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Abstract

Linear mixed models are widely used to analyze longitudinal cognitive data. Often, however, the 

trajectory of cognitive function is nonlinear. For example, some participants may experience 

cognitive decline that accelerates as death approaches. Polynomial regression and piecewise linear 

models are common approaches used to characterize nonlinear trajectories, although both have 

assumptions that may not correspond with the actual trajectories. An alternative is to use a flexible 

sigmoidal mixed model based on the logistic family of curves. We describe a general class of such 

a model, which has up to five parameters, representing (1) final level, (2) rate of decline, (3) 

midpoint of decline, (4) initial level before decline, and (5) asymmetry. Focusing on a 4-parameter 

symmetric sub-class of the model, with random effects on two of the parameters, we demonstrate 

that a likelihood approach to fitting this model produces accurate estimates of mean levels across 

time, even in the case of model misspecification. We also illustrate the method on deceased 

participants who had completed at least 5 years of annual cognitive testing and annual assessment 

of body mass. We show that departures from a stable body can modify the trajectory curves and 

anticipate cognitive decline.
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1 Introduction

With the aging of the population in developed countries, there is great interest in 

understanding how complex human behaviors change in old age. Longitudinal studies with 

repeated behavioral assessment over time have documented age-related changes in diverse 
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domains, including cognitive function 1, motor function 2, sensory function 3, and well being 
4. However, trajectories of change are not always linear 5. In particular, common 

neurodegenerative conditions 5 and impending death 4 are associated with acceleration in 

rates of behavioral change.

Researchers have tried different approaches to model nonlinear trajectories of behavioral 

change. Piecewise models 4 or mixed-effects change point models6–9 are informative 

strategies and may provide a good model fit in some cases, but they are unlikely to capture 

the true trajectory. Mixed-effects change point models are often fitted in a Bayesian 

framework using Markov chain Monte Carlo methods that can be slow to converge, 

especially with several risk factors and multiple change points10, 11. Smoothing splines are 

another approach, but they yield many parameters that may be difficult to interpret 12. 

Polynomials can approximate nonlinear models but, with several parameters, providing a 

biologically based interpretation can be challenging 13. Nonlinear mixed effect models are 

not typically used to analyze late-life changes in behavior with rare exceptions 14. Without 

multiple covariates15 or random effects, and with more control over the experimental time, 

these models are more commonly applied to studies in areas such as microbiology, 

pharmacokinetics 16 and agriculture 13. Here, we demonstrate a very useful nonlinear mixed 

model, the sigmoidal model that allows the inclusion of covariates that are related to 

parametric quantities such as the rate of decline and half decline(the decline midpoint), as 

well as early levels, final levels. In contrast to piecewise linear models, the model can 

potentially provide better year by year fit due to its smoothness and flexibility.

In this paper, we study late life change in cognitive function using sigmoid mixed model 

structures based on logistic curves. We first describe a class of models with five main 

parameters, each of which may be a function of covariates and two of which have random 

effects. Focusing on a four parameter subclass of the model in a single-group setting, we 

then use simulations to explore the statistical properties of our estimation technique over a 

variety of situations in which it might be used such as variable number of follow-ups, non-

smooth trajectories, and with normal and non-normal random errors. The technique is 

illustrated using data from two longitudinal cohort studies on deceased participants with at 

least 5 years of annual observations.

2 Sigmoid mixed model for longitudinal data

Let i=1, …, N denote subjects and j=1, …, ni denote repeated observations per subject. Let 

tij denote the negative time between the jth observation and the terminal event (death). For 

example, if a subject has observations every other year, starting 9 years before death, then 

j=1, 2, 3, 4, 5, and tij=−9, −7, −5, −3, −1. Suppose that Y is a continuous normal outcome 

whose mean changes over time as a nonlinear function of, for simplicity, a single covariate 

X. Generally, a nonlinear mixed model 17 can be written in terms of a known nonlinear 

function g given by

(1)
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where the random errors eij~N(0,σ2), δi is a vector of person-specific parameters and φ is a 

vector of fixed parameters. Suppose that δi = (θ1i, θ4i), φ = (θ2, θ3, θ5), and we let the 

nonlinear trajectory of Y follow a five-parameter logistic structure12, such that,

(2)

The parameter θ1i represents the random intercept at tij=0. The parameter θ4i represents the 

limiting random response before the onset of decline, since  equals θ4i. Since time 

starts negative and progress to zero at the final event (e.g. death), θ1i is the final level and θ4i 

is the initial level before decline for person i. We can allow θ1i to accommodate a fixed 

covariate and random effects by representing it by

(3)

where ui~ N(0,σu
2). Hence, in the cognitive decline example, if there is no covariate, α1 

represents the mean level of cognitive function proximate to death. Similarly, θ4i can be 

represented by

(4)

where vi~N(0,σv
2). Again, in the cognitive decline example, if there is no covariate, α4 

represents the mean level of cognitive function in early adulthood.

Note that the equation 2 has two parts. The first part of the equation is the initial level θ4i. 

The second part of the equation is the total decline (θ4i–θ1i ) multiplied by a proportion (p) 

that is a nonlinear function of time, . The interpretation of θ2 and θ3 are 

influenced by θ5. The model can be simplified. If θ5 is always one, we will have a four-

parameter logistic. If, in addition, θ4i is set to zero, we will have a three-parameter logistic. 

We now provide interpretation of θ2 and θ3 for the four and three parameters logistic models 

represented by the special case where θ5 equals . Later we discuss the 

more complex cases where θ5 does not equal 1.

Figure 1 illustrates the interpretation of the model based on four parameters. At each point in 

time a nonlinear proportion p of the total decline θ4i–θ1i will be reduced from the initial 

level θ4i until final level θ1i was reached. The parameter θ2 represents the point in time 

where half of the total decline occurred, i.e., the midpoint of decline. That is, when time 

equals θ2 , then tij/ θ2 equals one and p equal 0.5. It can accommodate a fixed covariate 

effect by representing it by
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(5)

The parameter space of θ2 must be negative to allow tij/θ2 to be positive, since tij starts at a 

negative number and increases towards zero.

The parameter θ3 represents the variations of rate of decline around the time θ2. If tij/ θ2 is 

above 1 (time before the half decline), high values of θ3 will decrease p. For example, if tij/ 
θ2 = 1.25, then a θ3 of 1 will yield a p of 1/(1+1.25), while a θ3 of 2 will yield a smaller p of 

1/(1+1.252). Conversely,if tij/ θ2 is less than 1 (time after the half decline, closer to death), 

high values of θ3 will increase p. For example, if tij/ θ2 = 0.25, then a θ3 of 1 will yield a p 

of 1/(1+0.25), while a θ3 of 2 will yield a larger p of 1/(1+0.252). The parameter θ3 

represents the variations of rate of decline. It can be represented by

(6)

The rate of decline θ3 is a scale modification over time of the person specific curves, and 

influences the nonlinearity, or the steepness, of the curve. A positive effect on the rate of 

decline represents a decline that starts earlier versus a curve that starts flat and declines later. 

For three parameters logistic models where θ4i is always zero the interpretation of the 

parameters θ1i, θ2 and θ3 is the same as described above. Note that these three shape/scale 

parameters represented by θ2and θ3 do not have random effects. Conceptually, random 

effects for scale parameters could be added to the model, but estimation may be impractical.

An additional rate/scale parameter can be added to allow for further flexibility. The 

parameter θ5 can be represented by

(7)

To understand θ5 , let’s revisit the proportion p that now has the general form . 

The parameter θ5, termed in the literature an “asymmetry” parameter, will modify the curve 

given by the combination of θ2 and θ3, so that high values of the asymmetry θ5 will 

postpone decline (including the half decline). The curve will look more asymmetric with a 

sharper decline close to death. While in the three and four parameters logistic θ2 represents 

the half decline, in the five parameters model that is no longer the case. When time equal θ2, 

p will be . For example, at time equals θ2, for a θ5 equals 1 p will be ½, while for a θ5 

equals 2 p will still be only ¼. Figure 2 illustrates how changes in each parameter may 

change the trajectory.

In many cases, four parameters may provide adequate parsimony, fit and interpretation. A 

likelihood ratio test can be used to assess the need of the additional parameter in the five-

parameter structure. Due to preliminary results from our dataset, we focus this work on the 
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four-parameter logistic model. As described above, we assume that the between person 

random effects (ui and vi), as well as the within-person residuals (eij), follow normal 

distributions, where ui and vi may be correlated with each other but are assumed to be 

independent of the eij.

The model can be fit using SAS PROC NLMIXED. The model is fit by finding the 

maximum likelihood integrated over the random effects using adaptive Gaussian quadrature 

and Quasi-Newton Optimization. The initial parameter values required for the PROC 

NLMIXED can be obtained by examining the data trajectories. For example, an initial value 

for θ1 can be the average of the observations close to death. Because we are describing a 

declining process, the initial for θ4 should be smaller than the initial of θ1. The linear slope 

close to death (i.e. from death to 3 years before death) versus the earlier linear slope (i.e. 

more than 3 years before death) can help define θ2 and θ3. If the ratio of the slopes is close 

to 1, we should use higher initials of θ2 and θ3. In our experience, it is helpful to start with 

the empty model before adding risk factors. We provide a sample code on how to find the 

initial values for the empty model in the supplementary material, Appendix A. In Appendix 

A, we also provide a sample code for fitting sigmoidal models with risk factors. The 

estimates of the empty model can be used for the model with risk factors.

3 Simulations

The models are often used in laboratory work where the curves are smooth and the number 

of observations is controlled. Epidemiological studies often have a varying number of 

follow-ups and trajectories are not necessarily smooth. The properties of the four-parameter 

longitudinal sigmoidal model were assessed via simulation over a range of situations. 

Parameters were selected based on preliminary data from studies described in section 4. A 

total of 1,000 datasets were randomly generated with different seeds and with a sample of 

100 participants and 20 observations per participant. We generated data assuming smooth 

nonlinear trajectories, linear trajectories, and non-smooth trajectories with abrupt changes 

(piecewise linear trajectories). In addition, for a more challenging “wrong model” 

simulation, we generated data assuming a non-smooth trajectory with non-normal random 

effects.

Data were first generated using the four-parameter logistic with parameter values selected to 

reproduce what was observed during application of the method to real data. We use two sets 

of parameters: data of type A were generated from β1= −0.6111, β 2 = −1.8259, β3 = 

0.7418, β4 = 0.5293; data of type B were generated from β1= −1.06544, β2=−1.9992, β3= 

1.10456, β4= 0.82006. Data A and B assume error variance 0.068 (σ=0.2610), variance of u 

equal 3.018 (σu =1.7374), variance of v equal 0.035 (σv =0.1870), and a correlation of zero 

between random effects.

To access robustness, we simulated modeling under misspecification. Given that the four-

parameter logistic characterizes curves that are nonlinear and smooth, we considered 

declines that are linear as well as declines that are not smooth. First, we considered an 

underlying linear decline (data generated assuming a linear trajectory). Data of type C were 

generated from one linear slope of −0.15 and intercept at death of −1.8. Second, we 
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considered one or multiple abrupt changes to the underlying linear decline. Data of type D 

were generated from an underlying one-change-point linear decline: a pre-terminal slope of 

−0.1, one change point at −4 years from death, a terminal slope of −0.4, and intercept at 

death of −1.8. Data E were generated from an underlying two-change-point linear decline: 

an early slope of −0.005 (slope 1), an early change point at −8 years from death (point of 

transition from slope 1 to slope 2), a pre-terminal slope of −0.1 (slope 2), a terminal change 

point at −4 years from death (point of transition between slope 2 and 3), a terminal slope of 

−0.4 (slope 3), and intercept at death of −1.8.

Robustness under non-normal random effects was also evaluated. For an additional 

challenge, we assumed a non-smooth decline. Data F were generated similarly to data E but 

assuming a departure from normality for the random effects. This was done by generating 

random errors following a gamma distribution with a shape parameter of 9 and a scale 

parameter of 0.5, and centering the distribution at its median. This introduced skewness in 

the random error distribution of about 0.7.

Using the data generated with an underlying four-parameter logistic we studied the effect of 

the number of observations per participant on the characterization of the curve using the 

sigmoidal mixed model. To be able to include the period of accelerated decline that occurs 

around 3 years before death (known as terminal decline), data of type A were also generated 

with a period of 5, 7 and 10 years before death to death (or 5, 7 and 10 annual observations 

per participants). The sigmoidal mixed model was fit with the SAS PROC NLMIXED, with 

1,000 repeats. Parameter bias and accuracy were evaluated. In addition for data of types A 

and B, the linear mixed model with a quadratic term for time before death was fit with the 

SAS PROC MIXED. Bias and accuracy of the estimated longitudinal mean were evaluated 

year by year, as these simulations were performed under misspecification (that is the true 

parameters used for data generation are not estimated).

Using the data generated from underlying linear or change-point linear declines (data C, D 

and E), we assessed the sigmoidal mixed model robustness under misspecification. The 

sigmoidal mixed model was fit with the SAS PROC NLMIXED as described above. Bias 

and accuracy of the estimated longitudinal mean were evaluated year by year, as these 

simulations were performed under misspecification.

Parameters from the sigmoidal mixed model were adequately estimated using as few as five 

observations per participants (Supplementary Material Appendix B). All simulated 

parameters had coverage of above 93% and very low bias. The mean square error of the 

estimated parameters remained less than 0.035 with the decreasing number of observations.

Table 1 shows the results from simulations of sigmoidal mixed modeling and linear mixed 

modeling with a quadratic term using data A and B. Estimated longitudinal annual means 

had more than 10 times higher bias and mean square errors using linear models with a 

quadratic term compared to the sigmoidal mixed models.

Table 2 shows the analysis of robustness under misspecification. Underlying linear decline 

(data type C) generated a very large estimated decline midpoint, θ2. Overall, the longitudinal 

mean estimated year by year using the sigmoidal mixed model was close to the true 
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underlying longitudinal mean. Bias was low overall but relatively higher in estimations close 

to death.

Using a sigmoidal model was also relatively robust to data with non-smooth declines and 

with non-normal random effects. Overall, the longitudinal means estimated year by year 

using the sigmoidal mixed model were still close to the true underlying longitudinal mean. 

However, there was a noticeable increase in bias close to death and in the earlier years. We 

also observed a small increase in the mean square error with moderate departures from 

normality of the random effects (data F versus data E).

4 Analyses of late-life body mass index and cognitive decline

Analyses of body mass index (BMI) and late-life cognitive decline showed mixed results. 

Some studies show that low or decreasing BMI is associated with cognitive decline, but 

others show no association 18–20. Few of these studies, however, followed both cognition 

and BMI for many years until death. Annual assessment of cognition, weight, and height 

from the Rush Religious Order Study and the Rush Memory and Aging Project were used to 

model change in global cognition and BMI. These analyses indicate that departures from 

stable body mass are associated with earlier cognitive decline.

The Religious Orders Study began in 1994. Participants are older Catholic nuns, priests, and 

monks recruited from more than 40 groups across the United States 21. The Rush Memory 

and Aging Project began in 1997. It involves older lay persons recruited from retirement 

communities, subsidized housing facilities, churches, and social service agencies in the 

Chicago metropolitan area 22 . Studies were approved by the institutional review board of 

Rush University Medical Center. Details on the individual tests and the derivation of the 

composite measure of global cognition have been previously published 6, 23, 24. Years of 

formal education is obtained at baseline. For each individual, BMI was calculated as weight 

at visit in kilograms over personspecific median height in meters squared (kg/m2). Range of 

person-specific BMI was calculated as the average of the two largest values minus the 

average of the two lowest values

Data from 512 deceased participants with 5 to 20 years of annual cognitive testing (4,982 

observations) were included in the analyses. Among these individuals, 436 had BMI 

information close to death, obtained in the same visit of the last cognitive evaluation or visit 

before that. A random sample of person-specific observed BMI and global cognition is 

available as Supplementary Material (Appendix C). These 436 participants had a mean of 

78.6 years of age at baseline (sd = 6.5), 88.4 years of age at death (sd = 6.2), and 16.7 years 

of formal education (sd = 3.6). They had a mean BMI of 27 at baseline and 25 at death. The 

median range of person-specific BMI was 3.1 (min=0 and max=14.8).

In the preliminary analyses, we compared the sigmoidal model with a more established 

method, the mixedeffects change point model10 . The change point model is a piecewise 

linear model such that
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(8)

where i=1, …, N subjects, j=1, …, ni repeated observations per subject and tij time between 

the jth observation and the terminal event (death). The random effects for cognition at death 

(b1i), terminal slope (b2i), change point (b3i), and preterminal slope (b4i) are assumed follow 

a normal distribution. We modeled the nonlinear trajectory of global cognition as a function 

of education only (data not shown). To fit the mixed-effects change point model, we used a 

Bayesian Monte Carlo Markov Chain Approach11, 25 . Modeling was performed in 

Openbugs 26 using 10,000 iterations, 3,000 burn-ins and 100 as a thinning parameter. Figure 

2, which shows person-specific observed and predicted trajectories for a random sample of 

15 cases, suggests good agreement between the two modeling approaches.

In the main analyses, we modeled the nonlinear trajectory of global cognition as a function 

of age, BMI and education. Age and education were centered close to their means to 

improve interpretation of results. It is important to adjust for the fact that participants that 

enter the study at earlier age should have higher initial cognition, as well as participants that 

die younger may end up with a higher cognition. For this reason, we entered a term for age 

at baseline for early levels of cognition(θ4) and a term for age at death for level of cognition 

at death(θ1). The initial level of global cognition(θ4) also included terms for education and 

BMI at baseline. Conversely, the level of global cognition at death(θ1) also included terms 

for education and the last BMI available before death. The decline midpoint(θ2) and the rate 

of decline(θ3) included terms for education, age at baseline and death, and range of person-

specific BMI. Modeling was performed in SAS using the PROC NLMIXED.

Table 3 presents results from the main model. Consider a typical person with 17 years of 

formal education that, 79 years of age at baseline and 89 years of age at death, and constant 

BMI of 26. Initial(α4) and final(α1) level of cognition were estimated to be 0.59 and −0.90, 

respectively. Half of the decline in global cognition(α2) was estimated to occur 1.4 years 

before death. That is, half of the decline was estimated to occur during the years before the 

last 1.4 years of life, and half of the decline was estimated to occur the last 1.4 years of life. 

That is because the nonlinear curve is much steeper proximate to death. Education was only 

related to the initial(θ4) global cognitive score, with each additional year of formal education 

increasing initial(θ4) global cognitive score by 0.018. Age at baseline was related to 

initial(θ4) but not final(θ1) level of cognition. Age at death was related to final(θ1) but not 

initial level(θ4) of cognition. Participants who were younger at baseline had a higher 

initial(θ4) level of global cognition. Participants who were younger at death had a higher 

final(θ1) level of global cognition. The effect of age at death in the midpoint of decline(θ2) 

was larger than the effect of age at baseline.

Range of person-specific BMI over time was significantly related to cognitive decline. BMI 

at baseline and the last BMI available before death did not have a significant effect on either 

initial(θ4) or final(θ1) level of global cognition. However, for every additional 4 points of 

range of person-specific BMI, the midpoint of decline(θ2) occurred about 1 year earlier (or 
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−0.265 years for an increment of 1 in the range of BMI). That is, half of the decline in global 

cognition(θ2) was estimated to occur 2.4 years before death for a typical person if range of 

person-specific BMI equalled 4. Figure 3 shows the predicted curves for a person with a 

range of person-specific BMI of 1.3 versus 6.7.

In secondary analyses, we estimated two additional models. In one model, the term for the 

last BMI before death was replaced by a term for range of person-specific BMI; in a second 

model, the terms for range of person-specific BMI and BMI proximate to death were 

replaced by terms for BMI at baseline. These analyses did not present additional significant 

terms (data not shown).

5 Discussion

Sigmoidal models based on the logistic family can accommodate longitudinal decline that 

includes a variety of monotone trajectories. For example, depending on risk and protective 

factors, some participants may never decline or decline only shortly before death, while 

others may begin to decline early but decline at a gradual rate, and others may decline more 

precipitously but differ in when decline accelerates.

With the sigmoidal model we were able to identify risk/protective factors for initial levels of 

cognition and risk/protective factors for final levels of cognition. The model offers a 

theoretical possibility of including some correlation between u and v that is demonstrated in 

the example presented in this paper. Results from the example are consistent with previous 

research on education and terminal decline 7, 9. Person-specific BMI range is included as 

one of the covariates in the analysis. We could detect whether changes in BMI can modify 

the trajectory curves and anticipate decline. Here we test change in body mass that is not 

necessarily a trend. Although decline in BMI is observed in general among the elderly, BMI 

range also captures drops in BMI even when followed by complete recovery. Most of the 

contribution of BMI range is on the midpoint of decline. In general the effects on rate of 

decline θ3, although significant, were small.

The model showed adequate fit to the data. Comparing the person-specific predicted 

trajectories obtained with the sigmoidal model to the change-point model was, therefore, an 

important exercise. Although both models were informative and person-specific fit was in 

general very close, fitting the sigmoidal model took less time. While convergence with 

change-point models can take hours to days, depending on the complexity of the model, the 

sigmoidal model often takes minutes. We observed that the trajectories predicted by the 

sigmoidal model are sometimes less influenced by “bad days” represented by drops outside 

the pattern as shown in the person-specific plots. The models share a limitation that 

inference only reflects the observed period. For example, we cannot ascertain a change point 

or fully characterize a non-linear curve when the period that precedes the terminal 

acceleration was not observed.

Model adequacy aside, formulating hypotheses for certain research questions using a change 

point model can be difficult. While the sigmoidal model with four parameters allows for risk 

factors to modify initial and/or final level, the change point model has only one parameter 

Capuano et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



directly determining level (intercept). For example we show that education is important for 

the initial level but not for the final level of global cognition. In addition multiple change 

points would be necessary for certain trajectories (e.g. Figure 1, lower θ3).

Hypotheses concerning the location of the half decline will be more mathematically 

tractable than hypotheses concerning a single change point.

Based on results from the simulations, we used 5 or more years of follow-up to characterize 

the non-linear curve. In future work, it would be of interest to determine whether including 

very brief periods of follow-up for some individuals would improve or degrade the 

estimation. Another limitation is that the alignment of person-specific trajectories is 

fundamental. For example, in this work, all curves are aligned at death. Alignment at the 

diagnoses of dementia has being used in other studies that employed change-point 

methods10. Regardless of the biological event used, a misalignment of trajectories may 

create a false idea that some are declining before others.

In addition to the simulations presented herein, we explored other situations. For example, 

we re-generated data A with a covariance between u and v of −0.2 instead of assuming no 

covariance. Coverage above 90% for all four parameters was obtained with five observations 

per participant and a sample of 500. The covariance of u and v has an impact on the 

coverage of θ2 and θ3, being these two parameters related with dispersion. We also 

regenerated data A with increasing standard deviation σu of 3 and σv of 0.2 (variance of 9 

and 0.04). Simulation was repeated using five observations per participant. The estimated 

parameters had coverage above 93%, bias below 0.02, the mean square error of 0.08 or 

below.

Simulations indicated that the sigmoidal model was robust under misspecification. The bias 

and mean square error were relatively low even for data with non-smooth trajectories and 

moderate departure from normality of random effects. The model could fit linear trajectories 

but underlying linear declines tend to be translated into high θ2. That is, if θ2 is, it is 

important to consider whether trajectories are linear.

A linear mixed model with a fixed quadratic term for time is a common approach for non-

linear trajectories. However, these models are more adequate for trajectories with a peak or a 

valley. Simulations showed much lower bias of the sigmoidal model compared to the linear 

mixed model with a fixed quadratic term for time. That is not surprising given that data was 

simulated following an underlying sigmoidal curve. However, if bias was close, there would 

be no justification for the additional complexity of the sigmoidal model.

We believe that these innovative yet practical models will help researchers in a wide array of 

fields where longitudinal trajectories are nonlinear. In particular, neurodegenerative diseases 

have a chronic course that involves very gradual changes in behavior over time, eventually 

resulting in rapid change in the last years of life. The current clinical understanding of the 

most common neurodegenerative disease, Alzheimer’s disease, describes such phases over a 

period of many years, so that longitudinal studies with 5 to 10 annual evaluations may 

include people with multiple observation points in each phase 27 . Since the 

neurodegenerative changes progress over time, it is thought that the influences of 
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environmental, genetic, and behavioral factors may differ across the time-course of the 

disease. Statistical models that accurately capture variation are valuable tools to identify 

factors that are more important early and others that are more important only later. 

Understanding how environmental and genetic factors influence these nonlinear trajectories 

may, therefore, be enhanced by using sigmoidal mixed models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Interpretation of the sigmoidal model based on the 4-parameters logistic
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Figure 2. 
Theoretical illustration of possible trajectories of the sigmoidal model for 3 choices of each 

parameter
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Figure 3. 
A random sample of person-specific observed and predicted global cognition
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Figure 4. 
Spaghetti plot of global cognition among participants with upper quartile of range of person-

specific BMI over time (plot A, BMI range ≥4.7) and lower quartile of range of person-

specific BMI over time (plot B, BMI range ≤1.9), and predicted line based on sigmoidal 

model for a specific range of person-specific BMI (plot A, BMI range = 6.7; plot B, BMI 

range = 1.3)
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Table 3

Results from sigmoidal modeling on global cognition

Parameters Estimate Standard Error Pr > |t|

Initial level

 α4 0.587 0.057 <.0001

 Education 0.018 0.009 0.045

 Age at baseline −0.016 0.005 0.000

 BMI at baseline 0.002 0.005 0.725

Decline midpoint

 α 2 −1.402 0.172 <.0001

 Education 0.001 0.027 0.981

 Age at baseline 0.169 0.029 <.0001

 Age at death −0.216 0.025 <.0001

 Range of BMI −0.265 0.048 <.0001

Rate of decline

 α 3 0.830 0.091 <.0001

 Education 0.027 0.009 0.003

 Age at baseline −0.033 0.009 0.001

 Age at death 0.067 0.010 <.0001

 Range of BMI 0.037 0.014 0.009

Level at death

 α 1 −0.902 0.092 <.0001

 Education 0.016 0.022 0.465

 Age at death −0.037 0.012 0.003

 Last BMI before death −0.016 0.014 0.237

Variance and covariance

 Error 0.246 0.003 <.0001

 u 2.120 0.227 <.0001

 v 0.174 0.034 <.0001

 u,v −0.284 0.100 0.005

Education represents years of formal education centered at 17 years. Age at baseline and at death is centered respectively at 79 and 89 years. BMI 
at baseline and the last before death were centered at 26.

Stat Methods Med Res. Author manuscript; available in PMC 2019 March 01.


	Abstract
	1 Introduction
	2 Sigmoid mixed model for longitudinal data
	3 Simulations
	4 Analyses of late-life body mass index and cognitive decline
	5 Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3

