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ATP hydrolysis to separate double-stranded nucleic acid 
molecules or to remodel nucleic acid–protein complexes. 
Helicases are involved in various cellular functions, and 
many helicases are intimately associated with human dis-
eases (Bochman 2014; Brosh 2013). Based on the sequence 
conservation of the helicase motifs, helicases are divided 
into six different superfamilies (Superfamilies 1–6) (Sin-
gleton et al. 2007). These families are further divided into 
two groups, A and B, based on the directionality of their 
translocation on nucleic acids. Pif1 helicases belong to the 
superfamily 1B helicases and translocate in the 5′–3′ direc-
tion on nucleic acids (Bochman et al. 2010). The Pif1 fam-
ily of helicases is evolutionarily conserved from yeasts to 
humans (Bochman et al. 2010) and is also found in some 
prokaryotic genomes (Bochman et al. 2011; Liu et al. 2015; 
Zhou et al. 2016). They function both in nuclear and mito-
chondrial maintenance, and they are found in single or 
multiple copies in different organisms. For example, the 
Saccharomyces cerevisiae genome encodes for two Pif1 
homologs, while the Schizosaccharomyces pombe and 
human genomes encode for only one. All Pif1 helicases 
have a highly conserved helicase domain, but their N- and 
C-terminal regions can differ significantly. In addition to 
the conserved helicase domains, Pif1 helicases also possess 
a 21 amino acid signature motif located between motifs II 
and III that is unique to the Pif1 family of helicases (Fig. 1) 
(Bochman et  al. 2010). Human families with a predis-
position for breast cancer carry a mutant gene encoding 
an L319P variant at a highly conserved location in the 21 
amino acid signature motif of Pif1 (Fig. 1) (Chisholm et al. 
2012). However, how this motif is responsible for disease is 
largely unknown.

The S. pombe Pif1 homologue, Pfh1, shares 36% 
sequence identity with the conserved motifs in the heli-
case domain of human PIF1 (hPIF1) (Zhou et  al. 2000) 
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Introduction

Helicases are molecular motor enzymes that play important 
roles in nucleic acid metabolism. They use the energy of 
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and is essential for maintaining the nuclear and mitochon-
drial genomes (Pinter et al. 2008). S. pombe cells carrying 
the corresponding breast cancer mutation, pfh1-L430P, 
are inviable (Chisholm et al. 2012). In addition, the Pfh1-
L430P variant cannot perform the essential functions of 
wild-type Pfh1 in the mitochondria or the nucleus, suggest-
ing that this motif or this specific position performs a criti-
cal function in Pif1 helicases (Chisholm et al. 2012).

 S. pombe is a genetically tractable model organism, and 
has a similar genomic organization as human cells (Hoff-
man et  al. 2015). This review highlights what is known 
about the functions of Pfh1—the S. pombe Pif1-family 
helicase—and compares this to what is known about other 
Pif1 helicases such as the poorly studied human Pif1 heli-
case (hPif1) and the well-studied S. cerevisiae Pif1 heli-
cases (ScPif1 and ScRrm3).

Pfh1 interacts with the replisome and plays a role 
in Okazaki fragment maturation

Replication of the nuclear double-stranded DNA is semi-
conservative and occurs continuously on the leading strand 
and discontinuously on the lagging strand. The replisome 
consists of many different proteins, and some are needed 
on both strands while others are more strand-specific. Pfh1 
translocates in the 5′–3′ direction on DNA (Tanaka et  al. 
2002; Zhou et al. 2002), but it is still not clear whether Pfh1 
functions on both strands or if it is a strand-specific helicase.

Pfh1 interacts with many of the core proteins of the repli-
some, including the catalytic subunit of the leading-strand 
polymerase DNA polymerase ε, Pol2, the processivity 

clamp PCNA, the replicative helicase MCM complex, the 
single-stranded DNA-binding protein RPA, and the nucle-
ase Dna2 (McDonald et al. 2016). Pfh1 and Pol2 are both 
enriched in the same regions during DNA synthesis, sug-
gesting that they are in close proximity to each other during 
DNA replication (McDonald et al. 2016).

The discontinuous Okazaki fragments on the lagging 
strand must be ligated together to create a continuous DNA 
strand. The first step in the process is the removal of the 
RNA primer that is needed for the initiation of each frag-
ment, and this is followed by subsequent ligation of the Oka-
zaki fragments. This process requires DNA polymerase δ, 
the Dna2 and Fen1 nucleases, and DNA ligase I. A genetic 
study suggests that Pfh1 also plays a role in Okazaki frag-
ment maturation on the lagging strand because a loss-of-
function pfh1-R20 mutant can rescue the cell growth of the 
heat-sensitive dna2-C2 mutant at 37  °C (Ryu et  al. 2004). 
The Dna2 nuclease is encoded by an essential gene, and this 
nuclease degrades long flaps that have eluded Fen1 cleav-
age during Okazaki fragment maturation. It is proposed that 
these long flaps are made by DNA polymerase δ and Pfh1 
during excessive strand displacement and that Pfh1 is needed 
at these flaps to perhaps resolve DNA secondary structures 
that would otherwise inhibit the nuclease activity of Dna2 
(Ryu et  al. 2004). A similar function in Okazaki fragment 
maturation is suggested for the ScPif1 helicase of S. cerevi-
siae (Budd et al. 2006; Pike et al. 2009; Rossi et al. 2008).

Pfh1 unwinds G‑quadruplex DNA structures

G-quadruplex (G4) DNA is a four-stranded structure 
formed by stacked G-tetrads. G4 structures are stable and 
form in certain G-rich sequences, and if these remain unre-
solved in the genome they can act as obstacles to DNA 
replication (Mendoza et al. 2016). However, G4 structures 
have also been implicated in important biological functions 
such as transcription regulation, origin firing, and telomere 
maintenance (Rhodes and Lipps 2015). To reveal their spe-
cific biological functions, it is necessary to predict and map 
the occurrence of G4 structures in vivo. When searching for 
the sequence motif (G3N1–25)3G3, about 450 sequences are 
predicted to form G4 structures (such sequences are here-
after called G4 motifs) in the S. pombe genome (Sabouri 
et  al. 2014). These G4 motifs are not randomly placed in 
the genome, but similar to humans they are enriched at 
telomeres, ribosomal DNA (rDNA), nucleosome-depleted 
regions, and promoters (Chambers et  al. 2015; Hanakahi 
et al. 1999; Hansel-Hertsch et al. 2016; Huppert and Bal-
asubramanian 2007; Parkinson et  al. 2002; Sabouri et  al. 
2014) and have been implicated in origin firing (Besnard 
et  al. 2012; Kanoh et  al. 2015). Two of the predicted G4 
structures in the S. pombe genome, one within an rDNA 

Fig. 1   Alignment of the unique 21 amino acid Pif1 signature motif 
with sequences from S. cerevisiae Rrm3 (ScRrm3), S. cerevisiae Pif1 
(ScPif1), S. pombe Pfh1 (SpPfh1), Mus musculus Pif1 (MmPif1), and 
Homo sapiens Pif1 (HsPif1). The alignment was performed in Clustal 
Omega (Sievers et  al. 2011). The leucine variant detected in breast 
cancer families and the position of the corresponding amino acid is 
marked with a dashed box. *Marks positions with a conserved resi-
due, “:” shows conservation between amino acid groups with similar 
properties, and “.” indicates conservation between amino acids that 
have low similarities. Red is used for hydrophobic residues A, V, F, P, 
M, I, L, and W; blue is used for acidic residues D and E; magenta is 
used for basic residues R and K; and green is used for the other resi-
dues S, T, Y, H, C, N, G, and Q
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sequence and one within a telomeric sequence, have been 
well studied in  vitro (Wallgren et  al. 2016). A Taq DNA 
polymerase stop assay showed that the G4 motif from S. 
pombe rDNA arrests DNA synthesis by the Taq polymerase 
two nucleotides prior to the G4 motif (Jamroskovic et  al. 
2016), suggesting that formation of the rDNA G4 structure 
in the genome results in an obstacle to DNA synthesis.

In all organisms examined to date, Pif1 helicases act as 
potent G4 structure unwinders (Duan et al. 2015; Liu et al. 
2015; Mendoza et al. 2015; Paeschke et al. 2013; Sanders 
2010; Wallgren et  al. 2016; Zhou et  al. 2016) and as sup-
pressors of the genomic instability that is observed in and 
around G4 motifs (Lopes et al. 2011; Paeschke et al. 2011; 
Ribeyre et al. 2009; Sabouri et al. 2014). In S. pombe, it was 
demonstrated by chromatin immunoprecipitation combined 
with sequencing (ChIP-seq) that Pfh1 binds to 20% of all 
G4 motifs (Sabouri et al. 2014). In cells depleted of Pfh1, 
fork pausing (measured as Pol2 occupancy) and DNA dam-
age (measured as γ-H2A occupancy) is increased at G4 
motifs, suggesting that Pfh1 is needed at these sites to facili-
tate DNA replication (Sabouri et al. 2014). In vitro, nuclear 
Pfh1 binds to and unwinds both intermolecular and intramo-
lecular G4 structures (Wallgren et al. 2016). Together, these 
data suggest that unresolved G4 structures cause replication 
fork pausing in S. pombe cells and that one of Pfh1’s roles is 
to unwind G4 structures ahead of the replication fork.

Pfh1 promotes replication at hard‑to‑replicate 
sites

Similar to hPif1 (Zhang et al. 2006), ScPif1, and ScRrm3 
(Ivessa et al. 2002; Zhou et al. 2000), Pfh1 is enriched at 
telomeres in  vivo (McDonald et  al. 2014), and thus it is 
likely that it plays a direct role in the function of telom-
eres. In  vitro, nuclear Pfh1 binds to a telomeric DNA 
substrate consisting of GGGTTACA telomeric repeats 
(Wallgren et al. 2016). Because pfh1+ is an essential gene 
(Tanaka et al. 2002; Zhou et al. 2002), spore clones from 
pfh1Δ strains divide only 1–3 times, and these strains show 
stable but shorter telomeres than wild-type cells (Zhou 
et al. 2002). Also, overexpression of Pfh1 shows telomere 
lengthening (McDonald et  al. 2014), suggesting that Pfh1 
is a positive regulator of telomere length. In contrast to 
Pfh1’s role as a positive regulator of telomere length, hPif1, 
ScPif1, and ScRrm3 have been shown to be negative regu-
lators of telomere length and to regulate telomerase activ-
ity because ScPif1 mutant cells and ScRrm3-deleted cells 
exhibit increased telomere length (Ivessa et al. 2002; Phil-
lips et al. 2015; Schulz and Zakian 1994; Zhou et al. 2000) 
and overexpression of ScPif1 and hPif1 cause telomere 
shortening (Zhang et al. 2006; Zhou et al. 2000). This sug-
gests that S. pombe cells use another helicase or another 

mechanism to regulate telomerase at telomeres and at sites 
of DNA breaks. The positive regulation of telomere length 
by Pfh1 might be due to Pfh1’s role in facilitating DNA 
replication at telomeres. In support of this, two-dimen-
sional (2D) gel analysis of replication intermediates has 
shown that cells depleted of Pfh1 exhibit increased pausing 
at telomeres (McDonald et al. 2014), suggesting that Pfh1 
facilitates fork progression at telomeres.

How Pfh1 facilitates replication at telomeres is still 
unknown. However, because a telomeric DNA sequence 
from S. pombe forms an intramolecular hybrid G4 structure 
in vitro and Pfh1 can unwind this structure (Wallgren et al. 
2016), the requirement for Pfh1 at telomeres during rep-
lication fork progression might be due to Pfh1’s ability to 
unwind G4 structures. Pfh1 might also facilitate fork pro-
gression at telomeres by removing non-nucleosomal pro-
teins from the telomeres; however, it is not known if these 
proteins block replication fork progression at telomeres.

DNA damage hotspots are found at RNA polymerase III 
transcribed genes in temperature-sensitive pfh1 mutant strains 
of S. pombe, suggesting that Pfh1 is needed at these sites to 
suppress DNA damage (Zhou et al. 2013). Also, 2D gel anal-
ysis has shown that fork progression in S. pombe is depend-
ent on Pfh1 at several highly transcribed RNA polymerase 
III genes, the tRNA and 5S rRNA genes, and the highly tran-
scribed RNA polymerase II genes act1+, hta1+, and htb1+ 
(Sabouri et al. 2012). In addition, ChIP-seq experiments have 
shown that Pfh1 is enriched at approximately 50% of all 
tRNA and 5S rRNA genes and at 60% of the top 500 highly 
transcribed RNA polymerase II genes (McDonald et  al. 
2016). These results have been confirmed by the observation 
that Pfh1-depleted cells exhibit increased fork pausing and 
DNA damage at these sites, suggesting that Pfh1 is needed 
at these sites to facilitate fork progression (McDonald et al. 
2016). ScRrm3 is also needed at highly transcribed RNA pol-
ymerase III genes to promote replication (Ivessa et al. 2003), 
but to date Pfh1 is the sole Pif1-family helicase that has been 
shown to be necessary at highly transcribed RNA polymerase 
II genes. Similar to ScRrm3, Pfh1 is needed to promote the 
merging of converging forks (Ivessa et al. 2000; Sabouri et al. 
2012; Steinacher et al. 2012).

To allow for high rates of transcription of rDNA and for 
efficient mating type switching at mating type loci, replica-
tion of these regions is unidirectional, and this unidirection-
ality is caused by the binding of the non-histone proteins, 
such as Swi1, Swi3, and Sap1 that act as replication fork 
barriers at specific sites within these regions (Arcangioli 
et  al. 1994; Dalgaard and Klar 2000, 2001; Krings and 
Bastia 2004, 2005; Mejia-Ramirez et al. 2005). By 2D gel 
analysis, it has been shown that Pfh1 is needed to facilitate 
replication through these barriers at both rDNA and mating 
type loci (Sabouri et al. 2012; Steinacher et al. 2012). In the 
absence of the Timeless homolog Swi1 that tightly binds 
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these sites, replication at rDNA and mating type loci is no 
longer dependent on Pfh1, suggesting that Pfh1 removes 
Swi1 from the barriers (Sabouri et al. 2012).

All of the above-mentioned regions, including telom-
eres, highly transcribed genes, and replication fork barriers, 
are stably bound by protein complexes and thus are hard-
to-replicate sites. Therefore, one possible function for Pfh1 
at these sites might be to remove these proteins from DNA 
so that these tightly bound proteins do not block DNA 
replication. Another function for Pfh1 might be to resolve 
R-loops within the highly transcribed genes that would 
otherwise hinder replication. However, these activities for 
Pfh1 have not been examined in vitro.

Pfh1 localizes to mitochondria and interacts 
with mitochondrial proteins

Immunofluorescence microscopy has shown that Pfh1 local-
izes to the mitochondria (Pinter et  al. 2008). Moreover, 
depletion of Pfh1 causes loss of mitochondrial DNA num-
ber, and S. pombe cells with the pfh1-m1 allele (coding for 
an isoform that localizes only to the nucleus) are inviable, 
showing that Pfh1 is essential for mitochondrial mainte-
nance (Pinter et  al. 2008). In addition, affinity purification 
of Pfh1 combined with mass spectrometry has shown that 
Pfh1 interacts with several known mitochondria-localizing 
proteins, such as the mitochondrial single-stranded binding 
protein Rim1, the mitochondrial repair protein Mgm101, 
and the mitochondrial RNA polymerase Rpo41 (McDonald 
et al. 2016). Together, these data support the notion that Pfh1 
functions in the mitochondrial DNA. However, what these 
functions of Pfh1 are in the mitochondria is still not known.

Pif1 helicases from other organisms also play a role in 
mitochondria. For example, ScPif1 was actually first dis-
covered as a mitochondrial protein that affected mitochon-
drial recombination frequency (Foury and Kolodynski 
1983), and mitochondrial myopathy appears in pif1 knock-
out mice (Bannwarth et al. 2016).

As previously mentioned, G4 DNA structures are built 
of stacked G-tetrads, and nucleic acids with two or more 

stacks of G-tetrads can form a G4 structure in  vitro. The 
most common G4 structures studied in the nuclear genome 
are G4 structures with stacks of three G-tetrads because 
these are more stable than G4 structures with stacks of two 
G-tetrads. The S. pombe mitochondrial genome does not 
contain any G4 motifs with three G-tetrad stacks. However, 
when scanning the mitochondrial genome for G4 motifs 
with two G-tetrads stacks, 6 and 45 G4 motifs were found 
when using (G2N1–7)3G2 and (G2N1–20)3G2, respectively, in 
the search algorithms (Table 1). It is not known, however, 
if these G4 motifs form G4 structures, and the association 
of Pfh1 with these sites has not been examined. However, it 
is tempting to speculate that one of the functions of Pfh1 in 
the mitochondrial DNA is to resolve G4 structures just as it 
does in the nuclear DNA.

Pfh1 in DNA repair

In addition to the nuclear and mitochondrial isoforms 
of Pfh1, a third isoform of Pfh1 can be detected when S. 
pombe cells are exposed to the DNA damaging agent 
camptothecin (Pinter et  al. 2008). In addition, Pfh1 co-
localizes with DNA damage foci (Pinter et al. 2008), and S. 
pombe strains with temperature-sensitive mutations in pfh1 
are sensitive to the DNA damaging agents hydroxyurea and 
methyl methane sulfonate (Tanaka et  al. 2002). Together, 
these data suggest that nuclear Pfh1 is needed during DNA 
damage repair. This conclusion is strengthened by affinity 
purification experiments combined with mass spectrom-
etry that demonstrate that Pfh1 interacts with several pro-
teins involved in DNA repair, such as the mismatch repair 
proteins, the ATR checkpoint kinase Rad3, and the DNA 
recombination protein Rad52 (McDonald et al. 2016).

Conclusions

S. pombe is a great model organism when studying chro-
mosome biology, as its chromosomal organization resem-
bles the one in human cells (Olsson and Bjerling 2011). 

Table 1   G4 motifs identified in the mitochondrial genome using the (G2N1–7)3G2 algorithm

The sequence of the forward strand is shown

Start coordinate End coordinate Forward/reverse strand Sequence

4967 4989 F GGATTGGTATCTGGGATAATTGG

5267 5288 F GGACCTGGTGGTGGTTGGACGG

17851 17879 F GGTGTTAGTGGTGCTGGTGTTGGTATTGG

4652 4676 R CCCTTTTACCAACTTTTCCTTAACC

11049 11074 R CCCGAATTCCAATTCCCATCTCACCC

18118 18141 R CCAGAATCTCCATTTTCCCCCTCC
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Pfh1 from S. pombe exhibits the combined functions of 
the two most studied Pif1 helicases, ScPif1 and ScRrm3, 
but it also has some functions that have not been shown 
for other Pif1-family helicases. For example, it plays a role 
as a positive regulator of telomere length, and it promotes 
replication of highly transcribed RNA polymerase II genes. 
Because S. pombe and humans only encode one Pif1 heli-
case, it is very likely that hPif1 has many similar functions 
in the cell as Pfh1. These functions and perhaps some yet 
undiscovered functions of Pif1 helicases will be impor-
tant to study in the future to understand the role of hPif1 in 
breast cancer and potentially other diseases.
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