disorders has the ultimate goal of providing prevention and/or 

interventions for all individuals, this important gap in the literature needs to be addressed.

Given that beta EEG is highly heritable and is related to several externalizing behaviors and 

SUDs, genetic analysis of beta EEG may aid in our understanding of underlying brain 

function in individuals at risk for a range of externalizing disorders. The primary aim of this 

study was to conduct a GWAS of fast beta EEG power (bipolar occipital derivation, chosen 

due to high heritability observed in previous studies33) in families of AA from the 

Collaborative Study on the Genetics of Alcoholism (COGA), a recently ascertained family 
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sample densely affected with AD and co-occurring externalizing disorders (for example, 

SUD, ADHD). The secondary aims of this study were to examine the functional and 

behavioral significance of GWAS findings.

MATERIALS AND METHODS

Collaborative Study on the Genetics of Alcoholism

COGA recruited AD probands from treatment facilities through seven participating sites, as 

described previously.34,35 Institutional review boards at all sites approved the study. 

Participants were administered the Semi-Structured Assessment for the Genetics of 

Alcoholism (SSAGA), a poly-diagnostic interview.36 Individuals aged <18 years were 

administered an adolescent SSAGA. In addition, DNA and EEG were collected. Principal 

components (PCs) derived from GWAS data were used to assign ancestry in the full 

genotyped sample and were the basis for the selection of AA families. A total of 99.5% of 

the AA (defined by PCs) individuals self-identify as ‘Black/African-American’ when given 

the following response options: ‘Native American/American Indian’, ‘Asian’, ‘Pacific 

Islander’, ‘African-American/Black’, ‘Caucasian/White’, and ‘Other’. Independent of their 

self-reported race/ethnicity, 11.1% of the sample endorsed being of ‘Hispanic or Latino 

descent’. The analytical sample consisted of all participants with EEG and GWAS data 

available, 2382 individuals from 482 families. The demographic characteristics of the full 

AA sample and the EEG subsample are comparable (Table 1). While 27.6% of the full AA 

sample met criteria for AD, rates of other co-occurring substance use and externalizing 

disorders (for example, cocaine dependence (CoD), ADHD) were also substantial.

EEG recording and processing

EEG recording and processing has been detailed previously.33 Briefly, resting (eyes closed) 

EEG was recorded for 4.25 min; a continuous interval of 256 s was analyzed. This study 

focused on log-transformed absolute fast beta power (20–28 Hz) at occipital bipolar leads 

(O1–O2; Supplementary Figure S1). EEG procedures were identical at all collection sites.

Genotyping, imputation and quality control

Genotyping, imputation and quality control has been previously reported.37 Genotyping of 

3414 individuals from 598 families was performed at the Center for Inherited Disease 

Research using the Illumina 2.5M array (Illlumina, San Diego, CA, USA). SNPs with a 

genotyping rate <98% or that violated Hardy–Weinberg equilibrium (P<10−6) or with minor 

allele frequency (MAF) <3% were excluded from the analyses. Mendelian inconsistencies 

were removed,38 after which data were imputed to 1000 genomes (hg19) using SHAPEIT39 

and IMPUTE2.40 Following imputation, genotype probabilities ⩾ 0.90 were changed to 

genotypes. Mendelian errors in the imputed SNPs were reviewed and resolved as described 

in Wetherill et al.37 All SNPs with an imputation information score <0.30 or MAF <0.03 

were excluded from subsequent association analysis.40

GWAS

GWAS was conducted in GWAF (genome-wide association analyses with family) on 12 972 

748 SNPs using a linear mixed model incorporating a genetic relationship matrix to control 
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for the relatedness in the family sample.41 Sex and log-transformed age (at the time of EEG 

recording) were included as covariates in the model, as each of these variables were 

associated with beta EEG (P<0.001). The first 10 PCs (PC1–PC10) computed from 

SNPRelate42 were also included as covariates to reduce the risk of false-positives owing to 

population stratification. An additive genetic model was assumed. Established thresholds for 

genome-wide significance (P<5 × 10−8) were utilized. Genome-wide complex trait analysis 

(GCTA) was utilized to determine SNP heritability of fast beta EEG in the analytical sample. 

The genetic relatedness matrix was incorporated to adjust heritability estimates for familial 

clustering.

Functional analyses

We examined whether the most significantly associated variant for fast beta EEG was an 

expression quantitative trait locus (eQTL) in the UK Brain Expression Consortium 

(BRAINEAC; http://www.braineac.org/). Braineac draws on data from 134 

neuropathologically normal individuals of European ancestry and assesses 10 different 

regions of the brain (Table 3).43 Only the single SNP most associated with fast beta EEG 

was examined in Braineac to minimize multiple testing. Further, a Bonferonni correction 

was applied to all P-values. Associations that withstood multiple testing were examined in 

the Genotype-Tissue Expression Project (GTEx) database (www.gtexportal.org) to confirm 

eQTL findings.

Alcohol use behavior

We determined whether variants that were genome-wide associated with fast beta EEG were 

also associated with DSM-IV AD44 in the discovery sample (2242 individuals from 480 

families (Table 1)). Non-drinkers, those aged <18 years and unaffected individuals with 2+ 

SUD criteria were excluded. Analyses were performed using SAS Version 9.4 (SAS Institute 

(http://search.ebscohost.com/login.aspx?direct=true&db=plh&AN=101476231&site=eds-

live)). Logistic regression models were adjusted for age, sex, relatedness and PC1–PC10. 

Given that a single phenotype was tested, we examined association with all fast beta EEG 

genome-wide significant SNPs. Individual P-values were adjusted using the Pnorm 

procedure,45 which accounts for both the LD structure of the SNPs, and the sampling of 

relatives. Pnorm uses the multivariate normal distribution approximation to evaluate the 

significance of each test adjusting for simultaneous testing.

Next we examined whether GWAS variants were associated with DSM-IV AD in an 

independent sample of unrelated individuals recruited for studies of the genetics of opioid, 

cocaine or AD46 made publicly accessible on dbGaP (Accession no.: phs000425.v1.p1.c1). 

Only individuals of AA who had AD data available were included in the analyses (1346 AD 

cases and 461 unaffected controls).

Finally, because of prior evidence indicating a relationship between binge drinking in young 

adulthood and high fast beta EEG,23 we determined whether the top SNP meeting genome-

wide criteria for fast beta EEG was associated with a measure similar to binge drinking, 

heavy-episodic drinking (frequency of consuming 5+ drinks within 24 h in the past year), in 

adolescent and young adult offspring from COGA families in COGA’s prospective study. 
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This sample (ages 12–24 years at baseline) is longitudinally followed and has been 

described in detail previously.47 The present study utilizes data from the baseline assessment 

of each AA individual (Table 1). Participants were asked to “Think about the last 12 months. 

How often did you have 5 or more drinks in a 24-hour-period?” Thirteen response options, 

detailed in Supplementary Table S3, ranged from ‘Never’ to ‘Every Day’. Of the 892 

individuals from 212 families, 33.8% had ever consumed a full drink of alcohol. The 

remaining 66.2% were coded as zero. Due to the relatively small sample size, only the single 

SNP most strongly associated with fast beta EEG was examined to minimize multiple 

testing. Association was tested with log-transformed heavy-episodic drinking, adjusted for 

relatedness, sex, age and PC1–PC10 in Mplus 7.4.48

Post hoc analyses

BCHE (and/or surrounding region, 3q26) has previously been associated with behavioral 

conditions relevant to fast beta EEG and AUD, including ADHD49–52 and cocaine use/

problems.53 To determine whether the significant signal observed for fast beta EEG was 

accounted for by any of these disorders, we carried out three separate post hoc GWAS of fast 

beta EEG, each adjusted for one of the three disorders: DSM-IV AD, DSM-IV ADHD, and 

DSM-IV CoD by including it as a covariate in the model. All analyses conducted in the 

current study are summarized in Supplementary Table S1.

RESULTS

GWAS of beta EEG

Ten individual SNPs (pair-wise r2>0.9 for all 10 SNPs based on hg19 1000 Genomes from 

the sample of African ancestry), located in an intergenic region on 3q26 (Chr 3, 166 471 

942–166 489 551) were associated with fast beta EEG at P<5 × 10−8 (Table 2, 

Supplementary Table S2, Figures 1 and 2, Supplementary Figure S4). The most significant 

SNP was rs11720469 (P<4.5 × 10−9); the minor allele (G) was negatively associated with 

fast beta EEG (β: − 0.124; Supplementary Figure S5). Figure 2 graphically illustrates this 

GWAS signal, as well as the known genes located upstream and downstream of this signal, 

including BCHE, PDCD10, WDR49, SERPINI1, SERPINI2 and ZBBX. GABRA2 was also 

associated with fast beta EEG but not at a genome-wide level (P<0.01). GCTA estimated 

that 33.8% (s.e.: 0.014, P<5.5 × 10−17) of the variance in fast beta EEG was due to genome-

wide SNPs (narrow sense heritability).

Functional analyses

In the Braineac database, rs11720469 is associated with the mRNA expression of BCHE, 

PDCD10, SERPINI1, WDR49 and ZBBX. Only one of these findings survived a Bonferroni 

multiple test correction: rs11720469 is an eQTL for BCHE expression in thalamus tissue (P 
= 4.20 × 10−4); the minor allele is associated with decreased mRNA expression (Table 3). In 

the GTEx database, rs11720469 is associated with the expression of BCHE in brain tissue: 

cortex (P<0.007) and caudate (P<0.005). HaploReg V4.154,55 indicated that rs11720469 

alters regulatory motifs in some cell types in the ROADMAP Epigenomics data.56
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Alcohol use behavior

Seven of the 10 variants associated with fast beta EEG were also associated with AD in a 

subset of the discovery GWAS sample (Table 4); the minor allele was associated with 

reduced AD risk, indicating a protective effect. Given the high LD observed among these 10 

SNPs, these P-values were adjusted for the number of tests (1.2) as estimated using the 

Pnorm procedure.45 Four of these variants survived multiple test correction: rs7428372 (β: − 

0.164, P-value<0.037), rs11705903 (β: − 0.161, P-value<0.039), rs6806557 (β: − 0.161, P-

value<0.041), and rs13093097 (β: − 0.172, P-value<0.027).

In an independent sample,46 4 of the 10 SNPs were associated with AD (Table 4). Two SNPs 

withstood the multiple test correction, rs7428372 (β: − 0.167, P-value<0.042) and 

rs13093097 (β: − 0.179, P-value<0.029); the minor allele was associated with reduced AD 

risk, indicating a protective effect.

Finally, having one or more copies of the minor allele was associated with reduction in 

heavy-episodic drinking (β: − 0.064, P<0.035) in the AA subsample of adolescents/young 

adult offspring from COGA families; however, the effect size was modest.

Post hoc analyses

In the primary GWAS sample, individuals with elevated fast beta EEG were more likely to 

meet criteria for DSM-IV AD, CoD and ADHD (all P-values <0.001, surviving Bonferroni’s 

correction). To determine whether the significant signal observed for fast beta EEG was 

accounted for by one of these disorders, we carried out three separate post hoc GWAS of fast 

beta EEG, each with one of these phenotypes included as a covariate in the model. Including 

AD as a covariate, the 3q26 association remains but is slightly diminished (rs11720469: β: − 

0.120, P-value: 2.2 × 10−8; Supplementary Figure 3A). Including DSM-IV CoD as a 

covariate, the 3q26 association remains but is also slightly diminished (rs11720469: β: − 

0.122, P-value: 1.3 × 10−8; Supplementary Figure 3B). Including DSM-IV ADHD as a 

covariate reduced the 3q26 association (rs11720469: β: − 0.088, P-value: 6 × 10−4; 

Supplementary Figure 3C).

DISCUSSION

Although previous studies have reported variation in beta EEG among individuals diagnosed 

with AD and related conditions, there have been relatively few studies examining genetic 

variants in relation to beta EEG and only one finding that has been replicated to date 

(GABRA212,26,57). Subsequently, associations between GABRA2, AD25,58–62 drug 

dependence58,63 and externalizing behavior64–67 have been observed, indicating the utility of 

beta EEG as an endophenotype for facilitating discovery of genes underlying disinhibitory 

behavior.

In what we believe is the first GWAS of fast beta EEG in families of AA, we report a 

genome-wide significant signal in an intergenic region on 3q26. The most significant SNP, 

rs11720469, was negatively associated with fast beta EEG (β: − 0.124). Interestingly, this 

same intergenic region has been previously implicated in a sub-threshold (that is, 

approaching genome-wide significant) association and gene-based association (C3orf57) in 
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the report by Hodgkinson et al. of monopolar beta (13–30 Hz) EEG in 322 Native 

Americans.27 Note that, although the present study focused on fast beta (20–28 Hz), post 
hoc analyses indicated that the 3q26 signal is also observed at a genome-wide level for mid-

beta (16–20 Hz) and at a sub-threshold level for low beta (12–16 Hz). We present Manhattan 

plots for the three beta frequency sub-bands in Supplementary Figure S2: (a) 12–16 Hz, (b) 

16–20 Hz, and (c) 20–28, for comparison.

BCHE, thalamus and disinhibitory disorders

rs11720469 is an eQTL for BCHE expression in thalamus and related regions (that is, 

cortex, caudate). The thalamus plays a central role in relaying sensory and motor signals to 

the cerebral cortex,68 reflected in EEG dynamics. Dynamic coordination of lower 

frequencies (theta/alpha rhythms from subcortical regions) and higher frequencies (beta/

gamma rhythms from cortical sites) through a mechanism of phase–amplitude coupling 

modulate thalamo-cortical and corticocortical communication in the brain.69,70 Steriade71 

reports that neuronal oscillations result from synaptic interactions in corticothalamic 

neuronal loops and that intracellularly recorded thalamo-cortical neurons displayed fast 

oscillations involving beta rhythms. Thalamic volume and/or function contributes to higher-

order cognitive functions, including inhibitory control, decision-making and disinhibitory 

disorders.72 Mackey et al.73 reported that greater temporal discounting was associated with 

greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and 

anterior thalamus. Magnetic resonance imaging studies have found that structural variation 

in the thalamus is related to alcohol consumption74 and AUD,75 as well as relapse in 

treatment seeking individuals with AUD.76,77 Together, this literature suggests that the 

thalamus plays a key role in regulatory mechanisms underlying fast beta EEG and AUD.

In addition to AUD, BCHE (and/or surrounding region, 3q26) has previously been 

associated with behavioral conditions relevant to fast beta EEG, including ADHD and 

cocaine use/problems. In four independent studies, variations within or surrounding BCHE 
have also been associated with ADHD.49–52 Jacob et al.50 report that, when meta-analyzing 

the results of their study with three additional GWAS for copy number variations, they found 

that individuals with ADHD were more likely to have a deletion in the BCHE promoter 

region. Given several lines of evidence suggesting the involvement of BCHE in the etiology 

of ADHD,50 post hoc we re-examined the association between 3q26 variants and fast beta 

EEG, adjusting for ADHD. When the GWAS of fast beta EEG included ADHD as a 

covariate in the model, results (Supplementary Figure S3C) show that the 3q26 association 

is significantly reduced, with the top SNP no longer meeting genome-wide significance 

criteria. This suggests an important connection between ADHD, 3q26 and fast beta EEG that 

future studies with longitudinal designs should disentangle (for example, does fast beta EEG 

mediate the association between 3q26 and ADHD?).

In addition, BChE has a key role in the metabolism of various anesthetics, muscle relaxants 

and cocaine.78 Once absorbed, cocaine is rapidly transformed into two metabolites catalyzed 

by BChE, the enzyme produced by BCHE.79 BChE is synthesized primarily in the liver and 

is distributed throughout the intestinal mucosa, plasma and the brain.80 For these reasons, 

BChE has been conceptualized as a therapeutic agent for CoD.53 Researchers hypothesize 
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that polymorphisms in BCHE lead to various enzyme profiles that allow different 

concentrations of cocaine to reach the reward system in the brain, thereby influencing 

susceptibility to developing addiction.81,82 As fast beta EEG has been associated with CoD 

in rodents83 and humans,84,85 the apparent links among BCHE, fast beta EEG and CoD 

should be explored further. Post hoc, we examined the association between 3q26 variants 

and fast beta EEG, adjusted for CoD. Results (Supplementary Figure S3B) show that the 

3q26 association remains, although slightly diminished, suggesting that CoD is not driving 

the association among 3q26 and fast beta EEG in this sample. Also of potential relevance, 

variations within BCHE have also been implicated in association studies of learning and 

memory,86 cognitive functioning,87 schizophrenia88 and Alzheimer’s disease.89

3q26, fast beta EEG, substance use behaviors/disorders

In COGA AA families, individuals with elevated fast beta EEG were more likely to meet 

criteria for AD (P<0.01), and a small, but significant portion of the variance shared among 

fast beta EEG and AD is attributable to genome-wide variants (genetic correlation, as 

estimated by GCTA: 0.10, s.e.: 0.17). There is evidence of association between 4 of the 10 

variants meeting genome-wide criteria for fast beta EEG and AD (rs7428372 and 

rs13093097 survived a multiple test correction), suggesting a potential protective role for 

fast beta EEG variants in AD in the primary GWAS sample. Further, 4 of the 10 SNPs 

meeting genome-wide criteria for fast beta EEG in COGA were nominally associated with 

AD in an independent sample,46 and 2 of these SNPs withstood multiple test correction. 

Interestingly, these two variants, rs7428372 and rs13093097 (r2>0.97), were two of the four 

variants that withstood a multiple test correction in the discovery sample.

Association analyses of the top genome-wide significant SNP associated with fast beta EEG 

in the prospective sample indicated that rs11720469 was associated with heavy-episodic 

drinking. As this sample has an average age of approximately 17 years, this suggests that 

individuals with a genetic predisposition toward neuronal hyperexcitability show differences 

in risky drinking in adolescence/young adulthood. Previous studies indicate that compared 

with non-binge drinkers or mild-binge drinkers, more severe-binge drinkers have increased 

fast beta EEG (20–35 Hz).23 As this fast beta power spectral pattern is also observed among 

those with AD,90 the authors suggested that fast beta EEG may be a biomarker for the 

development of future AUDs.

These findings provide additional support for the links between fast beta EEG and alcohol 

use problems. Taken further, this may suggest that 3q26 harbors variants that are related to 

both fast beta EEG and alcohol problems (or underlying externalizing behavior, for example, 

ADHD). In addition, this could suggest that fast beta EEG may mediate the associations 

between 3q26 and alcohol problems. To assess this, post hoc we examined the association 

between 3q26 variants and fast beta EEG, adjusted for AD. Results (Supplementary Figure 

S3A) show that the 3q26 association remains but is slightly diminished, suggesting that AD 

may have an indirect role in the association of 3q26 and fast beta EEG in this sample. Stated 

another way, fast beta EEG may be a risk factor for some, but not all individuals with AD. 

These findings, along with the ADHD findings, could also indicate that the association 

between 3q26 and fast beta EEG is more reflective of generalized neural disinhibition, best 
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captured in this sample by ADHD as compared with CoD and AD. Future studies are needed 

to examine these hypotheses.

In light of the previous BCHE findings from the literature, and the evidence that rs11720469 

is an eQTL for BCHE, this discussion has primarily focused on BCHE. However, there are 

several other potential candidate genes upstream and downstream of the GWAS signal that 

might harbor risk/protective variants influencing fast beta EEG and related disorders. These 

genes include, but are not limited to, PDCD10, WDR49, SERPINI1, SERPINI2 and ZBBX. 
Given that there are two recombination hotspots between rs11720469 and BCHE, it is 

possible that BCHE is not directly involved in the association of 3q26 and fast beta EEG 

observed in this study. WDR49 has previously been associated with quantity of visceral fat91 

and SERPINI1 has previously been associated with variation in heart rate.92

Limitations

Most notable is the relatively small sample size and related lack of statistical power to detect 

subtle genotypic effects. However, GWAS results seem reliable based on corroborating 

information (that is, several genome-wide significant SNPs in high LD, biological 

plausibility, replication in an independent sample). Furthermore, given the nominal 

associations observed in eQTL analyses, these findings must be replicated in larger samples 

of individuals of AA. Finally, future studies should examine the effects of genetic variants 

on trajectories of beta EEG during development in order to delineate age-specific effects and 

the links between these effects and/or the onset of psychopathology (AUD, ADHD, CoD).

CONCLUSIONS

To date, there have been relatively few genetic studies examining beta EEG and only one 

finding that has been replicated. In addition, no previous gene identification study of beta 

EEG had been conducted in a population of AA. As the ultimate goal of this research is 

providing prevention and/or interventions for all individuals, it is crucial that AA 

populations are included in this work, especially because African-Americans are at greater 

risk for drinking-related consequences. This study found association between an intergenic 

signal on 3q26 and fast beta EEG in a sample of related individuals of AA. The most 

significant SNP is an eQTL for BCHE, a gene previously implicated in disinhibitory 

disorders and expressed in the thalamus, a brain region central to beta EEG and AUD. 

Further, fast beta EEG genome-wide associated variants (rs7428372 and rs13093097) were 

associated with AD both in the discovery sample and an independent sample. Converging 

data provide support for the role of genetic variants within 3q26 in neural hyperexcitability 

and disorders characterized by impulsivity. In addition, this study demonstrates the utility of 

the endophenotype approach13; genetic findings of fast beta EEG have provided an 

underlying biological hypothesis (that is, neural hyperexcitability) that can enhance our 

understanding of functional cerebral circuits and mechanisms underlying a predisposition to 

AUD and related behaviors.
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Data availability

COGA data used in the current study are available from the website https://zork5.wustl.edu/

coganew/contacts.html upon written request. Details regarding access to COGA data are 

available through the National Institute of Alcoholism and Abuse at http://

www.niaaa.nih.gov.proxy.library.vcu.edu/research/major-initiatives/collaborative-studies-

genetics-alcoholism-coga-study#Access. Following an embargo period, COGA data are also 

available from the publicly accessible dbGAP database at http://www-ncbi-nlm-nih-

gov.proxy.library. vcu.edu/gap/?term = COGA (IDs: phs000763.v1.p1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genome-wide association results for fast beta electroencephalogram in the African-

American ancestry function genome-wide association study. y Axis denotes the –log10(P-

value) for association. x Axis is the physical position of the single-nucleotide 

polymorphisms across the genome. Note: Red line indicates the threshold of genome-wide 

significance (P<5 × 10−8), whereas the blue line indicates the threshold of P<5 × 10−5.
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Figure 2. 
Association results for fast beta electroencephalogram on chromosome 3q26. y Axis denotes 

the –log10(P-value) for association. x Axis is the physical position on the chromosome 

(Mb). The most significantly associated single-nucleotide polymorphism (SNP; rs11720469) 

is shown in purple. The extent of linkage disequilibrium (LD; as measured by r2) between 

each SNP and the most significantly associated SNP is indicated by the color scale at the top 

left. Larger values of r2 indicate greater LD. Circles represent P-values from the African-

American ancestry function genome-wide association study sample. LD is based on hg19 

1000 Genomes from the African sample.
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Table 1

Descriptive characteristics of analytical COGA samples

AA fGWAS 
genotyped sample

AA fGWAS fast beta 
EEG subsample

AA fGWAS fast beta EEG 
subsample with DSM-IV 

data

AA prospective study 
subsample (at 

baseline)

Genotyped (N) 3414 2382 2242 892

Families (N) 598 482 480 212

Female (%) 52.7% 50.3% 53.4% 52.3%

Self-identified as ‘Black/African-
American’ (%)

99.5% 97.9% 97.4% 92.7%

Age (mean, s.d.), years 32.4 (11.2) 29.4 (12.3) 29.9 (11.8) 16.1 (3.3)

Ever drinkers 92.2% 92.3% 89.5% 33.8%

DSM-IV AD diagnosis (%) 27.6% 23.6% 24.5% 1.8%

Abbreviations: AA, African-American ancestry; AD, alcohol dependence; COGA, Collaborative Study on the Genetics of Alcoholism; DSM-IV, 
Diagnostic and Statistical Manual of Mental Disorders; EEG, electroencephalography; fGWAS, function genome-wide association study.
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