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Experimental studies of vibrational modes
in a two-dimensional amorphous solid
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The boson peak, which represents an excess of vibrational states compared to Debye’s

prediction at low frequencies, has been studied extensively, and yet, its nature remains

controversial. In this study, we focus on understanding the nature of the boson peak based on

the spatial heterogeneity of modulus fluctuations using a simple model system of a highly

jammed two-dimensional granular material. Despite the simplicity of our system, we find

that the boson peak in our two-dimensional system shows a shape very similar to that of

three-dimensional molecular glasses when approaching their boson peak frequencies. Our

finding indicates a strong connection between the boson peak and the spatial heterogeneity

of shear modulus fluctuations.
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Anomalous behaviors of vibrational properties have been
found in a broad spectrum of amorphous solids, including
inorganic molecular glasses1–3, metallic glasses4, polymer

glasses5, 6, colloidal glasses7, 8, disordered biological matter9, and
even vibrated granular glasses10, spanning many length scales.
These fascinating anomalous behaviors can manifest as valleys in
the time correlation of a structure function11, and as peaks in
either the vibrational density of states (DOS) or the specific heat
of Debye’s model1, 3, 4. These peaks are referred to as the boson
peak (BP) and represent an excess of vibrational states relative to
Debye’s prediction at low frequencies6, which was first discovered
through an experimental study of low-frequency modes in
vitreous silica conducted in the mid 1980s12. The BP is key to
understanding the vibrational properties of amorphous solids and
constitutes one of the most challenging problems in the field of
condensed matter physics.

Despite the ubiquity of the BP in glassy and amorphous
materials, its nature and origins remain under intense debate, for
several reasons. First, in experiments using Raman, neutron, and
X-ray scattering techniques1–3, the essential particle-scale
dynamical heterogeneities and spatial heterogeneities of
modulus fluctuations are largely missing. To identify microscopic
details, a number of experiments have been performed
using colloids7, 8, 13, 14 and granular particles10, 15 to analyze
the vibrations of amorphous solids at the single-particle level.
However, difficulties can arise when applying the covariance-
matrix method16, and contact-level stress information is largely
missing. Second, some studies have generated controversial
results. For example, Ruffle et al. found that the BP corresponds
to the Ioffe–Regel limit of longitudinal phonons17, while the
opposite result was found in other experimental18, 19 and
numerical studies20, 21. In addition, a recent experiment
conducted by Chumakov et al. challenges the role of disorders in
BP formation3. Third, over the past few decades, despite intense
effort, various theories have been presented from different
perspectives, and as a result, no unified and coherent conclusions
have been drawn. Such theoretical works include double-well
potential models22, soft modes23, spatial inhomogeneity of
density fluctuations24, the soft potential model25, 26 and its
latest version (the quasi-localized vibration model)27, the BP as a
signature of the glass transition28, the Ioffe–Regel limit20, the
van Hove singularity2, 29, the spatial heterogeneity of the elastic
modulus30, 31, and the Jamming scenario32–34. Given the above

complexity, the disagreement among results remains far from
being resolved.

Of the theoretical approaches available, one important set of
theories is based on the assumption that the BP is strongly
connected to spatial fluctuations of the modulus, especially the
shear modulus30, 33, 35, which was highlighted by Sokolov as
being important36. Such models30, 33, 35 employ a strictly har-
monic approach and can be regarded as “Ising models of the BP”.
However, we are not aware of any direct experimental studies
addressing this important type of models.

Here, we present the first experimental evidence relating to the
connection between the BP and the heterogeneity of the shear
modulus. Specifically, we address the following key question:
How is the BP related to the heterogeneity of the shear modulus
and to what extent? We investigate the vibrational properties of a
two-dimensional (2D) disordered jammed packing of bidisperse
disks at the single-particle scale. Using photo-elastic techniques,
we accurately measure particle configurations and contact forces
to directly construct a dynamical matrix (or Hessian matrix).
Although the system is simple, we find that the BP has a
shape similar to that of molecular glasses1, 27, 37 around the BP
frequency ωb, despite its markedly different nature in terms of
interactions and length scales. Here, we find a strong connection
between the BP and the spatial heterogeneity of shear modulus
fluctuations (especially for the nonaffine component), supported
by the following experimental evidence. First, the transverse (T)
wave is strongly dispersive near the BP, while the longitudinal (L)
wave is not, which is consistent with studies performed
in molecular glasses, suggesting the key role played by shear
modulus fluctuations. Second, the phase velocities of the T wave
obtained from its dispersion show a minimum near the BP
frequency, consistent with effective medium theories30, 31, 33.
Third, the characteristic length associated with the heterogeneity
of the shear modulus (when considering nonaffine contributions)
is consistent with the wavelength of the T wave at the BP. Finally,
a strong spatial correlation exists between the nonaffine shear
modulus and low-frequency modes, supporting the importance of
the local nonaffine shear modulus for BP formation.

Results
Experimental protocol. We use a biaxial device (biax) to prepare
highly jammed packings of bidisperse photo-elastic disks. The
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Fig. 1 Schematic of the experimental setup. a Side view of the setup. b Top view of the setup, which includes a square frame filled with ∼1300 bidisperse
photo-elastic disks with a number ratio of 1:1 and a size ratio of 1.4:1. The four thick blue arrows represent the isotropic compression applied by
simultaneously moving the four walls inwards. The small red square included in the stress image of a highly jammed packing contains a small portion
amplified in c. c Top: image taken without a polarizer to record the packing’s configuration. Middle: corresponding stress image. Bottom: reconstructed
stress image taken from the measured contact forces
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biax is mounted on a horizontal Plexiglas plate. A schematic
of the setup is shown in Fig. 1. A right-handed circular polarizer
is attached under the Plexiglas plate, and a light source is
placed ∼30 cm below the polarizer sheet to provide uniform
illumination. A high-resolution camera is mounted ∼2 m
above the biax to record images of the packings, and a left-handed
circular polarizer is placed immediately underneath the camera.
A detailed schematic of the arrangement is shown in Fig. 1(a).
Further information on the experimental setup is available in
the “Methods” section. A sample stress-chain image of a jammed
packing is plotted in Fig. 1(b), and a small portion is amplified
in Fig. 1(c) to show the particle configurations and their corre-
sponding stress chains. The bottom panel of Fig. 1(c) presents
a computer-reconstructed stress-chain image based on the
contact forces measured between disks to illustrate the

reasonably high accuracy of the contact-force measurement
approach.

DOSs and the corresponding reduced DOSs. The measured
DOSs at pressures of P= 6.54 Nm−1, 16.69 Nm−1, 26.5 Nm−1,
and 35.48 Nm−1 are displayed in Fig. 2(a), which shows that
each curve becomes broader as P increases. The reduced DOS
values, D(ω)/ω, are plotted in Fig. 2(b), where each curve of D(ω)
in Fig. 2(a) is normalized over Debye’s scaling (linear with ω in
2D), showing BPs in the low-frequency regime. Note multiple
definitions of the BP exist28: For instance, in our experiment, we
can define the BP by comparing the DOSs of amorphous solids
with those of corresponding crystals, as shown in the inset of
Fig 2(a). Alternatively, we can define the BP by comparing the
DOSs of amorphous solids with Debye’s scaling ωd−1 (dimension
d= 2 in 2D) and then extracting the peak from D(ω)/ωd−1. Here,
we adopt the latter approach and use D(ω)/ωd−1 to define BP,
which is widely adopted in literature2, 20, 27, 28, 30, 31, 35. As
highlighted in this paper28, this approach reveals the universal
properties of glasses. Each curve was ensemble averaged over 10
different runs at the same pressure. The height of the BP
decreases significantly as the pressure increases, while its ωb

increases only slightly. The dependence of ωb on the pressure P is
illustrated in the inset of Fig. 2(b), in which the results can be
fit using ωb= 271.5P0.224. The BP regime in Fig. 2(b) is deter-
mined from the portion of D(ω)/ω above Debye’s model;
flat dashed lines of the same color are defined as
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is the transverse

sound velocity, ρ is the mass density (mass per unit area), S is the
area of the whole system, B is the bulk modulus, G is the shear
modulus, and N is the total number of particles in the system.

Note that many important characteristics of the BP shown in
Fig. 2(b), such as the peak frequency ωb, peak height Hb, and peak
width of the present system (N≈ 1300 particles in total) are
nearly identical to those of the system of infinite size (N→∞), as
obtained by extrapolating a finite size analysis with a maximum
difference of ∼1%. In fact, the shape of the BP remains
unchanged when N≥ 1245, except at the lowest frequency
(results not shown). Below the lowest frequency, which we
cannot resolve in the present system, interesting
physics processes, such as Rayleigh scaling ωd+1 (d is the
dimension, d= 2 in 2D and d= 3 in three dimension (3D)), may
be present, as predicted by the theories of the soft potential
model25, 26 and the related version (the quasi-localized
vibration model)27 or through coherent-potential-approximation
calculations of heterogeneous elasticity theory30, 31, 38. A detailed
analysis of the finite size effect lies beyond the scope of our
present investigation and will be presented elsewhere (manuscript
in preparation).

Spatial distributions of modes. At different ω, the spatial
distributions of the polarization vectors differ. Typical results
are plotted in Fig. 3(a–d), at ω= 0.44ωb, ω=ωb, ω= 2.63ωb, and
ω= 8.96ωb. Here, ωb is the BP frequency. Below ωb, the mode
is relatively coherent, displaying collective vibrations at a
predominant length scale interwoven with small-scale features, as
shown in Fig. 3(a). As ω increases, the characteristic length sca-
le decreases, and particles vibrate more randomly, as shown
in Fig. 3(b, c). These behaviors are similar to those of colloidal
systems7, 8, 13, 14. When ω≫ωb, a highly localized vibration mode
similar to that of refs. 8, 39 is observed, as shown in Fig. 3(d). The
participation ratio p(ωn) (see, e.g., ref. 8) of these four modes are as
follows: (a) 0.44, (b) 0.3, (c) 0.244, and (d) 0.00499. Similar to
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Fig. 2 Density of states and the reduced density of states. a D(ω) for
pressure (units Nm−1) P= 6.54 (red circles), 16.69 (green squares), 26.5
(blue diamonds) and 35.48 (black inverted triangles). Here each curve is
ensemble averaged over 10 different runs at the same pressure. Inset:
comparisons of D(ω) values of the disordered system at a pressure of
P= 26.5 Nm−1 (blue diamonds) with those of the perfect hexagonal lattice
(magenta) and Debye’s model (black dashed line). b The corresponding
reduced density of states D(ω)/ω after normalizing the D(ω) in a with
Debye’s scaling, i.e., ω in 2D. Dashed flat lines of the same color denote
the corresponding Debye’s model, which is defined as
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ffiffiffi
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is the transverse sound velocity,

ρ is the mass density (mass per unit area), S is the area of the whole
system, B is bulk modulus, G is shear modulus, and N is the total number of
particles of the system. Inset: the BP frequency ωb vs. the pressure P.
Here the blue solid line is a power-law fitted curve, and the fitting function is
ωb= 271.5P0.224. The four filled circles of different colors represent the data
points of the four curves of the matching colors shown in the main panel.
Here all the error bars denote one SD around the mean value obtained from
∼10 realizations of each pressure
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colloidal systems in the jammed regime, where the mode is quasi-
localized in the vicinity of the BP frequency ωb, we observe quasi-
localized modes for ω near ωb

8, suggesting the presence of a
universal characteristic independent on the particle-level features
of individual systems. Note that our system is far from reaching
the jamming point. In numerical studies of jamming40, the
dimensionless pressure P0 is used to quantitatively characterize
how far a system is from reaching the jamming point. The P0
typically ranges from P0= 10−8 to P0= 10−3, and P0= 10−2 is
considered far away from the jamming point. We convert the
pressure P to the corresponding dimensionless pressure P0 using
the standard procedure described in the literature40, and the
corresponding results are shown in Table 1. Here, P0∈[0.155,
0.385], which is orders of magnitude larger than systems near the
jamming point. Corresponding values of packing fractions and
coordination numbers are also presented in Table 1, where the
coordination numbers Z are well above the 2D isostatic coordi-
nation number Ziso= 4 (ref. 40). Additionally, the ratio of the
shear modulus to the bulk modulus G/B≪1 for a system near the
jamming point (e.g., G/B∼ 10−4 when P0∼ 10−8, and G/B→ 0
exactly at the jamming point as the system barely gains
rigidity)34, 40. In contrast, G/B≈ 1

3 in our system, reflecting the
same trends for most dense glass-forming systems, where
G/B∈[0.28, 1]; e.g., G/B≈ 0.7–1 for vitreous silica and G/B≈ 0.3
for OTP (ortho-terphenyl)41. In particular, G/B of our system is
close to those of most bulk metallic glasses (G/B∈[0.17,0.44])42.

Comparison between our system and molecular glasses. We can
draw quantitative comparisons between our system and the
molecular glasses by comparing the ratios of Debye’s frequency
ωD (i.e., the characteristic frequency of a system) to the
BP frequency ωb. Using data from Buchenau et al.’s43 study and
the references therein, we compute the ωD

ωb
values for the 11 dif-

ferent molecular glasses; the results are listed in Table 2. We find
that this ratio falls within a range of ωD

ωb
= [4.632, 11.39]. In our

system, this ratio ωD
ωb

≈ 8.58 corresponds to the middle of the
range. In contrast, for systems that are close to reaching the
jamming point, this ratio is orders of magnitude larger and
approaches infinity at the jamming point34.

In addition to our comparison of the ωD
ωb

values, we
also compare the shape of the BP with molecular glass
measurements1, 27, 37. To this end, we apply Sokolov et al.’s1

rescaling method by dividing the vertical axis by the height of the
peak Hb and dividing the horizontal axis by the peak frequency,
ωb. We find that the re-scaled curves exhibit reasonably
good collapse results, as shown in Fig. 4. Then, we compare
our results with those obtained for the molecular glasses (open
symbols)1, 27, 37. Interestingly, the shapes are similar, especially
near the BP frequency ωb, as shown in Fig. 4. However, it should
be noted that Fig. 4 presents some differences between our results
and those obtained for molecular glasses at frequencies that differ
substantially from ωb, particularly at the tails. This deviation can
be attributed to a difference in the dimensionality. Indeed,
because analytical theories30, 33, 35 typically predict a universal
shape or scaling behavior of the DOS at the random matrix limit
or close to marginal stability states, the normalization of the
DOS to Debye’s scaling, which is dependent on dimensionality
(linear in 2D and quadratic in 3D), can cause systematic
deviations at the low- and high-frequency ends relative to ωb.

Dispersion relations of T and L waves. After decomposing
modes into T waves and L waves following the standard proce-
dure for the k space (i.e., the Fourier space7, 13, 20, 21, 32, 44),
two methods of computing autocorrelation functions are avail-
able: The first involves the k space, and its resulting auto-
correlation functions depend on k. The second involves applying
an inverse Fourier transform, obtaining separated T waves and L
waves in real space, and then performing computations in real
space. In real space, we calculate the autocorrelation functions CT,

L(r) of the polarization vector of the T waves and L waves at ωb,
as plotted in Fig. 5(a, b). Interestingly, both functions can be
well fit using a freely oscillating damped harmonic oscillator

C(r)= e−
Γr
2 cos(kr + ϕ), where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � Γ2

4

q
. Here the three

fitting parameters are the attenuation coefficient Γ, the char-
acteristic wave number k0, and the phase angle ϕ. The fitted
curves are drawn as solid lines in Fig. 5(a, b). Autocorrelation
functions CT,L(r) at other frequencies can also be fit using the
same function as shown in Supplementary Fig. 1 and discussed in
Supplementary Note 1. Note that this fitting function has the
similar structure as the forced harmonic oscillator20, 21, 31 and the
Lorentzian function13 described in literature. A characteristic
length λT,L= 2π

k0T;L
can be derived from k0, as plotted in the inset of

Fig. 5(a, b).
From k0, we obtain the dispersion relations of the T waves (a)

and L waves (b), as shown in Fig. 5(c, d) for four different values
of pressure (see the figure caption for details). Here, the T wave is
heavily dispersive around ωb while the L wave is not, reflecting the

a bω= 0.44ω b

ω= 2.63ω b ω= 8.96ω b

ω=ω b

c d

Fig. 3 Spatial distributions of modes. The spatial distributions of the modes
at ω/ωb= 0.44 a, 1.0 b, 2.63 c, and 8.96 d. The participation ratios are p

(ωn)= 0.44 a, 0.3 b, 0.244 c, and 0.00499 d. Here p ωnð Þ �
P

i
mi en;ij j2

� �2

N
P

i
m2

i en;ij j4
� �,

where en,i is the polarization vector of the particle i in the nth mode
(see, e.g., ref. 8). Note that the magnitudes of the polarization vectors in
different modes are shown at different scales

Table 1 Dimensionless numbers of packing

P (Nm−1) 6.54 16.69 26.5 35.48

P0 0.155 0.257 0.33 0.385
Φ 0.850 0.857 0.862 0.865
Z 4.556 4.706 4.729 4.774

The corresponding dimensionless pressure P0 determined according to the standard
procedure described in the literature (see, e.g., ref. 40). So the re-scaled pressure P0 is defined
as P/(knDα−d),where kn is the normal spring constant, D is the average diameter,α is the power
exponent of the potential vs. deformation, and d is the dimension. The last two rows show the
values of corresponding packing fractions and coordination numbers
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existence of the two modes in the inelastic X-ray measurements
of vitreous silica45. Using fitting values of k0Tb= 68.0 m−1 and
ΓTb= 74.54 m−1, first, we check that k0Tb

1
2ΓTb

¼ 1:82, consistent with

the fitting function C(r), which has the form of an under-damped
harmonic oscillation. Second, the characteristic wavelength
λ ¼ 2π

k0Tb
¼ 9:24 cm and the mean free path l ¼ 1

1
2Γ
¼ 2:68 cm.

Therefore, the Ioffe–Regel limit is not crossed right at ωb because
λ>l, in contrast to findings shown in refs. 20, 31. However, some
other key aspects of our observations are consistent with the
recent numerical studies31, such as that the effective shear
modulus is strongly frequency dependent, consistent with the
changing slope in Fig. 5(c), while the bulk modulus is much less
sensitive to the frequency, as indicated by the constant slope in
Fig. 5(d). A central prediction of effective medium theories30, 33, 35

is that the speed of the T wave, νphs≡ω/k, reaches a minimum
value near the BP frequency. We observe this behavior in Fig. 5(e).
To find the location of the minimum, we first fit the data with
a polynomial to reduce the noise and then find the minimum
from the fitting curve. For the four curves shown in Fig. 5(e),
we determine that the minimum values are located at ω

ωb
= 0.960

(red circles), ω
ωb
= 0.954 (green squares), ω

ωb
= 0.915 (blue

diamonds), and ω
ωb
= 0.919 (black inverted triangles). The average

value is ω
ωb

¼ 0:937. According to effective medium theories31, 33, 46,
the sound velocity of the T wave and the DOS are not
independent; instead, they are connected through
Kramer–Kronig relations from the Laplace transform of the
response function. Hence, the phase velocity of the T wave

dips around the BP position ωb
31, 33, 46. Our measurement shows

that though the dip is not perfectly aligned with the ωb (off by
6.3% on average), the experimental results show reasonably good
agreement with the predictions of effective medium theories31, 33,
46. Interestingly, we also found that Γ and ϕ for T and L waves
exhibit qualitatively similar behaviors around the BP. However,
currently, we do not fully understand the behaviors of Γ and ϕ
shown in Supplementary Fig. 2.

Note that the results shown in Fig. 5(c–e) depend neither on
the means of analyzing data (i.e., whether in real space or
in Fourier space), nor on the specific forms of the fitting
function. For a self-consistency check, we first compute the
autocorrelations in Fourier space, and we then extract k and Γ
using a Lorentzian fit of the structure functions, as shown in
Supplementary Figs. 3 and 4 and discussed in Supplementary
Notes 2 and 3. The results of the Fourier space analysis are
quantitatively the same as those obtained from the analysis
conducted in real space for the regime of ω

ωb
≤ 6, as shown in

Supplementary Fig. 4(a–d). For ω
ωb
> 6, results from these two

analyses start to deviate significantly from one another as is
shown in Supplementary Fig. 4, as autocorrelation functions fail
to capture the new physics of this regime. When ω

ωb
≈ 6, the spatial

distribution of a mode starts transition to an Anderson
localization regime in which the statistics become dominated by
Poisson statistics rather than by Gaussian orthogonal ensemble
statistics47. Our detailed analysis of Anderson localization will be
presented elsewhere (manuscript in preparation). Hence when
ω
ωb
> 6, as denoted by the vertical dashed line in Fig. 5(c, d) and in

Supplementary Fig. 4(a–d), the results obtained from the analyses
conducted in real and Fourier space are no longer useful.

Connection between local-modulus heterogeneity and BP.
A natural question arises from the observations of Fig. 5 described
above: Why is the T wave strongly dispersive near the BP, in
contrast to the L wave? The results shown in Fig. 5 reveal a
qualitative difference between the shear modulus and the bulk
modulus. To address this question, we calculate the spatial
distributions of the local shear modulus G and bulk modulus B
following a standard approach based on the dynamical matrix48.
Relevant details can be found in Supplementary Note 4. The
corresponding results are shown in Fig. 6(a, b). Note that G and B
include the contributions from both the affine and the nonaffine
parts because in amorphous solids, the nonaffine motion is
intrinsic49. Comparing Fig. 6(a) and (b) reveals a qualitative dif-
ference between the spatial distributions of B and G: there are
negative regimes in the distribution of G, as shown in panel (b),
while a similar behavior is not observed in B, as shown in
panel (a). Note that a negative regime of the local G denotes the
existence of a potentially soft regime in the system. Additionally,
the above observations were obtained through recent numerical
studies50, 51, in which a negative regime was found in the spatial
fluctuations of G but not in those of B. In contrast, no negative
regimes in G would be observed if only the affine part were
computed, as shown in Supplementary Fig. 5. Moreover, the
averaged relative fluctuation δ~G is much larger than that of δ~B,

Table 2 Comparison of ωD/ωb

Substance CKN C2H5OH d-SiO2 Se GeO2 PB
ωD/ωb 4.632 5.326 5.705 5.747 6.214 7.446
Substance Our system B2O3 a-SiO2 SiO2 PS PMMA
ωD/ωb 8.58 9.429 9.828 9.878 10.43 11.39

Comparison of the specific values of ωD/ωb based on our results and experimental data on molecular glasses collected from ref. 43
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Fig. 4 Shape of rescaled BPs. Comparison of the re-scaled BPs
((D(ω)/ωd−1)/Hb vs. ω/ωb) of our results and those found by Buchenau
and colleagues27 for vitreous silica (red open circles) and PMMA (green open
squares), those found by Sokolov and colleagues1 in molecular glasses Li2O
(blue diamonds) and SiO2 (magenta inverted triangles), and those found by
Monaco et al.37 in Na2FeSi3O8 glasses (black stars). Here Hb is the height of
BP, ωb is the peak frequency, and d is the dimension with d= 2 in 2D and d
= 3 in 3D. The filled symbols represent the data from the current
experiment, and different symbols indicate different pressures
corresponding to the curves in Fig. 2(b)
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indicating the important role of δ~G in the formation of the BP.
Indeed, δ~G and δ~B vs. the coarse-graining length w satisfy the
power law fitting similar to refs. 50, 51, as shown in Fig. 6(c).
Quantitatively, δ~G / w�0:81 and δ~B / w�1:11 in Fig. 6(c), where-
as both δ~G / w�1:02 and δ~B / w�1:13 as shown in Supplementary
Fig. 5. These findings are consistent with refs. 50, 51. Here the w−1

scaling can be understood based on the central limit theorem and
the lack of long-range correlations in the spatial fluctuations
of moduli, equivalent to Gaussian statistics of the modulus
flucutation31, 50, 51. In a recent experiment, Wagner et al. used a
novel atomic force acoustic microscopy method to measure the
distribution of local elastic constants along the surface of metallic
glass52. Their results revealed that the distribution of a local

indentation modulus, which is a combination of both bulk and
shear moduli, obeys a Gaussian distribution with must larger
fluctuations than those of the crystal52. The Gaussian distribution
derived from Wagner et al.’s experiment52 is consistent with the
results shown in Fig. 6(c) and Supplementary Fig. 5, revealing
universal Gaussian statistics of local modulus fluctuations in 2D
and 3D glassy systems that are independent of dimensions and
detailed particle-scale interactions.

A natural length scale can be derived in which a negative
regime first appears in the spatial distribution of G as the coarse-
graining size w decreases. Figure 6(d) plots the percentage of the
negative G as a function of w at different pressure levels. The first
negative modulus appears at ~w= 7D for all pressure levels, and
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Γr
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where k, Γ, and ϕ are three fitting parameters. Insets: wavelengths λT,L= 2π
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as w decreases, the percentage increases rapidly. Figure 6(e)
compares three characteristic lengths: (1) the length determined
from linear elasticity VT ¼ ffiffiffiffiffiffiffiffiffi

G=ρ
p

and ξT= 2πVT/ωb (red circles),
(2) the length measured from k0 at ω/ωb= 1 (green squares), and
(3) the length obtained from G as discussed above (blue inverted
triangles). Within the measurement uncertainties, these three
length scales are very similar. Thus, BP formation is indeed
related to fluctuations of the local shear modulus, whereas
fluctuations of the bulk modulus show no signs of a characteristic
length over all frequencies, consistent with early propositions
posed in the literature31. Moreover, this result confirms the
essential role played by the nonaffine component of fluctuations
of the local shear modulus. Finally, we present more supporting
evidence in Fig. 6(f), where a spatial correlation between the
nonaffine shear modulus (the background) and low-frequency
modes (black circles) is clearly evident. Here, w= 7D, equal to the

length scale derived from Fig. 6(e). Hence, the nonaffine
component of the shear modulus plays a central role in BP
formation and is related to potential soft regimes in the system.
Indeed, previous studies have alluded to a direct connection
between low-frequency modes and “soft spots”, i.e., locations
where local plastic rearrangement tends to occur under condi-
tions of external perturbation8, 53–55.

The affine and nonaffine moduli discussed above are consistent
with the terminologies used by the metallic glass community to
describe the elastic heterogeneity of metallic glasses (e.g., the
binary mixture of liquid-like and solid-like atoms56, 57, the
core–shell model58, the mixture of flow units and elastic matrix59,
and the mixture of strongly bonded and weakly bonded
regions60). These names carry similar physical meanings to
facilitate theoretical modeling. However, they do not denote a
clear boundary between two different regimes, such as between
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solid- and liquid-like atoms or between affine and nonaffine
moduli. Demowski et al.56 found that a ∼75% volume fraction of
metallic glasses deforms elastically (affinely), whereas the rest
deforms nonaffinely without resistance. They also determined
that the ratio between nonaffine and affine Youngs moduli is
~24–28%. We estimate a ratio ∼34% based on our experiment,
consistent with the results reported by Demowski et al.56

Moreover, our finding that the BP and nonaffine shear modulus
are strongly related is qualitatively consistent with the recent
experimental work reported by Luo et al.4, who found a link
between the fast dynamics of the BP and the slow dynamics of
structural relaxation in metallic glasses. We believe that the slow
dynamics of structure relaxation affect the nonaffine shear
modulus to a great extent and, in turn, influence the properties
of the BP4.

Discussion
In conclusion, using a highly jammed 2D granular material as a
model system, we study the vibrational modes of an amorphous
system, focusing on the relationship between the BP and the
spatial heterogeneity of modulus fluctuations. Our main finding is
that BP formation is closely related to the spatial heterogeneities
of shear modulus fluctuations and, in particular, to the nonaffine
component of these fluctuations. This strong relationship man-
ifests in several aspects of vibration modes. First, the qualitative
difference between the dispersion relations of T waves and L
waves suggests that the spatial fluctuations of the shear modulus
play a critical role in BP formation; indeed, there is a strong
dispersion of T waves near the BP frequency, while L waves are
linearly dispersive. Second, the phase velocity of T waves obtained
from the dispersion relation shows a dip close to the
BP frequency, confirming the predictions of effective medium
theories30, 31, 33, 35, 46, which assume that spatial fluctuations of
the shear modulus are central to BP formation. Third, our
modulus fluctuation measurements confirm that the relative
fluctuations of the shear modulus are much greater than those of
the bulk modulus. Thus, a characteristic length scale can be
estimated from the spatial fluctuations of the shear modulus that
is comparable to the wavelengths of T waves at the BP frequency.
Finally, the spatial correlation between the nonaffine shear
modulus and low-frequency modes demonstrates the importance
of the nonaffine shear modulus for BP formation.

The molecular structures of real molecular glasses can be rather
complex, potentially introducing certain features beyond those
that our model system—a strictly harmonic system—can fully
capture. For example, vitreous silica12, 61, for which the BP is
related to local structure relaxation due to polyamorphic trans-
formation processes (i.e., coupled tetrahedral libration), requires
the inclusion of anharmonicity terms in the soft potential and in
related models25–27 to restore system stability. Nonetheless, our
description and analysis of the BP reveals salient features that
have also been observed in vitreous silica12, 25–27, 61 (e.g., the
collective movements of particles around the BP frequency). In
addition, our analysis of the nonaffine shear modulus and its
relationships to the BP essentially highlights the collective
movements of particles to restore the system to mechanical
equilibrium as a result of disorder in which affine motion
alone cause particles to become unstable. This approach is
essentially the same as those used in the soft potential and related
models25–27, indicating that collective soft modes are responsible
for BP formation.

Methods
Experimental details. In this experiment, we used a state-of-the-art biaxial
apparatus to create 2D amorphous solid packing at different pressure levels. This
apparatus mainly consists of a rectangular frame mounted on top of a transparent

and powder-lubricated glass plate with four walls that can move symmetrically
while keeping the center of mass fixed, unlike those reported in refs. 62–65. The
rectangular area was filled with a random mixture of ∼1300 bidisperse photo-
elastic disks of with diameters of 1.4 cm and 1.0 cm and a number ratio of 1:1
(reflecting the jamming protocol32, 40), to create various random initial
configurations slightly below the jamming point. Next, we applied isotropic
compression to achieve packing at particular pressure levels and performed 10
different runs following the same protocol to create an ensemble. In each run, we
recorded images of the particle configurations and the packing stress information.
We then employed image processing and a force-inverse algorithm to extract
geometric information from each particle and the contacts and contact forces
between particles. In preparing the jammed packing, we constantly applied
mechanical vibrations before the system’s packing fraction exceeded ∼84% (i.e., the
typical isostatic jamming point)32, 40. When using this approach, the prepared
packing was essentially the same as that of a frictionless packing, and the typical
contribution to the total elastic energy level due to tangential forces was two orders
of magnitude less significant than that of normal contact components. Plotting the
pre-calibrated curve of the contact forces (i.e., the normal and tangential
components) vs. the deformation, we determined the spring constants at each
contact point to obtain a complete set of data for constructing the system’s Hessian
matrix. These results will be reported elsewhere (manuscript in preparation).

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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