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Abstract

Purpose—To develop a geometric atlas that can predict tumor shrinkage and guide treatment 

planning for non-small-cell lung cancer. To evaluate the impact of the shrinkage atlas on the ability 

of tumor dose escalation.

Method—The creation of a geometric atlas included twelve patients with lung cancer who 

underwent both planning CT and weekly CBCT for radiotherapy planning and delivery. The 

shrinkage pattern from the original pretreatment to the residual posttreatment tumor was modeled 

using a principal component analysis, and used for predicting the spatial distribution of the 

residual tumor. A predictive map was generated by unifying predictions from each individual 

patient in the atlas, followed by correction for the tumor’s surrounding tissue distribution. 

Sensitivity, specificity, and accuracy of the predictive model for classifying voxels inside the 

original gross tumor volume (GTV) were evaluated. In addition, a retrospective study of predictive 

treatment planning (PTP) escalated dose to the predicted residual tumor while maintaining the 

same level of predicted complication rates for a clinical plan delivering uniform dose to the entire 

tumor. The effect of uncertainty on the predictive model’s ability to escalate dose was also 

evaluated.

Result—The sensitivity, specificity and accuracy of the predictive model were 0.73, 0.76, and 

0.74, respectively. The area under the ROC curve for voxel classification was 0.87. The Dice 

coefficient and mean surface distance between the predicted and actual residual tumor averaged 

0.75, and 1.6mm, respectively. The PTP approach allowed elevation of PTV D95 and mean dose to 

the actual residual tumor by 6.5Gy and 10.4Gy, respectively, relative to the clinical uniform dose 

approach.

Conclusion—A geometric atlas can provide useful information on the distribution of resistant 

tumors and effectively guide dose escalation to the tumor without compromising the OAR 

complications. The atlas can be further refined by using more patient data sets.
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I. INTRODUCTION

Lung cancer is the leading cause of cancer death in the United States (Siegel 2016). 

Definitive radiotherapy with or without chemotherapy is the standard of care for the 

treatment of inoperable locally advanced non-small cell lung cancer (NSCLC) following the 

National Comprehensive Cancer Network (NCCN) guidelines. However, long-term 

locoregional control rates are disappointing, ranging from 30–40% (Machtay 2012). 

Previous studies have shown an improvement in locoregional control with dose escalation 

(Rosenzweig 2005). However, dose escalation using a uniform dose to the entire tumor is 

frequently limited by large tumor volumes that are unavoidably associated with high 

radiation doses to adjacent organs at risk (OAR), especially spinal cord, heart, esophagus, 

and normal lung. In fact, recent attempts to uniformly escalate the radiation dose to the 

entire tumor volume from 60 Gy to 74 Gy in a large randomized trial failed to show a 

survival benefit due to severe toxicities (Bradley 2015). Thus the need for novel, safe and 

effective dose escalation paradigms that only aim at the resistant portion of the tumor is 

particularly urgent. In response to radiation, the tumor often regresses during the course of 

radiotherapy (Kupelian 2005, Woodford 2007, Gillham 2008, Fox 2009, Feng 2009, Bral 

2009, Sonke 2010). The residual tumor at the end of radiotherapy is an ideal target for dose 

escalation if it can be accurately predicted and appropriately accounted for at the stage of 

treatment planning.

We have developed a novel treatment paradigm called predictive treatment planning (PTP) 

to guide nonuniform dose escalation (Zhang 2014). This utilized a predictive model of tumor 

regression during radiotherapy by examining patients’ longitudinal imaging studies. Tumor 

regression patterns were extracted from geometrical affine transformation models that 

correlated the spatial distributions of original tumor volumes drawn on pretreatment 

planning CT with the residual (resistant) tumor volumes on the cone-beam CT (CBCT) 

scans acquired in the last week of radiotherapy. We then incorporated the predictive model 

into the optimization of a personalized radiotherapy plan, which progressively escalated 

dose to the predicted residual portion of the tumor. In a retrospective planning study, we 

were able to demonstrate that PTP was able to raise the mean dose to the actual resistant 

tumor observed on the last week CBCT an average of 10 Gy compared to the conventional 

uniform dose approach, and 6 Gy compared to a midcourse replanning approach, with 

negligible difference in radiation dose to the OARs.

The predictive model used in the PTP prototype has several limitations, however. It suffers 

mainly from the small number of patients included in the original study. It is focused on the 

shrinkage patterns of parenchymal tumors, and ignores shrinkage of centralized tumors 

attached to the mediastinum, which are often larger and have a more complicated shape, thus 

presenting challenges for dose escalation. In this report we address the deficiencies of the 

earlier model with regard to variability in patient and tumor geometry by expanding the 
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database of the geometric atlas and analyzing data from patients recruited on recent IRB-

approved clinical protocols that include longitudinal imaging studies. We expect that these 

data will allow us to better understand the dependence of shrinkage patterns on tumor 

location, improve the accuracy of the predictive model, and evaluate the effect of uncertainty 

on the predictive model’s ability to escalate dose via PTP.

II. METHOD AND MATERIALS

2.1 Longitudinal imaging study of NSCLC

For this retrospective study, we identified twelve patients with locally advanced NSCLC 

who underwent treatment planning CT and consecutive weekly CBCT scans for their 

conventional radiotherapy (2Gy/fraction, 30–35 fractions). The image sets were restored 

from our institutional picture archive and communications system (PACS) and imported into 

a commercial treatment planning system (Eclipse v13, Varian Medical Systems, Palo Alto, 

CA). A radiation oncologist and medical physicist segmented gross tumor volume (GTV) on 

the planning CT and last-week CBCT using a lung or abdominal window, and transferred 

tumor contours to the planning CT via rigid 3-dimensional image registration that aligned 

the spinal cord and outer lung. The volume of these tumors ranged from 4cc to 401cc. All 

tumors had moderate shrinkage: the residual gross tumor volume (GTVresd) observed on the 

last-week CBCT was on average 57% of the original GTV (GTVori), observed on the 

planning CT, with a range of 41% to 74%, and a standard deviation of 9%. The average 

tumor shrinkage rate was 1%/day, which fell in the range of 0.6–2.4%/day as reported by 

Sonke and Belderbos (2010).

2.2 Geometrical shrinkage Atlas

We hypothesize that there are patterns in the way that locally advanced NSCLC tumors 

shrink during conventional radiotherapy, consisting of a tumoricidal dose delivered at 

approximately 2Gy/fraction. As the dose to a lung tumor accumulates and takes effect, the 

periphery of the tumor may erode, or the center of the tumor may collapse and peripheral 

tissue may fill in. We have observed that a common feature of the tumor shrinkage pattern is 

that the residual tumor tends to distribute heavily toward the center of the original tumor, but 

each varies in its own unique way at the periphery. Similar patterns were observed and 

reported (Sonke 2010). We attempt to capture these patterns with a population-based model 

(atlas) that includes as many shrinkage patterns as we can reliably find in our clinic, and 

then predict tumor regression patterns for each individual incoming patient using their 

treatment planning CT. The key components of building such a geometric shrinkage atlas 

include: a description of the geometric distribution of the predicted residual GTVresd inside 

the original GTVori for each patient, a method to project the shrinkage pattern from one 

patient to the other, a way to synthesize the predictions from all patients in the atlas, and a 

correction for its surrounding anatomy for an incoming patient. The flowchart of the 

algorithm is shown in Figure 1.

2.2.1 Formation of a predictive probability map—We utilized principal component 

analysis (PCA) to describe the geometric representation of GTVresd inside GTVori for each 
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individual patient. We first extracted the Cartesian coordinates of all voxels inside GTVori to 

form a points cloud (PCori; voxel resolution is the same 1x1x2.5mm as the planning CT):

Eq. 1

We then performed PCA on PCori:

Eq. 2

and recorded the principal component coefficients (coeff), as well as principal component 

scores (Score). The three coefficients give the 3-D orientation of the three principal axes of 

the point cloud, and the score of each point simply indicates the projection of the Cartesian 

coordinate on these axes. To correlate the geometries of the GTVori from one patient to 

another, we projected the principal component scores assuming shrinkage patterns are 

independent of tumor size. For the nth point inside the GTVori of incoming patient i, its kth 

(k=1,2,3) principal component score  was normalized to its kth maximal principal 

component score, MaxScorei(k), scaled to the kth maximal principal component score of 

atlas patient j, MaxScorej(k), and projected as :

Eq. 3

Therefore, the position of the nth point inside GTVori of patient i was projected onto patient j 
as:

Eq. 4

In other words, the above procedure in effect aligns the centroids and principal axes of the 

original GTV of the incoming patient with that of the jth atlas patient, and adjusts the 

incoming patient’s tumor size to match that of the atlas patient. The matching of the two 

tumors using the principle axes eliminates the orientation difference existing in the native 

Cartesian coordinates. If the projected position  was inside GTVresd of patient j, 
this point was labeled as predicted residual tumor following the shrinkage pattern of patient 

j; otherwise it is classified as a disappearing voxel. The shrinkage pattern of patient j is fully 

duplicated onto the incoming patient i after all the points inside its original GTV are 

transformed and inspected. Note that multiple separate tumors, parenchymal or mediastinal, 

may exist in the same patient. We treated each separate tumor as a separate pattern in our 

atlas.

After obtaining the predicted residual tumor distributions following the shrinkage patterns 

from all patients in the atlas, we superimposed these individual predictions, counted the 
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number of overlaps per voxel, and normalized each voxel against the maximal number of 

overlapping incidences (number of patterns in the atlas), and formed a predictive probability 

map of residual tumor.

2.2.2 Consideration of tumor center of mass shift—An important complicating 

factor is that clinical visual observations at our institution showed that tumors attached to 

mediastinum or chest wall tend to shrink toward the fixed anatomies, whereas purely 

parenchymal tumors tend to shrink towards their center. Since the prediction was generated 

as an overlap among predictions from all patterns in the atlas, the high probability region 

was in general positioned in the middle of the tumor, and thus would introduce errors when 

dealing with mediastinal tumors. Therefore a correcting step was introduced to correct the 

probability map for location and tissue density in the neighborhood around the tumor, in 

order to accommodate both mediastinum and parenchymal tumors. To do this, we first 

expanded GTVori of the incoming patient with a three dimensional 2cm margin, and formed 

a 2cm thick shell around the tumor. We calculated the center of mass (COM) of the shell 

using the voxel CT numbers, and formed a vector (vr) between the geometric center of the 

shell and its COM. For a parenchymal tumor surrounded by homogeneous low density lung 

tissue, COM and the geometric center almost coincide. In contrast, vr shows a significant 

shift for tumors attached to a mass of tissue such as chest wall or mediastinum. Next, we 

formed a vector (vt) between the geometric center of GTVori and GTVresd for each atlas 

patient. Subsequently we correlated the two vectors for all patients in the atlas, and formed a 

linear empirical equation to estimate the shift of the tumor center, , with respect to vr:

Eq. 5

where a=[0.13 0.28 0.14], and v0=[0.67 0.96 0.34] are the resulting linear fitting 

coefficients, and r2 of the fit is 0.62. We rounded the shift along each direction to the nearest 

mm since the image resolution is 1 mm, and used the shift to translate the center of the 

predictive probability map inside GTVori to obtain a revised probability map. The absolute 

shift along each direction ranged from 0 mm to 2 mm with a median of 1 mm for 

parenchymal tumors, and ranged from 3 mm to 8 mm with a median of 6 mm for a tumor 

attached to the mediastinum.

2.2.3 A binary prediction—Finally we applied a threshold to convert the probability map 

into a binary prediction map. This threshold was optimized across the patients in the atlas 

using a leave-one-out scheme to maximize the accuracy of the predictive model, defined as 

the ratio of the summed volume of true positive and true negative voxels to the total volume.

2.3 Retrospective treatment planning

The resultant binary prediction of residual tumor, GTVpred, was converted to a set of 

contours using the helper functions provided in Computational Environment for 

Radiotherapy Research (CERR, Deasy 2003). In the case of multiple isolated islands on the 

binary prediction, CERR treated each island as a separate segment, and exported all islands 

as a single RT structure to a file in the format of digital imaging and communications in 
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medicine (DICOM). Subsequently the DICOM file was imported into Eclipse for treatment 

planning. Uncertainties of respiratory motion and setup caused inaccuracy in matching the 

planning CT and last-week-CBCT, and further affecting the spatial accuracy of the 

prediction model. The impact was estimated at 2 mm in our previous study (Zhang 2014). To 

account for all uncertainties in lung radiotherapy we added 1 cm margin to expand both 

GTVori and GTVpred and form planning target volumes PTVori and PTVpred for the purpose 

of plan optimization. We employed a selective dose escalation strategy, PTP, to maximize 

the therapeutic ratio given such a personalized tumor resistance map. We escalated the 

radiation dose to 95% of the predicted residual tumor voxels (PTVpred) as high as possible 

using a simultaneous integrated boost while maintaining the dose prescribed in the original 

clinical plan (ranging from 2Gy x 30 fractions to 2Gy x 35 fractions) to the disappearing 

tumor (PTVdsp=PTVori-PTVpred), and respecting our in-house OAR dosimetric constraints 

including the mean normal lung (normal lung excluding GTVorig) dose less than 20 Gy, and 

a maximal dose to the spinal cord below 50 Gy. This robust scheme was effective for dose 

escalation because it safely deposited dose to the most resistant portion of the tumor without 

underdosing the original tumor or overdosing OARs. In addition, we produced an idealized 

PTP plan that escalated dose to only the true residual tumor, thereby simulating the scenario 

of a perfect prediction, and investigated the potential upper limit of PTP. All PTP plans were 

optimized inside Eclipse and consisted of seven IMRT beams with 6MV photons. Applying 

the thorax imaging protocol, the weekly CBCT dose has been reported as at the level of 1–2 

cGy at the center portion of the phantom for the Varian on-board-imager used in our clinic 

(Gardner 2014). The dose from the 6–7 weekly CBCT is less than 1% compared to the 60–

70Gy prescription dose, thus not included in the optimization process.

2.4 Model evaluation

We first evaluated the accuracy and uncertainty of the predictive model in the spatial 

domain. We correlated the spatial distribution of the predicted target (GTVpred) with the true 

residual tumor (GTVresd) contoured on the last weekly CBCT scan, and calculated the Dice 

coefficient and mean surface distance between the two to evaluate the spatial uncertainty of 

the model. We also calculated the sensitivity, specificity, and accuracy of the model, and 

constructed the receiver operating characteristic (ROC) curve by varying the binary-map 

threshold of the model. In addition, we compared the ROC curves of the model with and 

without the GTVpred positional correction to demonstrate the advantage of anatomical 

correction. Furthermore we evaluated the prediction uncertainty in respect to using different 

assemblies of patients in the atlas. Given a total number of 12 patients included in the study, 

under the leave-one-out rule, we formed 10 assemblies, each containing 10 patients, to 

construct the predictive probability map for a particular patient. We calculated the standard 

deviations of the accuracy, Dice coefficient, and average surface distance among the 10 

predictions from the 10 assemblies, and used them as the quantifications of prediction 

uncertainties.

To evaluate the performance of the predictive model as well as the PTP approach in the dose 

domain, we tabulated dosimetric characteristics of the PTP plans including the PTVresd D95 

(dose to 95% of the actual residual PTV), PTVdsp D95, PTVpred D95, PTVresd Dmean, 

PTVdsp Dmean, PTVpred Dmean, lung mean dose, and spinal cord maximal dose. We 
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compared the characteristics of PTP with the counterparts of the standard clinical plan in 

which a uniform dose was delivered to the entire tumor in 2Gy/fx. We also calculated the 

margin on PTVpred necessary to cover 95% of PTVresd in the PTP plans. This margin is a 

measure of the dosimetric uncertainty in the PTVresd caused by the shortcomings of the 

prediction model.

III. RESULTS

The error in predicting the tumor shrinkage rate averaged 6%±13% (mean ± standard 

deviation) compared to the true shrinkage rate. Figure 2 shows the ROC curve constructed 

based on different binary-map thresholds used in prediction. At each threshold, sensitivity 

and specificity were computed on a voxel-by-voxel basis according to the actual physician-

drawn residual tumor. The area under of the ROC curve (AUC) with estimated GTVpred shift 

was 0.87. A threshold of 0.45 (close to simple majority) maximized the accuracy of the 

prediction model across the atlas, and therefore was used for individual predictions. Under 

this condition, the sensitivity, specificity, and accuracy of the prediction model were 0.73, 

0.76, and 0.74, respectively. When the prediction was applied to each individual patient, the 

resultant accuracy was independent of the original tumor volume (p value=0.36), or actual 

tumor shrinkage rate (p value=0.52), indicating that the predictive model is independent and 

robust with respect to a broad spectrum of initial and final tumor sizes. The Dice coefficient 

and mean surface distance between predicted and actual residual tumor averaged 0.75±0.04, 

and 1.6±0.8mm, respectively. If the correction based on tumor neighborhood was omitted in 

the prediction process, the loss of the sensitivity, specificity, and accuracy was 0.02, 0.05, 

and 0.03, respectively, and the ROC curve suffered a reduction of 0.06 in AUC, which 

demonstrated the advantage of including such an anatomical correction step. Figure 3 shows 

a specific example of transversal, sagittal, and frontal views of a neighborhood-corrected 

prediction (orange) situated within the original tumor (yellow, transferred from the planning 

CT via registration), and the actual residual tumor (red) are shown on the last weekly CBCT. 

Note that the mediastinum, to which the original tumor is attached laterally, triggered a 

correction in which the original prediction (green) shifted 8mm medially and formed a more 

accurate prediction (orange). Figure 4 shows the representative tumor shrinkage patterns of 

the twelve patients in the atlas through the transverse cut from the center of gravity of 

GTVorig. For each patient, the spatial distribution of GTVresd inside GTVorig, and GTVpreds 

inside GTVorig are shown in the first and second cell, respectively. The standard deviation of 

the accuracy, Dice coefficient, and average surface distance in the predictions resulting from 

using different assemblies in the atlas is 0.006, 0.005, and 1.0 mm, respectively, which can 

be used to assess the prediction uncertainties due to the composite of the atlas.

Compared to the clinical plans in which a uniform dose to PTVori was delivered, the PTP 

plans were able to maintain the same OAR (cord, lung, heart, and esophagus) dosimetric 

characteristics, but yielded an increased PTVresd D95 and PTVresd Dmean to the actual 

residual tumor of 6.5±1.8Gy and 10.4±2.9Gy, respectively. The relatively smaller volume of 

the predicted resistant PTV compared to the original PTV (average PTVpred/PTVori ratio 

was 0.51) enabled alignment of hotspots in the dose distribution with the resistant 

subvolume of the tumor, while keeping a similar toxicity level. An example of a PTP plan is 

illustrated in Figure 5, where the 60Gy and 70.6Gy isodose lines were optimized to cover 
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95% of PTVori (yellow) and PTPpred (orange), respectively. Since PTVpred did not exactly 

predict PTVresd (red), 95% of the latter volume was enclosed by a lower (67.6Gy) isodose 

line. The average distance between the isodose surface covering PTVpred and that of 

PTVresd, diso, is 3mm. Since the volume of PTVresd was similar to PTVpred (154 cc vs 

128cc) in this case, targeting PTVresd in the PTP plan would result in a PTVresd D95 of 

70.5Gy, indicating that PTP could potentially escalate dose an additional 2.9Gy if perfect 

prediction were achieved. The degradation between the dose optimized to escalate dose to 

PTVpred and the actual dose to PTVresd reflected the propagation of errors from the 

prediction model to the dosimetric domain. Across the 12 patients in the retrospective 

planning study, the degradations were 2.9±1.6Gy and 0.9±0.5Gy, for PTVD95 and 

PTVDmean, respectively; diso measured 2.7±1.0mm. Note that diso was slightly larger than 

the mean surface distance between predicted and actual tumor, indicating the inaccuracy of 

the prediction model was magnified from the spatial to the dosimetric domain due to the 

process of dose optimization. Nevertheless, knowing the limitations of the prediction within 

both the spatial and dosimetric domain can help us set a realistic goal and margin in PTP 

planning, and eventually achieve an optimal therapeutic ratio.

IV. DISCUSSION

The main focus of this paper is to build a diversified geometric atlas that can be used to 

accurately predict tumor shrinkage at the end of a course of conventional radiotherapy. In 

our previous attempt we simply modeled both original and residual tumor as ellipsoids, and 

calculated the affine transformation matrix between the apexes of the two ellipsoids as the 

prior for pattern prediction (Zhang 2014). As a result, detailed geometric features inside the 

ellipsoids such as the concave shape were lost in the modeling procedure. Our current 

approach relied on principal component analysis of the original and residual tumors to 

predict the shrinkage pattern, thereby becoming less sensitive to the contouring noises, and 

preserving the complicated shape of the shrinkage pattern compared to our previous 

approach. Furthermore the positional correction of the residual prediction based on an 

analysis of the tumor neighborhood also broadened the scope of the predictive model and 

accommodated both mediastinal and parenchymal tumors. Finally, expansion of the atlas by 

increasing the patient sample size allowed a determination of an optimal threshold to use in 

the prediction procedure, and maximized the accuracy of the prediction. Furthermore, the 

revised atlas yielded an average Dice coefficient of 0.75, compared to 0.68 in the previous 

approach. By means of the new atlas, we were able to show robust escalation of dose to the 

residual tumors while maintaining the standard prescription dose inside the original tumor 

for all twelve patients, thus potentially achieving a higher tumor control probability 

compared to the standard 60Gy approach.

By constraining the PTP plans to the same level of toxicity as the standard uniform dose 

plans, the dose escalation ability of PTP is limited by the ratio of predicted residual (target 

of escalation) and original target volumes. The larger the ratio becomes, the lower the dose 

can be escalated without inducing unnecessary complications. An ultra-high sensitivity, that 

correctly identify most of the actual residual tumor but unavoidably associates with a low 

specificity in a predictive model, would not be able to differentiate the escalating target from 

the rest of the tumor, and would lose its ability to guide a meaningful dose escalation. Thus 
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accuracy, and not sensitivity, was chosen as the dosimetrically relevant objective when 

optimizing the parameters of the predictive model.

Many researchers have been engaged in predicting the failure patterns of radiotherapy based 

on patients’ demographic parameters, tumor characteristics, imaging features, treatment 

fraction schemes, and pretreatment medications (Tan 2012, Zhang 2014, Kohutek, 2015, 

Zhou 2016, Toma-Dasu, 2016). The prediction of potential failure of response can be 

utilized to stratify patients into different radiotherapy schemes, such as dose escalation vs 

standard 60Gy treatment, during the treatment planning phase, in order to maximize tumor 

control and avoid radiation-related toxicities on a population basis. However, a false 

prediction of response would exclude a patient from necessary dose escalation, and 

potentially result in a loss of local tumor control. In contrast, the PTP approach does not 

stratify patients, but rather always assumes some degree of shrinkage, quantified according 

to the atlas, and integrates a meaningful dose escalation into the initial treatment plan. Note 

that because all OAR tolerance limits are respected, patients who respond well to radiation 

(with greater shrinkage than predicted) would not be harmed by PTP and might even benefit 

by increased dose to microscopic residual disease. Therefore PTP is more sensitive and 

aggressive than patient stratification in dealing with the presence of resistant tumor.

We are making a continuous effort to systemically recruit patients into this longitudinal 

imaging study, and accumulate more shrinkage patterns. As the number of patients in the 

atlas increases, we expect the prediction will have more power, leading to improved 

prediction accuracy, increased Dice coefficient, and, more relevant to radiotherapy, better 

agreement between the radiation dose to the predicted and actual residual tumor. However, 

we do expect this improvement to eventually reach a plateau, which will complete the 

recruitment. When there are more patients in the atlas, in a followup study we may be able 

to further divide the atlas into subcategories with respect to parenchymal and mediastinal 

tumors. The prediction model may also be improved by additional tools such as the 

incorporation of texture analysis of the tumor.

V. Conclusion

A geometric atlas utilizing our proposed algorithm can provide useful information on the 

distribution of resistant NSCLC tumor that remain following radiotherapy and effectively 

guide a dose escalation to the tumor without compromising the OAR complications. The 

atlas can be further refined by using more patient data sets.
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Figure 1. 
Flowchart of the prediction algorithm: (a) original GTVi

orig of the incoming patient is scaled 

and aligned with GTVj
orig of the jth patient from the atlas by matching the principle 

components. A voxel inside GTVi
orig is projected onto GTVj

orig using its normalized 

principle component score. If the projection falls into the residual GTVj
resd of jth patient, it 

is classified as a residual voxel following the jth pattern (voxel A); otherwise classified as a 

disappearing voxel (voxel B). (b) Accumulation of predictions from all atlas patients is 

corrected for anatomical location and forms a binary map of prediction.
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Figure 2. 
ROC curve of the prediction model with or without an anatomy correction.
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Figure 3. 
An example of predicted residual tumor (with corrected shift, GTVpreds, orange) with 

respect to the original tumor (yellow), actual residual tumor (red), and prediction without 

corrected shift (green) shown on the latest weekly CBCT.
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Figure 4. 
Representative tumor shrinkage patterns of the twelve patients in the atlas through the 

transverse cut from the center of gravity of GTVorig. For each patient, the spatial distribution 

of GTVresd inside GTVorig, and GTVpred inside GTVorig are shown in the first and second 

cell, respectively. Note that for patient #9, the parenchymal GTV, not the patient’s bigger 

mediastinal GTV, is selected to show the shrinkage pattern of a small tumor.
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Figure 5. 
A PTP plan was designed to deliver 60Gy to the original PTVori (yellow), and 70.6Gy to 

predicted PTVpred (orange). As a result, the actual residual PTVresd (red) received a dose 

escalation of 67.6Gy compared to the standard 60Gy uniform dosing scheme.
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