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Abstract

Background—While epithelial–mesenchymal transition (EMT) can be readily induced 

experimentally in cancer cells, the EMT process as manifested in human tumors needs to be better 

understood. Pan-cancer genomic datasets from The Cancer Genome Atlas (TCGA)—representing 

over 10,000 patients and 32 distinct cancer types—provide a rich resource for examining 

correlative patterns involving EMT mediators in the setting of human cancers.

Results—Here, we surveyed a 16-gene signature of canonical EMT markers in TCGA pan-

cancer cohort. The histology or cell-of-origin of a tumor sample may align more with 

mesenchymal or epithelial phenotype, and non-cancer as well as cancer cells can contribute to the 

overall molecular patterns observed within a tumor sample; correlation models involving EMT 

markers can factor in both of the above variables. EMT-associated genes appear coordinately 

expressed across all cancers and within each cancer type surveyed. Gene signatures of immune 

cells correlate highly with EMT marker expression in tumors. In pan-cancer analysis, several 

EMT-related genes can be significantly associated with worse patient outcome.

Conclusion—Gene correlates of EMT phenotype in human tumors could include novel 

mediators of EMT that might be confirmed experimentally, by which TCGA datasets may serve as 

a platform for discovery in ongoing studies.

Introduction

Epithelial–mesenchymal transition (EMT), a reversible dynamic process by which epithelial 

cells acquire characteristics of mesenchymal cells, is involved in the initiation of metastasis 
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during cancer progression (Kalluri and Weinberg, 2009). Among other things, cancer cells 

undergoing EMT gain migratory and invasive properties and acquire stem cell traits (Ye and 

Weinberg, 2015). Genes most commonly associated with EMT include those encoding 

markers of mesenchymal cells—including vimentin (VIM), N-cadherin (CDH2), fibronectin 

(FN1), integrin αvβ6 (ITGB6)—which are increased during EMT, as well as those encoding 

markers of epithelial cells—including E-cadherin (CDH1), desmoplakin (DSP), and 

occludin (OCLN)—which are decreased during EMT. Transcription factors that regulate 

EMT include the zinc-finger proteins Snail1 and Snail2 (SNAI1 and SNAI2 genes, 

respectively), the two-handed zinc-finger δEF1 family factors (δEF1/Zeb1 and SIP1/Zeb2, 

encoded by ZEB1 and ZEB2 genes, respectively), and the basic helix–loop–helix factors, 

Twist and E12/E47 (TWIST1/TWIST2 and TCF3 genes, respectively). While EMT can be 

readily induced in cancer cells under experimental conditions, with the effects being 

observed in model systems, observations of EMT in human tumor specimens can help 

establish the relevance of the process in the setting of cancer as it is manifested in patients 

(Kalluri and Weinberg, 2009; Creighton et al., 2010).

The Cancer Genome Atlas (TCGA) was a large-scale scientific effort to systematically 

characterize the genomic changes that occur in cancer, which involved comprehensive 

molecular profiling of over 10,000 cancers of various types, with the associated molecular 

datasets including somatic mutation, gene expression, DNA methylation, and DNA copy 

alteration. With the recent conclusion of the data generation phase of TCGA, there is 

opportunity for “second wave” analyses of the entire TCGA pan-cancer cohort, to address 

questions not covered by the initial TCGA-led studies that first presented the data by 

individual tumor type. Data from TCGA have been made available to the scientific 

community at large, e.g. through the Genome Data Commons (https://gdc.cancer.gov/) or 

through The Broad Institute’s Firehose pipeline (http://gdac.broadinstitute.org/).

This review article follows an overall format similar to that of our other recent reviews 

(Creighton et al., 2010; Creighton et al., 2013), whereby concepts related to EMT are 

discussed in light of both the current literature and results readily obtainable from publicly 

available genomic datasets. In particular, here we survey TCGA pan-cancer datasets for 

expression of genes canonically associated with EMT, in order to determine whether these 

genes appear coordinately expressed and in which cancer subsets. Gene “signatures” of 

EMT are considered here, whereby expression patterns for a set of genes associated with 

EMT may be summarized into a single score for each tumor profile. The data underlying the 

results presented here have been made available as a supplemental data file (Data File S1).

Results and Discussion

Gene signatures of epithelial–mesenchymal transition (EMT)

In many studies, individual EMT markers (e.g. vimentin or E-cadherin) are examined in 

human tumor specimens (e.g. using tissue microarrays or quantitative real-time polymerase 

chain reaction), where cancer cells that show up-regulation of mesenchymal markers or 

down-regulation of epithelial markers are thought to have undergone EMT. Another 

approach to examining EMT in tumors, where global expression profiling data are available, 

is to use pre-defined gene “signatures” to score each specimen for manifestation of 
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mesenchymal- versus epithelial-associated patterns. A number of gene signatures of EMT 

have been defined in the literature, e.g. through the use of experimental models or through 

identifying gene correlates of mesenchymal or epithelial markers (Gröger et al., 2012; Byers 

et al., 2013; Tan et al., 2014; Zhao et al., 2015; Mak et al., 2016). In our own studies 

(Creighton et al., 2009; Creighton et al., 2013; Chen et al., 2016a; Chen et al., 2016b), we 

the authors have made use of a pre-defined EMT signature consisting of a short set of 

canonical EMT markers as originally put forth by Lee et al. (Lee et al., 2006), with 13 

mesenchymal marker genes (VIM, CDH2, FOXC2, SNAI1, SNAI2, TWIST1, FN1, ITGB6, 
MMP2, MMP3, MMP9, SOX10, GCS) and three epithelial marker genes (CDH1, DSP, 
OCLN). The advantages of this 16-gene signature include its simplicity in focusing on some 

of the most well established markers, the result of the sum accumulation of a multitude of 

previous studies. In this article, we explore this 16-gene signature in TCGA, where the 

tumor profiles may be probed for degree of manifestation of the signature, allowing us to 

draw correlations of potential interest that may be associated with an EMT phenotype.

For the 10244 tumor mRNA expression profiles represented in the entire TCGA pan-cancer 

cohort spanning 32 different cancer types, normalized expression values (normalized to 

standard deviations from the median) were examined for the 16 genes in our EMT signature 

(Figure 1A). By carrying out a simple addition of the mesenchymal-associated gene values 

and a corresponding subtraction of the epithelial-associated gene values, each tumor profile 

was given a summary score for EMT phenotype. As would be expected, EMT scores 

differed considerably on average by tumor lineage, with, for example leukemia samples 

(“LAML”) appearing the most epithelial and with sarcomas (“SARC”) appearing the most 

mesenchymal; at the same time, within many tumor types a wide range of EMT 

manifestation levels were evident (Figure 1B). In addition to the above EMT signature, other 

EMT-associated signatures could be surveyed in a similar manner in TCGA data. For 

example, in a previous study by Byers et al. a 76-gene EMT signature was defined using 

gene expression profiles of lung cancer cell lines, where the genes were selected on the basis 

of correlation with CDH1, VIM, CDH2, and/or FN1 genes. Using this Byers signature, we 

scored TCGA profiles, using our previously described “t-score” metric 

(Cancer_Genome_Atlas_Research_Network, 2011). Across all tumors, we observe very 

high correlation (Pearson’s r=0.58, which can be considered quite significant, given the large 

number of cases involved) between the 16-gene EMT scores and the Byers EMT scores 

(Figure 1C), which would reflect the notion that different gene signatures reflecting the same 

biological process should yield largely concordant results.

Gene correlates of EMT marker expression as observed in human tumor specimens

When interpreting the results of gene expression signatures of EMT as applied to human 

tumor specimens, a number of factors ought to be taken into consideration. As indicated 

above (Figure 1A), the cell of origin of a cancer can often be the main driver of 

manifestation of a mesenchymal versus epithelial phenotype, and so signature patterns in 

this case may not necessarily be reflective of cellular changes occurring within the cancer. In 

addition, EMT can appear manifested in only a subset of tumor cells, such as at the tumor-

host interface (Paterson et al., 2013), where the tumor expression profile represents the 

aggregate of the various cellular populations within the sample. With regards to differing 
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cellular populations, non-cancer as well as cancer cells contribute to the overall molecular 

patterns observed within a tumor sample. For example, fibroblasts or immune cells within 

the sample could conceivably contribute to mesenchymal-like or epithelial-like gene 

expression patterns, respectively, being identified. While requirements for tumor samples 

submitted to TCGA generally involved a minimum of 50% “purity” for cancer cells being 

present in the sample, tumor purities across TCGA cohort have been found to vary 

substantially, based on various computational- or pathology-based estimates (Aran et al., 

2015). Nevertheless, EMT phenotypes can be observed in cancer cell lines where cancer cell 

purity would not be an issue (Gibbons et al., 2009; Byers et al., 2013; Tan et al., 2014), and 

analysis of human tumors can involve incorporation of such variables as tumor type and 

tumor purity as covariates, to identify gene correlates of EMT marker expression that remain 

significant and would therefore be more likely to be cancer-specific.

For this article, we obtained the sample purity scores from Aran et al. (Aran et al., 2015), for 

7701 TCGA cases with corresponding mRNA expression data. As might be expected, there 

is a strong negative correlation (Spearman’s r=−0.60) between estimated tumor purity and 

scoring for our 16-gene EMT signature (Figure 2A); in other words, tumor samples that 

were more pure for cancer cells tended to score as more epithelial-like, and tumor samples 

that were less pure tended to score as more mesenchymal-like. In general, individual genes 

canonically associated with EMT (e.g. genes in our 16-gene signature) were strongly 

correlated in RNA expression with each other and with EMT signature score across cancers 

(Figure 2B). As the above correlations (by Pearson’s) would involve a number of factors not 

necessarily specific to changes within cancer cells, we also computed gene-to-gene 

correlations using a linear regression model incorporating both tumor purity and cancer type 

in addition to mRNA expression (Figure 2C). In the linear regression model, gene-to-gene 

correlations may remain statistically significant if they cannot be entirely accounted for by 

either purity or cancer type. We find that most of the EMT gene-to-gene correlations by the 

“uncorrected” model (Figure 2B) remain significant in the “corrected” linear regression 

model (i.e. corrected for both purity and tumor type, Figure 2C), though there are some 

notable differences; for example, miR-200 family members show negative correlations with 

most mesenchymal markers in the corrected model but not the uncorrected model, and N-

cadherin gene (CDH2) is negatively correlated with other mesenchymal markers in the 

uncorrected model but positively correlated with the same markers in the corrected model.

Through the analysis of molecular data from human tumor specimens, many genes may be 

found to correlate in expression with manifestation of EMT, some of which could 

conceivably represent novel regulators or mediators of EMT, and others of which could 

represent important downstream consequences of EMT. For example, in one of our own 

recent studies (Ungewiss et al., 2016), we analyzed the TCGA pan-cancer datasets for genes 

with negative correlation to miR-200 family expression, high correlation to ZEB1, and 

predicted miR200b sites in the 3′ UTR by three different prediction algorithms, with 

hundreds of genes meeting the above criteria. When this gene list was further filtered for 

genes associated with poor patient prognosis in lung cancer, 29 genes were identified, 

including CRKL, a frequently amplified oncogene in lung cancer. Follow-up experimental 

studies confirmed that CRKL is a miR-200 target and furthermore found that CRKL protein 

regulates integrin-dependent signaling (Ungewiss et al., 2016). In similar fashion to the 
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above example, TCGA and other public cancer genomics dataset may be interrogated for 

gene correlates of EMT, which may yield candidates for investigation as to their potential 

roles involving EMT.

For this article, we examined a set of 377 genes with roles in regulating gene transcription 

(specifically, genes having a Gene Ontology annotation of “transcription factor complex” or 

“transcription factor binding”), for correlations with an EMT phenotype in human tumors. 

Gene transcriptional regulators can have important roles in cellular function, and although 

correlation would not in and of itself demonstrate a cause-and-effect relationship, strong 

correlations of a gene with EMT might suggest a hypothesis of a functional role that could 

be further explored in the experimental setting. In TCGA pan-cancer datasets, 107 of the 

above 377 gene (Figure 3) had highly significant correlations with the 16-gene EMT 

signature score across tumors (p<1E-20 by Pearson’s and p<1E-20 by linear regression 

model incorporating both tumor purity and cancer type in addition to mRNA expression). 

Each of the 107 genes showed significant EMT signature correlations within multiple 

individual tumor types (Figure 3), indicating both that these correlations are independent of 

cancer type and that the correlative relationships represented would span various histological 

or cellular backgrounds.

A number of the correlations identified in Figure 3 are reflective of previously established 

functional relationships between EMT and specific gene and pathways. For example, Notch 

deregulation is understood to be involved in EMT and tumor aggressiveness (Wang et al., 

2010; Yang et al., 2011; Hu et al., 2012), as would appear reflected in the positive 

correlations observed here between EMT signature and Notch pathway genes such as HEY1, 
HEY2, HES1, and HES2. Other genes in Figure 3 include HIF1A, YAP1, CTNNB1, and 

ETS1. HIF1A and hypoxia regulate EMT in cancer (Tsai and Wu, 2012; Kao et al., 2016). 

Recently, YAP1 has been found to transcriptionally regulate EMT in various cancer types 

(Shao et al., 2014; Selth et al., 2016; Yuan et al., 2016). Wnt/β-catenin pathway (represented 

by CTNNB1, LEF1, TCF4, etc.) has long been understood to regulate EMT (Lamouille et 

al., 2014; Huang et al., 2015), and ETS1 also contributes to EMT (Dittmer, 2015). We and 

others have also recently demonstrated a role for FOXF2 in driving EMT and metastasis in 

several different epithelial tumor types in vitro and in vivo (Kundu et al., 2015; Lo et al., 

2016). Other genes in Figure 3 that have yet to be extensively studied in the context of EMT 

might be further explored in future studies.

Gene signatures of immune cells correlating with EMT marker expression in human tumor 
specimens

While the impact of EMT on reprogramming the tumor immune microenvironment is 

largely unknown, studies have demonstrated that transcription factors, such as Snail and 

Zeb1, that induce EMT are also associated with the activation of immunosuppressive 

cytokines and T-lymphocyte resistance in experimental models (Kudo-Saito et al., 2009; 

Chen et al., 2014; Chen et al., 2016c; Lou et al., 2016). In human lung tumors, cases 

displaying a “mesenchymal” phenotype are associated with distinct tumor microenvironment 

changes, including elevated expression of multiple immune checkpoints, such as PD-1 and 

PD-L1, along with evidence of preexisting immunity and increases in tumor infiltration by T 

Gibbons and Creighton Page 5

Dev Dyn. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells (Kim et al., 2016; Lou et al., 2016). In a recent pan-cancer study by Mak et al. (Mak et 

al., 2016), an EMT signature was used to score 1934 different tumors (including breast, 

lung, colon, ovarian, and bladder cancers), where tumors showing high mesenchymal 

phenotypes tended to show high expression of immune checkpoints and other druggable 

immune targets. A study by Bindea et al. (Bindea et al., 2013) defined gene expression 

signatures of different immune cell types. In two recent studies from our group (Chen et al., 

2016a; Chen et al., 2016b), we applied the Bindea signatures to expression profiles of kidney 

cancers and of lung cancers, respectively, and found in both studies that tumor subtypes 

scoring highly for EMT also scored highly for immune cell signatures.

In a similar manner to our scoring of tumor profiles for EMT by gene signature, we can 

score the profiles for other signatures and correlate the results with those of the EMT 

signature. For this article, we took the Bindea signature scores for the entire TCGA pan-

cancer cohort (which were computed previously (Chen et al., 2016a)) and correlated each of 

these with our 16-gene EMT signature scores. Correlations were computed across all tumors 

(with linear regression model correcting for both tumor purity and cancer type) as well as 

within each individual cancer type (Figure 4). Correlations between mRNAs representing 

immunotherapeutic targets and EMT signature scores were also computed (Figure 4). 

Overall, we see strong correlations between EMT signature and immune signatures or 

immune checkpoint-related genes, across all cancers as well as within most individual 

cancer types surveyed (though notably blood cancers in TCGA such as DLBC and LAML 

do not show strong patterns for this). We also find here that genes encoding cancer-testis 

antigens, including CTAG1B (NY-ESO-1), MAGEA4, and SAGE1 do not correlate with 

EMT. The Bindea signatures would represent cells within the non-cancer component of the 

tumor sample, and samples with high immune cell infiltrate would score highly for the 

associated immune signatures.

Overall, the pan-cancer patterns identified here associating EMT with immune cell infiltrates 

and activation of the immune checkpoint pathway would be consistent with results of 

previous experimental studies noted above, though what significance such patterns would 

have with regards to immunotherapy response in patients remains to be determined. It may 

not necessarily follow that high EMT marker expression would predict better responsiveness 

to immune checkpoint inhibitors. For one thing, known checkpoint pathway-related 

differences would exist between cancer subtypes; therefore, specific cancer types should be 

individually studied, in addition to carrying out pan-cancer studies. For example, estrogen 

receptor-positive breast cancers respond extraordinarily poorly to checkpoint inhibitors, 

while triple negative breast cancers respond well (Voutsadakis, 2016). In addition to 

expression of immune checkpoint-related genes and immune cell signatures, responsiveness 

to immune checkpoint inhibition can be related to mutational burden and the emergence of 

novel epitopes that drive immune system recognition (Rizvi et al., 2015). More study in this 

area is therefore needed.

Molecular correlates of patient survival involving EMT markers

The process of EMT has been consistently shown to drive EMT tumor invasion and 

metastasis in the experimental setting (Eger et al., 2005; Weinberg, 2006; Aigner et al., 
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2007; Peinado et al., 2007; Burk et al., 2008; Gibbons et al., 2009; Yang et al., 2011; 

Creighton et al., 2013), and the question can be therefore raised as to whether EMT may be 

associated with more aggressive cancers in the setting of human patients. We might 

hypothesize that primary human tumors having more mesenchymal-like features would be 

associated with worse patient outcome (e.g. a shorter time to death or to relapse). Different 

studies may show a number of such trends involving EMT markers in various cancer types, 

but there would be some challenges regarding our ability to identify robust survival 

correlations, including the possible manifestation of EMT within only a subset of cancer 

cells within the tumor, which would represent a partial contribution to the total molecular 

profile (Creighton et al., 2013). Another challenge regarding correlative studies of patient 

outcome involves the numbers of patients and amount of follow-up data available; with 

smaller studies, there may not be sufficient statistical power involved in order for us to 

confidently identify trends in the data. TCGA pan-cancer datasets would involve a large 

number of patients (over 10,000 in all), but the time of patient follow-up may be fairly short 

for many individual cancer types (owing to the fact that many of the samples sent to TCGA 

for analysis were from newly-diagnosed patients). Nevertheless, it should be possible for us 

to leverage the very large case numbers in TCGA, while correcting for cancer type, as some 

cancer types would be inherently more aggressive than others (Hoadley et al., 2014).

In this article, we surveyed a core set of genes involved in EMT (taken from Figure 2B) for 

associations with overall survival (i.e. time to death) in cancer patients, with results 

presented in Figure 5A. We carried out two separate tests for each gene feature examined: an 

“uncorrected” test across all cancers regardless of type (involving data from n=10172 

patients in total) and a “corrected” test incorporating both cancer type and sample purity as 

covariates (n=7663 patients). Features more strongly associated with an aggressive cancer 

type but having a survival association that was not independent of cancer type may show 

significance for the uncorrected but not the corrected survival test. Most of the mesenchymal 

genes (i.e. genes with higher expression being associated with EMT) were associated with 

worse patient outcome by either corrected or uncorrected tests (i.e. higher expression was 

associated with a shorter time to death), while epithelial genes and miR-200 family members 

(including miR-200b and miR-429) tended to be associated with better patient outcome (i.e. 

loss of expression would be associated with a shorter time to death). Interestingly our 16-

gene EMT signature score (i.e. the "Creighton" signature score) was significantly associated 

with worse outcome, independent of cancer type (p<1E-15, Cox model with corrections for 

cancer type and purity), while the EMT signature score based on the Byers signature (Byers 

et al., 2013) was not associated with worse outcome (which could conceivably be due to 

many correlates in the Byers signature being more specific to lung cancer). In a Kaplan-

Meier analysis (Figure 5B), tumors in the top third of Creighton EMT signature scores 

(n=3391 patients) show markedly worse outcome as compared with the rest of the patients. 

While the absolute differences in patient survival as distinguished by this EMT signature are 

somewhat modest (perhaps due in part to other factors that may be at work within a given 

tumor), the fact differences are detectable would be in line with the notion that EMT plays a 

role in disease progression.
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Future directions

TCGA pan-cancer datasets will continue to serve as a resource for examining correlative 

patterns involving EMT mediators in the setting of human cancers. As additional genes with 

roles in EMT are identified and functionally interrogated in the laboratory, these can also be 

examined in the publicly-available genomic datasets, as to whether the correlations as 

observed in human tumors would appear consistent with the cause-and-effect relationships 

as observed in experimental models. Furthermore, TCGA datasets may serve as a platform 

for discovery, whereby a set of gene correlates is first taken from the human tumor data, and 

hypotheses about the functional relationships such correlations represent are then tested in 

the laboratory. In addition to RNA expression, other data platforms in TCGA that might be 

explored in the context of EMT include DNA methylation, mutations (by whole exome or 

whole genome sequencing) and protein (by Reverse Phase Protein Array).

As human tumor specimens with available molecular profiling data are typically not micro-

dissected to isolate cancer cells, and as the profiled samples would in fact represent a 

mixture of cell types, some considerations need to be taken into account when analyzing 

molecular correlations in the context of EMT. For example, different types of cancer 

notoriously have different intrinsic levels of stromal fibroblasts as part of the tumor mass, 

with an extreme example being pancreatic cancer (which can consist of >90% desmoplastic 

stroma), while some cancer subtypes have very little intrinsic fibroblastic component. Even 

when accounting for estimated tumor purity and for cancer type, a fibroblastic component of 

the molecular profile could conceivably contribute to the patterns observed. Another 

consideration is that some cancer types, such as ovarian, are known to behave anomalously 

from most other types in regards to the correlation between EMT and poor outcome, i.e., 

cadherin expression is elevated in more aggressive tumors, reflecting the more effective 

diffusion-based seeding of tumor cell clusters linked by cadherin across the peritoneal cavity 

(Kipps et al., 2013). Cancer type-specific phenomenon—e.g. whereby some tumors spread 

by dispersion of clusters, versus infiltration through stroma and subsequent intravasation, the 

latter of which favors EMT—may therefore be taken into consideration as necessary.

The role of the tumor microenvironment in initiating EMT and metastasis and the role of 

tumor cell EMT in remodeling the tumor microenvironment can also be further explored 

(Gibbons et al., 2009; Peng et al., 2016), using appropriate experimental model systems. The 

molecular profile of a tumor may be influenced by a combination of cancer cell of origin, 

somatic alterations, and microenvironment. Global molecular patterns representing the non-

cancer component of the tumor—which component may include the involvement of immune 

cells, fibroblasts, or growth factors—may also be examined using TCGA datasets (Aran et 

al., 2015; Chen et al., 2016a; Chen et al., 2016b). The better we can understand EMT in 

human cancer, the more we will be able to find ways to target EMT in the clinical setting.

Experimental Procedures

Expression data underlying the results presented here were generated by TCGA Research 

Network (http://cancergenome.nih.gov/). All data used in this study were publicly available, 

e.g. from The Broad Institute’s Firehose pipeline (http://gdac.broadinstitute.org/). From 

TCGA, we collected molecular data on 10244 tumors of various histological subtypes (ACC 

Gibbons and Creighton Page 8

Dev Dyn. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cancergenome.nih.gov/
http://gdac.broadinstitute.org/


project, n=79; BLCA, n=408; BRCA, n=1095; CESC, n=304; CHOL, n=36; COAD/READ, 

n=642; DLBC, n=48; GBM, n=161; HNSC, n=520; KICH, n=66; KIRC, n=533; KIRP, 

n=290; LAML, n=173; LGG, n=516; LIHC, n=371; LUAD, n=515; LUSC, n=501; MESO, 

n=87; OV, n=262; PAAD, n=178; PCPG, n=179; PRAD, n=497; SARC, n=259; SKCM, 

n=469; TGCT, n=150; THCA, n=503; THYM, n=120; UCEC, n=546; UCS, n=57; UVM, 

n=80) from TCGA, for which RNA-seq data (v2 platform) were available.

For computational scoring of gene expression profiles based on a given gene signature (e.g. 

the Creighton EMT signature or the Bindea immune signatures), log-transformed values for 

each gene were first normalized to standard deviations from the median across all samples. 

For Creighton EMT signature, as previously described (Creighton et al., 2013), the 

following equation was used to score/place a numerical value on tumor “EMT-ness” based 

on normalized values of the genes:

The Byers et al. EMT signature score (Byers et al., 2013) was computed using our 

previously described “t-score” metric (Creighton et al., 2012) on the normalized expression 

values. To computationally infer the infiltration level of specific immune cell types using 

RNA-seq data, we used a set of 501 genes specifically overexpressed in one of 24 immune 

cell types from Bindea et al. (Bindea et al., 2013). Scoring TCGA cancer samples for each 

of these immune cell signatures was carried out as previously described (Chen et al., 2016a), 

with the average of the normalized gene expression values was used to score each sample 

profile for each signature. In addition, samples were scored for expression of Antigen 

Presentation MHC class I (APM1) genes (HLA-A/B/C, B2M, TAP1/2, TAPBP) and for 

Antigen Presentation MHC class II (APM2) genes.

Correlation across the pan-cancer cohort between two molecular features of interest was 

assessed using Pearson’s correlation (with log-transformed expression values). In practice 

when analyzing tumor datasets, significant correlations can have r-values well below 1 and 

still be considered statistically and biologically significant, given all the biologically- and 

technically-related noise (e.g. cellular heterogeneity) that may be represented within a given 

tissue sample. In addition, linear regression models incorporating cancer type (one of the 30 

major types listed above) as a factor in addition to gene feature, and models incorporating 

both cancer type and tumor purity (Aran et al., 2015) were also considered. Individual gene 

features were evaluated for correlation with patient survival by univariate Cox analysis; in 

addition, a stratified Cox model was used to evaluate survival association when correcting 

for both tumor type and tumor purity. For Kapan-Meier plots, a stratified Log-rank test 

evaluated differences between tumor groups after correction for tumor type. Patient survival 

data (i.e. time to death) from TCGA were current as of March 31, 2016.

The data for the specific molecular features analyzed here (representing 10244 tumors) have 

been made available as a supplemental data file (Data File S1). The data file is an Excel 

spreadsheet consisting of two tables. The first table (“EMT features”) consists of gene 

expression data for canonically EMT-associated genes (including the gene markers 

Gibbons and Creighton Page 9

Dev Dyn. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constituting the Creighton EMT signature) and microRNAs (miR-200 family members), 

EMT gene signature scores, estimates of tumor purity from Aran et al. (Aran et al., 2015), 

and associated overall survival data from the patients. The second table (“immune features”) 

consists of expression values for specific genes encoding immunotherapeutic targets (e.g. 

PD-1, PD-L1, from Figure 4) and gene expression-based signature scoring of immune cell 

infiltrates (based on Bindea et al. signatures).
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Figure 1. Gene expression signatures of epithelial–mesenchymal transition (EMT) across human 
cancers of various types
(A) Heat map of gene expression (mRNA) features representing canonical EMT markers 

(from the review article by Lee et al. (Lee et al., 2006)), across 10244 cancers represented in 

The Cancer Genome Atlas (TCGA) datasets. Red, higher expression (relative to median 

across all cancers); blue, lower expression. These features were summarized into an EMT 

signature score for each tumor profile (yellow, more mesenchymal-like; blue, more 

epithelial-like). Cancer types (denoted by TCGA project name) are ordered by low to high 
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average EMT score. Cancer type abbreviations are as follows: LAML, Acute Myeloid 

Leukemia; ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; LGG, 

Brain Lower Grade Glioma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous 

cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; CRC, 

Colorectal adenocarcinoma (combining COAD and READ projects); ESCA, Esophageal 

carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell 

carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, 

Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung 

adenocarcinoma; LUSC, Lung squamous cell carcinoma; DLBC, Lymphoid Neoplasm 

Diffuse Large B-cell Lymphoma; MESO, Mesothelioma; OV, Ovarian serous 

cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and 

Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous 

Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THYM, 

Thymoma; THCA, Thyroid carcinoma; UCS, Uterine Carcinosarcoma; UCEC, Uterine 

Corpus Endometrial Carcinoma. (B) Box plots of EMT signature scores, by cancer type. 

Box plots represent 5%, 25%, 50%, 75%, and 95%. (C) For the 10244 cancer samples with 

mRNA data available, scatterplot comparing EMT scores based on part A (referred to here 

as the “Creighton” EMT signature, as previously featured in (Creighton et al., 2013)) with 

EMT scores based on another previously published signature by Byers et al. (Byers et al., 

2013). P-value by Pearson’s correlation.

Gibbons and Creighton Page 15

Dev Dyn. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Correlations between EMT-associated RNA features across human cancers
(A) For the 7701 cancer samples with both mRNA data and estimated tumor purity data 

(Aran et al., 2015) available, scatterplot comparing EMT scores (from Figure 1A) with 

estimated tumor sample purity (fraction of cancer cells versus total cells). P-value by 

Spearman’s correlation. (B) Pearson’s correlations between RNA expression features across 

all 7701 cancers, involving canonical EMT markers (Lee et al., 2006), core transcriptional 

regulators of EMT (e.g. TCF3/4, TWIST, ZEB1/2), miR-200 family members (where 6491 

of the 7701 samples had microRNA expression data), and the EMT signature score. (C) 
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Correlations between EMT-associated mRNA expression features across all 7701 cancers, 

using a linear regression model incorporating both tumor purity and cancer type in addition 

to mRNA expression. For parts B and C, t-statistics greater than 2 or less than −2 would be 

within statistical significance (p<0.05).
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Figure 3. Top transcription regulators correlating with EMT phenotype in human tumors
An initial set of 377 genes with Gene Ontology annotation of “transcription factor complex” 

or “transcription factor binding” were selected, and correlations for these genes with EMT 

phenotype across the tumors in the TCGA pan-cancer dataset were computed. Of the 377 

genes, 107 (shown in the bottom panel) had highly significant correlations with the EMT 

signature score across tumors (p<1E-20 by Pearson’s and p<1E-20 by linear regression 

model incorporating both tumor purity and cancer type in addition to mRNA expression). 

For each cancer type (columns), the corresponding Pearson’s correlation with the EMT 
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signature score (from Figure 1A, individual genes featured in the top panel) is shown. A t-

statistic greater than 2 or less than −2 would be within statistical significance (p<0.05). 

Asterisk (*) denotes genes most commonly associated as master regulators of EMT. See 

Figure 1 legend for cancer type abbreviations. Correlations between EMT score and the 

averaged normalized values of a set of 25 ribosomal genes—housekeeping genes which 

would be presumed to not be functionally involved with EMT—are shown, to serve as a type 

of negative control.
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Figure 4. EMT phenotype correlations with immune checkpoint-related genes and signatures 
across human tumors
Genes encoding immunotherapeutic targets (represented in top panel) and gene expression-

based signatures of immune cell infiltrates (Bindea et al., 2013) (bottom panel) were each 

correlated with EMT signature score across all cancers and within each individual cancer 

type. For each cancer type (columns), the corresponding Pearson’s correlation with the EMT 

signature score (from Figure 1A, individual genes featured in the top panel) is shown. A t-

statistic greater than 2 or less than −2 would be within statistical significance (p<0.05). 

Features highly significant (p<1E-10) across cancers, by linear regression model 
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incorporating both tumor purity and cancer type in addition to mRNA expression, are 

indicated (asterisk). TREG cells, regulatory T cells; TGD cells, T gamma delta cells; Tcm 

cells, T central memory cells; Tem cells, T effector memory cells; Tfh cells, T follicular 

helper cells; NK cells, natural killer cells; DC, dendritic cells; iDC, immature DCs; aDC, 

activated DCs; P-DC, plasmacytoid DCs; APM1/APM2, antigen presentation on MHC class 

I/class II, respectively.

Gibbons and Creighton Page 21

Dev Dyn. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Pan-cancer molecular correlates of patient survival involving EMT-associated RNA 
features
(A) For selected EMT-associated features, correlations with overall survival in the pan-

cancer cohort from TCGA. “Uncorrected” coefficients and p-values by univariate Cox 

(using n=10172 cases with mRNA and survival data or n=8364 cases with microRNA and 

survival data); “corrected” coefficients and p-values denote significance of correlation in 

Cox model incorporating the molecular feature, estimated tumor purity, and cancer type 

(using n=7663 cases with mRNA/purity/survival data or n=6459 cases with microRNA/
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purity/survival data). Red, significant correlation with worse patient outcome (i.e. shorter 

time to patient death); blue, significant correlation with better outcome. Before computation 

of survival coefficients, gene features and gene signature scores were first transformed to 

standard deviations from the median. Patient survival data from TCGA were current as of 

March 31, 2016. (B) Kaplan-Meier plot of overall survival of patients stratified by Creighton 

EMT signature score (top third, bottom third, middle third). “Corrected” p-values by 

stratified log-rank test, incorporating cancer type as a confounder.
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