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Abstract

Accurate and timely diagnosis of intracranial vasculopathies is important due to significant risk of 

morbidity with delayed and/or incorrect diagnosis both from the disease process as well as 

inappropriate therapies. Conventional vascular imaging techniques for analysis of intracranial 

vascular disease provide limited information since they only identify changes to the vessel lumen. 

New advanced MR intracranial vessel wall imaging (IVW) techniques can allow direct 

characterisation of the vessel wall. These techniques can advance diagnostic accuracy and may 

potentially improve patient outcomes by better guided treatment decisions in comparison to 

previously available invasive and noninvasive techniques. While neuroradiological expertise is 

invaluable in accurate examination interpretation, clinician familiarity with the application and 

findings of the various vasculopathies on IVW can help guide diagnostic and therapeutic decision-

making. This review article provides a brief overview of the technical aspects of IVW and 

discusses the IVW findings of various intracranial vasculopathies, differentiating characteristics 

and indications for when this technique can be beneficial in patient management.

INTRODUCTION

Traditionally, intracranial vascular diseases have been evaluated with luminal imaging 

techniques, whether traditional catheter angiography or noninvasive luminal imaging 

techniques (MR angiography, MRA or CT angiography CTA). However, these angiographic 

techniques can only identify abnormalities affecting the vessel lumen, and many cerebral 
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vasculopathies can have similar luminal imaging appearances.1–4 In recent years IVW 

techniques have been developed to directly characterise disease processes affecting the walls 

of arteries.4–7 Intracranial vasculopathies can require dramatically different treatments and a 

delay in treatment or inappropriate therapy can result in significant morbidity and even 

mortality. MR intracranial vessel wall imaging (IVW) can provide diagnostic information 

not available with traditional angiographic techniques that can assist clinicians planning 

appropriate treatment. A previous review article focused on the technical aspects and 

implementation of IVW with a broad discussion of imaging findings as they relate to stroke 

subtype and plaque imaging characteristics.8 This review article focuses on a comprehensive 

overview of the IVW imaging findings of various intracranial vasculopathies, differentiating 

characteristics that may aid clinicians in diagnosis and indications for when this technique 

can be beneficial in patient management.

INTRACRANIAL MR VESSEL WALL IMAGING PROTOCOL DESIGN

IVW, as compared to extracranial vessel wall imaging, is more challenging due to the small 

caliber and tortuous course of the intracranial arteries. For example, the middle cerebral 

artery (MCA) diameter can range from 3 to 5 mm, with a vessel wall thickness from 0.5 to 

0.7 mm.9 The smallest practical voxel is necessary to be able to depict the normal vessel 

wall and differentiate pathological states, and with larger voxels there is increased likelihood 

of inaccurate measurements.7 While some protocols have used 1.5 T scanners, because of 

the need for very high resolution and thus higher signal, higher field strengths are optimal, 

preferably at least 3 T, with reports demonstrating improved results with 7 T with utilisation 

of a magnetisation prepared inversion recovery sequence with PD, T1 and.10–12 While a 

majority of the studies in the literature have used two-dimensional (2D) black blood imaging 

techniques, there has been recent application of three-dimensional (3D) IVW 

techniques.26713–21 3D acquisitions allow for improved through plane resolution, with 

increased brain coverage, and can allow for isotropic resolution which can be reformatted in 

multiple planes. This is advantageous for interrogating the intracranial arteries due to their 

inherent small size and tortuous course. Many of the current 3D IVW protocols, however, 

utilise non-isotropic resolution, which can also be reformatted, but may result in suboptimal 

image quality due to blurring. 3D variable refocusing flip angle (VRFA) sequences (VISTA, 

Philips Healthcare, Best, the Netherlands; SPACE, Siemens Healthcare, Erlangen, Germany; 

CUBE, GE Healthcare, Milwaukee, Wisconsin, USA) have been the most extensively used 

and studied 3D techniques to date, as these sequences provide improved image quality, 

coverage and blood flow suppression in a shorter scan time relative to conventional 3D and 

2D imaging techniques.7132223 VRFA techniques have been used with T1 and proton density 

(PD) weightings, before and after gadolinium contrast administration, as the pattern and 

degree of contrast enhancement can be helpful in differentiating and characterising 

vasculopathies.27 High-resolution T2-weighted imaging has also shown some promise for 

IVW. While a majority of studies have investigated enhancement characteristics of 

vasculopathy, Mossa-Basha et al24 showed that a multicontrast protocol including T1 pre 

and postcontrast and T2 IVW improves accuracy of vasculopathy differentiation. In addition, 

there was very strong to substantial inter-reader agreement for assessment of IVW 

characteristics, including the assessment of lesional T2 signal (κ=0.8), pattern of wall 
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thickening (κ=0.87), presence (κ=0.9), pattern (κ=0.73) and intensity (κ=0.77) of 

enhancement.

2D imaging techniques that have been employed for IVW include T1, T2 and PD-weighted 

sequences. There are multiple publications that have primarily performed 2D imaging in a 

plane perpendicular to plane of the lumen, which is likely the most important plane of 

imaging, however, multiplanar imaging is beneficial for optimal lesion assessment, 

performing axial imaging and imaging in a plane perpendicular to the axis of the 

interrogated artery. This allows for more complete visualisation of the lesion, assessment of 

its effects on the lumen and lesion morphology. Obtaining imaging in a plane perpendicular 

to the lumen is important to avoid volume averaging effects and to obtain a more accurate 

estimate of lesion and wall thickness. Vessel obliquity, slice thickness and in-plane 

resolution are all factors that will affect wall measurements and the sharpness of the vessel 

wall borders.25 Cardiac gating may be performed for 2D IVW, though it is not frequently 

used.7

Intracranial vessel wall imaging protocols can be performed in a time efficient manner. 3D 

PD-weighted VRFA sequence (0.4–0.5 mm3 isotropic voxels) with coverage of the major 

intracranial arteries can be performed on a 3 T system in 7–8 min.7 Thus a full protocol, 

including time-of-flight MR angiography (TOF MRA) for localisation and PD VISTA pre 

and post contrast can be performed in under 30 min. As MRI scanners improve in efficiency 

and field strength, coil elements improve and compressed sensing techniques become more 

efficient, sequences will become shortened and allow for improved coverage26 (refer to table 

1 for the IVW MR protocol used at our institution).

INTRACRANIAL ATHEROSCLEROTIC DISEASE

Intracranial atherosclerotic disease (ICAD) is the root cause of a significant portion of 

ischaemic strokes. In the USA, it has been shown to account for up to 9–15% of ischaemic 

strokes, although this percentage approaches 50% for people of Asian or African 

descent.27–30 ICAD is presumed to represent the most common cause of ischaemic strokes 

worldwide.31 ICAD is one of the most commonly investigated intracranial vascular 

pathologies in studies utilising IVW and demonstrates the utility of such 

techniques.2111432–41 An example of an ICAD lesion on IVW can be seen in figure 1.

While utilising vessel wall imaging to investigate extracranial carotid disease is a relatively 

mature field, the extent of research on ICAD is smaller. Whereas previous approaches to 

ICAD assessment considered the degree of plaque-related stenosis, IVW directly evaluates 

plaque characteristics, starting with the degree and pattern of wall thickening at the site of 

disease.42 The histological components of ICAD are similar to those seen in extracranial 

carotid disease, and preliminary IVW studies have also assumed similar imaging 

characteristics of the various atherosclerotic features.43 Preliminary studies correlating in 

vivo or ex vivo IVW to histology have shown good agreement between plaque MR signal 

characteristics and lesion components on histology, including intraplaque haemorrhage, lipid 

rich necrotic core, fibrous cap and fibrous tissue.44–47 ICAD, similar to atherosclerosis in 

other vascular beds, frequently initially grows outward, and can reach prominent size before 
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resulting in detectable stenosis.48 For this reason, luminal imaging frequently underestimates 

the burden of intracranial atherosclerosis, and may not detect non-stenotic lesions, which can 

be symptomatic.334041 A French autopsy study showed that 62% of patients who died from 

ischaemic stroke had ICAD. Of the 200 patients with ICAD, only 126 were found to have 

obvious stenosis (>30%) with conventional luminal imaging, suggesting 37% of all ICAD 

plaques cannot be easily assessed by angiographic imaging.49 Some studies have indicated 

that plaques that show positive remodelling (outer wall remodelling) are more frequently 

symptomatic than negative remodelling plaques and have a higher association with 

microemboli detected on transcranial Doppler.343842 The degree of stenosis and ratio of wall 

thickening to lumen were also found to be significantly associated with symptomatic plaques 

when compared to asymptomatic lesions.42

Wall thickening alone is not a good predictor of symptoms; wall signal characteristics must 

be examined.23738 Atherosclerotic lesions frequently have a juxtaluminal T2 hyperintense 

band, which represents the fibrous cap.3848 This juxtaluminal band will also appear 

isointense to hyperintense on PD sequences.48 Histological comparison of ICAD to in vitro 

7 T MR IVW has confirmed the presence of the fibrous cap which was found to have 

hyperintense signal on 3D VRFA MR sequences.45 Underlying the juxtaluminal band is a 

lipid-rich necrotic core, which is isointense on T1WI and hypointense on PD and T2WI.48 

ICAD lesions will frequently have heterogeneous T2 IVW signal (figure 1C).24 Increased 

size of the lipid core has been associated with higher rates of rupture.3842 In atherosclerosis 

of the extracranial carotid arteries, intraplaque hemorrhage (IPH) has proven to be one of the 

most important risk factors for plaque vulnerability.50 With ICAD, IPH has also been shown 

to occur in preliminary studies and to be associated with symptoms, though more 

investigation is necessary.363743 IPH will appear as intraplaque T1 hyperintensity, which is 

greater than 150% the signal intensity of the internal reference muscle tissue.3637 Presence 

of ICAD IPH is associated with higher rates of plaque complications and stroke, similar to 

what is seen in extracranial carotid artery plaques.3743 Intracranial atherosclerotic plaques 

are frequently eccentric in morphology and often will have incomplete postcontrast 

enhancement (figure 1D, E).424 ICAD can, however, have a circumferential pattern of vessel 

wall involvement, mimicking vasculitis. In this setting, evaluating the T2-weighted IVW can 

be helpful for differentiation.24 Enhancement has been shown in plaques upstream to 

ischaemic infarcts within the first 4 weeks after the stroke, and with the passage of time, the 

degree of enhancement progressively diminishes.35 In patients with multifocal disease, 

culprit lesions consistently enhance, and they do so more avidly than non-culprit lesions, 

which enhance inconsistently.14 Plaque enhancement may relate to inflammation and/or 

ingrowth of vasa vasorum. It is important to note the role for vasa vasorum in the initiation 

of an inflammatory cascade that contributes to atherogenesis development and 

propagation.51 The radial location of plaques along the MCA has been shown to be 

important as plaques along the superior wall of the MCA are associated with deep infarcts, 

presumably due to ostial stenosis or occlusion at the origins of lenticulostriate perforators.39

IVW has not only shed light on ICAD features associated with ischaemic symptoms, it is 

providing new insights that are changing our understanding of the natural history of this 

disease. Traditional schema that determined treatment algorithms for ICAD has depended on 

degree of stenosis. The Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial 
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demonstrated a roughly linear relationship between degree of stenosis and rates of ischaemic 

stroke, with an apparent asymptote at approximately 90% of stenosis.52 Stenosis of 70–99% 

then became a cut-off for endovascular treatment of refractory ICAD lesions and was used 

as an inclusion criterion in the only randomised clinical trial evaluating, but failing to show 

the effectiveness, of intracranial stenting.53 However, current IVW techniques show that 

stenosis may not be appreciated with atherosclerotic lesions. Intracranial IVW has confirmed 

coronary artery findings that initial vessel wall remodelling can maintain the lumen while 

the wall itself dramatically thickens.345455 Such expansive remodelling is associated with 

vulnerable plaque characteristics, higher rates of plaque rupture and acute coronary 

syndrome and similar early ischaemic pathology is now being seen in ICAD.3438425455 

There are multiple possible pathophysiological routes from ICAD to stroke. These include 

hypoperfusion, plaque rupture and thrombus formation leading to artery-to-artery 

embolisation, and occlusion of a vessel by a plaque or plaque-associated thrombosis.56 

Lesions, however, may be asymptomatic despite high-grade stenosis, most likely due to 

long-term luminal narrowing resulting in protection via collateralisation. With this new 

understanding of ICAD, it now appears possible that prior investigations of ICAD therapies 

have not been adequately targeting the lesions most likely to cause symptoms, particularly 

when determining which lesions should be targeted for endovascular therapy. Considerable 

future investigation is needed to examine the roles of plaque components during the mildly 

stenotic or non-stenotic positive remodelling phase of ICAD. IVW can provide a better 

imaging marker for ICAD for future therapeutic trials than luminal imaging techniques that 

have been used.57 This could lead to improved treatment algorithms that identify which 

patients should undergo endovascular interventions in addition to aggressive medical 

management. Finally, in candidates for endovascular therapy, specific features of individual 

lesions can be identified that may impact planning for such interventions, such as proximity 

to ostia of larger branch vessels and perforators.394058

VASCULITIS

IVW can differentiate intracranial vasculopathies that look nearly identical on catheter and 

cross-sectional angiography, including vasculitis, RCVS, ICAD, vasospasm, infection and 

radiation-related vasculopathy.5960 Nearly all causes of vasculitis, whether autoimmune or 

infectious, can affect the cerebral arteries.61 Typically vasculitides are imaged with 

angiographic methods, but findings of multifocal luminal narrowing are nonspecific. In 

addition, catheter angiography has limited sensitivity to central nervous system (CNS) 

vasculitis especially when considering small artery vasculitis such as lymphocytic or 

granulomatous subtypes.62 The sensitivity of catheter angiography for changes related to 

CNS vasculitis ranges from 27% to 90%,6364 with specificity that can be as low as 30%.60

The morbid natural history of these vasculitides necessitates prompt, accurate diagnosis. 

While systemic vasculitides can be diagnosed by biopsy of peripheral arteries or tissues, 

biopsy of cerebral vasculitis is a riskier undertaking. In addition, the sensitivity of biopsy for 

the diagnosis of CNS vasculitis may be lower than 50%.65 IVW directly visualises vessel 

wall inflammation and oedema. Küker et al66 evaluated 27 patients with a diagnosis of CNS 

vasculitis using IVW, and found that 25/27 showed vessel wall thickening and 23/27 showed 

postcontrast vessel wall enhancement. Vasculitis typically shows thickening and multifocal 
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or diffuse homogeneous, smooth, concentric enhancement of the vessel wall (figure 2A–

D).366–68 A majority of cases of vasculitis showed stable degrees and extent of vessel wall 

enhancement on follow-up.68 Vasculitic enhancement seen on postcontrast MRI may also 

extend beyond the vessel wall into adjacent periadventitial tissues, increasing conspicuity of 

the affected segments. Parenchymal enhancement that may be seen could represent 

microvascular involvement that is angiographically occult with inflammatory spillover into 

the surrounding tissues.69 On T2-weighted IVW, vasculitis typically shows homogeneous 

vessel wall signal that is isointense to grey matter.24 With advances in IVW, findings 

diagnostic for vasculitis may help guide or potentially limit the need for biopsy.7071 

However, IVW cannot differentiate between the types of vasculitis, and thus the necessity 

for fluid or tissue sampling may remain for definitive diagnosis. With treatment, the degree 

and extent of vascular enhancement will diminish; however, the extent of luminal stenosis 

may not appreciably change.72

Important caveats bear noting for this application of IVW. Perivascular enhancement can be 

found normally at baseline in children. Such normal enhancement is typically linear and thin 

in appearance, often symmetric with the contralateral vessels and typically not present in 

vessels coursing through cerebrospinal fluid.73 Enhancement patterns mimicking those seen 

in vasculitis can be seen shortly after mechanical thrombectomy for the treatment of acute 

ischaemic stroke.74 In addition, steroid therapy can affect vasculitis-related vessel wall 

enhancement, diminishing the degree of abnormality.72

REVERSIBLE CEREBRAL VASOCONSTRICTION SYNDROME

Patients with reversible cerebral vasoconstriction syndrome (RCVS) present with a sudden, 

severe, intermittent headache, at times with concomitant neurological deficits.7576 Clinical 

history is often instructive, with young to middle-aged women most commonly afflicted in 

the setting of one or more of many known inciting factors.7576 Known risk factors are often 

present, such as ecclampsia, postpartum status, strenuous activity, bathing or showering, 

recent use of tobacco, amphetamine, stimulants, cannabis, ethanol or selective serotonin 

reuptake inhibitors.76 Possible complications of RCVS include infarction, subarachnoid 

haemorrhage, parenchymal oedema or intraparenchymal haemorrhage. Clinical evaluation 

and diagnosis can be performed difficult due to patients presenting in critical condition and 

unable to relay an accurate history due to the aforementioned disease complications. In this 

setting, differentiation of RCVS from other vasculopathies based on clinical and luminal 

imaging can be difficult. IVW studies show minimal smooth thickening of vessel wall that is 

concentric with mild to no enhancement (figure 2E–I).24676877 This is consistent with the 

pathophysiological process leading to RCVS, specifically non-inflammatory vasospasm. 

There is near uniform resolution of these findings within 3 months of symptom onset.6876

MOYAMOYA

Moyamoya disease (MMD) is an idiopathic disease causing progressive narrowing of the 

bilateral carotid termini, leading to development of abnormal collateral branches at the base 

of the brain. In Japanese patients, MMD affects patients in a bimodal distribution, with 

peaks at 5 years and mid-40 years of age. MMD will affect both carotid termini, however, 
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the severity of disease between each side may differ. In addition, disease manifestation may 

not be simultaneous. In Moyamoya syndrome (MMS) there may be unilateral or bilateral 

supraclinoid internal carotid artery stenosis from one of several disease states, including 

ICAD, inflammatory vasculopathy, radiation therapy, sicklecell disease, neurofibromatosis 

type 1, trisomy 21 or other genetic syndromes.78 Distinguishing between these two 

processes is important, because symptomatic MMD can be treated with external carotid to 

MCA bypass procedures, whereas some of the underlying processes causing MMS are 

potentially reversible with initial medical management.78

On IVW, Ryoo et al15 showed concentric vessel wall thickening and enhancement of the 

distal internal carotid arteries in the setting of MMD, while others have indicated a lack of 

wall enhancement in the setting of MMD (figure 3).14 MMD has been described as showing 

wall shrinkage,

DISSECTION

Intracranial arterial dissections (IAD), while still considered relatively rare, are an important 

cause of ischaemic stroke and subarachnoid haemorrhage, especially in younger patient 

populations.79 The aetiology of IAD is unknown in most cases, but predisposing factors 

include hypertension, history of migraine headaches, oral contraceptives, genetic factors, 

trauma, as well as inflammatory/infectious states.

Dissections can be subintimal, subadventitial or both. When blood collects between the 

media and internal elastic lamina via an intimal tear, this is termed a subintimal dissection; a 

subadventitial dissection occurs when the haematoma extends through the media.79 

Subintimal dissections frequently lead to hypoperfusion or ostial occlusion and 

thromboemboli, resulting in ischaemia.8081 Intracranial subadventitial dissections frequently 

will result in subarachnoid haemorrhage, and may maintain luminal contours, making them 

difficult to detect on luminal imaging. Subadventitial dissections can also result in 

pseudoaneurysm or giant partially thrombosed aneurysm formation, which can result in 

compression of the brainstem or cranial nerves.79 The most common locations for 

intracranial dissections include the supraclinoid ICA, the mainstem M1 MCA and the 

intracranial vertebral arteries.

Luminal imaging can be performed for the evaluation of intimal dissections, however, these 

techniques are not sensitive for the detection of subadventitial dissections that may maintain 

luminal contours.82 T1-weighted imaging with fat saturation often can demonstrate 

thrombus within the false lumen of a dissection, but IVW techniques with improved 

resolution and dark blood imaging can improve characterisation and detection.21783–85 

Additionally, dissections can be further evaluated with postcontrast imaging that may show 

eccentric enhancement.6 3D IVWhas been shown to better characterise and detect 

vertebrobasilar dissections than both MRA and 2D spin echoMRI techniques, while 

suffering only minimal flow artefacts that did not affect diagnostic assessment.1617 3D IVW 

techniques afford a number of advantages for the detection of dissections relative to 2D fat-

saturated T1 sequences, specifically, improved isotropic resolution for detection of small 
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dissections and multiplanar reformations, improved suppression of flow artefacts that can 

obscure or mimic dissections, and no need for cardiac gating for flow suppression.84

CEREBRAL ANEURYSMS

IVW is adding to our understanding of the factors that cause aneurysm growth. Vasa 

vasorum is not normally present in the cerebral vasculature until the development of 

pathology like ICAD or aneurysm (saccular aneurysms >4 mm in diameter, giant and 

fusiform aneurysms).6 One difficulty with histological vasa vasorum investigation, however, 

is adventitial stripping with autopsy sampling, especially in smaller intracranial arteries, may 

result in underestimation of the presence of vasa vasorum.51 The vasa vasorum may leak and 

cause haemorrhage into the wall of an aneurysm, inciting an inflammatory cascade that 

includes the release of growth factors, leading to aneurysmal enlargement and wall thinning, 

which may lead to rupture. IVW can identify the vasa vasorum, the aneurysm wall itself, and 

any mural haematoma.6 IVW can also accurately delineate the relationship between 

aneurysms and adjacent anatomic structures.86 High-resolution techniques can accurately 

measure wall thickness as long as the wall thickness is above the imaging resolution 

threshold.86–89 MR measurements showed progressive overestimation relative to histological 

measurements with decreasing arterial wall thickness.8889 Sherif et al89 defined the imaging 

threshold to be the in-plane voxel size (0.4 mm) and indicated significant differences 

between true wall thickness and MR wall thickness in measurements smaller than this 

imaging threshold (0.24±0.06 mm for true aneurysm dome wall thickness vs 0.30±0.068 

mm for MR wall thickness (p=0.0078)). The imaging resolution threshold for accurate wall 

measurement depends on imaging parameters, including in-plane and through-plane 

resolution and orientation of the vessel wall and lumen being evaluated.25 The evaluation by 

Sherif et al was performed with 2D IVW, and has yet to be investigated using 3D isotropic 

techniques that would result in more accurate wall measurements from reduced volume 

averaging and wall distortion effects. In the setting of multiple aneurysms with acute 

subarachnoid haemorrhage, thick aneurysm wall enhancement (figure 4) helps identify the 

culprit lesion.90 IVW may help in identifying an aneurysm as the source of subarachnoid 

haemorrhage that is angiographically occult.91 T1, T2-weighted and steady state free 

precession MRI techniques can also identify and characterise aneurysmal intraluminal 

thrombus.92 Such early demonstrations of the feasibility of IVW for aneurysms may now 

lead to further investigation to identify which characteristics are predictive of aneurysm 

rupture, allowing neurointerventionalists and microvascular neurosurgeons offering open 

surgical techniques more information to determine when and what type of treatment is 

appropriate.56

IVW FOR THE DIFFERENTIATION OF VASCULOPATHIES

The differentiation of intracranial vasculopathies using luminal imaging techniques can be 

difficult, and this is an area of promise for IVW imaging. Table 2 provides a summary of 

vessel wall imaging characteristics of the various intracranial vasculopathies. Multiple vessel 

wall characteristics have been utilised for disease differentiation, including presence of 

contrast enhancement, pattern of wall involvement (eccentric vs circumferential), pattern of 

enhancement, presence of remodelling and T2 signal characteristics. Mossa-Basha et al24 
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evaluated the ability of these IVW characteristics to differentiate intracranial atherosclerosis, 

vasculitis and RCVS using a multicontrast protocol including T1-weighted pre and 

postcontrast and T2-weighted high-resolution techniques. A majority of atherosclerosis 

cases showed eccentric vessel wall involvement, varying degrees and patterns of 

enhancement and mixed T2-weighted lesion signal intensity. Vasculitis on the other hand 

typically showed a circumferential lesion with diffuse grade 1 or 2 enhancement and 

isointense T2 lesion signal. RCVS lesions typically showed circumferential vessel wall 

involvement with no to mild enhancement and mild isointense wall thickening on T2-

weighted IVW.

ICAD can, however, have a circumferential pattern of vessel wall involvement, mimicking 

vasculitis and RCVS.2477 In this setting, evaluating the T2-weighted IVW can be helpful for 

differentiation.24 On T2-weighted IVW, vasculitis will differ in appearance from ICAD and 

typically shows homogeneous vessel wall signal that is isointense to grey matter, as 

compared to the heterogeneous T2 wall signal seen in ICAD and the mild wall thickening in 

RCVS. In addition, ICAD frequently will show outward remodelling, a characteristic not 

described in RCVS and vasculitis.

While differentiation of RCVS from CNS vasculitis using luminal imaging is nearly 

impossible, IVWcan readily differentiate between the two disease states.6768 Mandell et al67 

found that RCVS showed no vessel wall enhancement and resolved on follow-up luminal 

imaging, while cerebral vasculitis showed multifocal enhancement associated with the 

regions of stenosis with persistence of luminal narrowing on follow-up luminal imaging. 

Obusez et al68 found that most cases of RCVS showed negligible to mild enhancement and 

circumferential wall thickening that frequently resolved, whereas circumferential thick wall 

enhancement was seen in most cases of vasculitis. Dieleman et al77 described a case of 

RCVS which showed circumferential enhancement, however, the degree and extent of 

enhancement was not described. The presence and degree of enhancement are the best 

criteria to differentiate RCVS from ICAD and vasculitis, however, the T2-weighted vessel 

wall appearance of RCVS typically shows subtle mild T2 isointense wall thickening, which 

also differs from other intracranial vasculopathies.24

Angiography does not distinguish between MMD and MMS well, with both processes 

demonstrating high-grade stenosis of the carotid termini with robust collateralisation. Ryoo 

et al15 showed concentric vessel wall thickening and enhancement of the distal internal 

carotid arteries in the setting of MMD, while others have indicated a lack of wall 

enhancement in the setting of MMD (figure 3).14 In addition, MMD will not show outer wall 

remodelling and expansion, in distinction from atherosclerosis. MMS caused by ICAD will 

show the findings described in the atherosclerosis section, most notably eccentric plaques 

often showing positive remodelling and enhancement.14 MMS caused by vasculitis will have 

concentric mural enhancement.36667

IVW can help differentiate disease states when luminal imaging and clinical markers are 

inconclusive. This can be especially helpful in differentiating RCVS, ICAD and vasculitis or 

in differentiating MMD from MMS. There can exist overlap in imaging appearances in 

terms of pattern of wall involvement and presence of enhancement, but other characteristics 
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including outer wall remodeling and T2-weighted IVW signal characteristics can provide 

additional differentiating data.

LIMITATIONS OF IVW IMAGING

While much promise has been shown with IVW for the evaluation and differentiation of 

intracranial vasculopathies, further investigation is necessary. There are only a small number 

of studies with histological validation of ex vivo IVW imaging findings of ICAD,4547 and a 

handful of studies with correlation of IVW findings with histological or cerebrospinal fluid 

analysis of inflammatory vasculopathies,66–68709394 surgical confirmation of aneurysm 

rupture90 or aneurysm wall thickness.8689 This is primarily due to limited availability of 

histological specimens for most intracranial vasculopathies. Further prospective, 

longitudinal investigation of outcomes relating to specific vessel wall imaging lesion 

characteristics and particular diseases as they correlate to vulnerability and risk of stroke is 

necessary to promote this field of clinical and investigation considering the aforementioned 

limitations with histological confirmation. Considering the need for high-resolution and 

adequate signal-to-noise for the evaluation of small, tortuous arteries, IVW scans can be 

time-consuming, which can be a limiting factor for wide use due to its impact on patient 

throughput, limited quality due to patient motion95 and patient discomfort. With software 

and hardware improvements going forward, improved resolution should be attainable within 

shorter scan times, making these examinations more clinically feasible for all imaging 

environments. The benefit of using higher field MRI systems, typically with at least 3 T field 

may limit the ability to perform these examinations for certain institutions.

FUTURE CONSIDERATIONS

As refinement and validation of IVW techniques continue, these tools can serve a 

complementary and additive role to luminal imaging techniques and become more routine in 

the evaluation and differentiation of the above-described cerebrovascular pathologies. In 

certain disease processes, with further investigation, IVW may be able to identify lesions 

with a poorer prognosis that may require earlier or more aggressive treatment. IVW may 

allow for detection of disease prior to changes seen on luminal imaging. Newer techniques 

can be implemented for improved evaluation of intracranial atherosclerotic plaque 

characteristics including intraplaque haemorrhage, outer wall boundary detection, and 

simultaneous acquisition of luminal and vessel wall imaging.181996With improved CSF 

suppression using preparation modules such as delay alternating with nutation for tailored 

excitation (DANTE), improved assessment of normal and diseased arterial segments can be 

achieved on multiple contrast weightings, allowing for increased acceptance of multicontrast 

protocols that will permit improved disease characterisation.1820 In addition to CSF 

suppression, DANTE suppresses flowing blood without any effect on tissue contrast, thus 

limiting flow artefacts that may be confused with vessel wall pathology or intraluminal 

thrombus. Considering the requirement of high-resolution imaging for IVW, in order to 

attain adequate signal constrictively long sequences may be employed. With the utilisation 

of advanced parallel imaging and compressed sensing techniques that can further accelerate 

imaging without loss of image quality through more efficient k-space undersampling, shorter 

scan times that are clinically feasible may be attainable.97–99 The development of improved 
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postprocessing techniques that can allow for more efficient interpretation of examinations by 

evaluating the degree of remodelling, plaque composition, the degree of eccentricity and 

degree of enhancement automatically. These tools will allow for increased acceptance of 

IVW techniques into clinical practice by simplifying the evaluation and interpretation 

processes. Beyond diagnostic evaluation, IVW can also be used to assess response to 

treatments. Evolution of plaque volume and vulnerable plaque characteristics, as well as 

evolution of changes related to inflammatory vasculopathy in the setting of therapy can 

guide the clinical team as to when aggressive therapy can be stopped or if the disease is 

refractory to the current therapy. Such techniques hold much promise and will likely play a 

prominent role in the future everyday practice of clinicians diagnosing and caring for 

patients with intracranial vasculopathies.
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Figure 1. 
Sixty-two-year-old male with history of hypertension, diabetes mellitus and coronary artery 

disease presents with right-sided weakness and dysphasia. On axial DWI (A), there were 

multiple foci of diffusion abnormality corresponding to acute ischemic infarcts. On Time of 

Flight MRA (B), there is focal high-grade stenosis of the left M1 MCA (white arrow). On 

sagittal T2-weighted IVW (C), there is eccentric wall thickening with heterogeneous T2 

signal and outer wall remodelling (short white arrow). There is mild T1 hyperintensity 

within the lesion (thick arrow) on T1 pre-contrast IVW (D). The lesion shows incomplete 

enhancement (thick white arrow) on T1 postcontrast IVW (E). Clinical and imaging findings 

are compatible with intracranial atherosclerotic disease. DWI, diffusion weighted imaging; 

IVW, intracranial vessel wall; MCA, middle cerebral artery; MRA, MR angiography.
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Figure 2. 
Twenty-nine-year-old female with varicella vasculitis (A–D) and 36-year-old female with 

RCVS. 3D TOF MRA coronal volume rendered reformat (A) shows multifocal luminal 

stenosis and irregularity (white arrows), corresponding to areas of circumferential wall 

thickening (black arrowhead) on T2 IVW (B). There is corresponding wall thickening (thick 

white arrows) on T1 pre-contrast (C) with circumferential enhancement (long arrows) on 

postcontrast IVW (D). On 3D TOF MRA coronal volume rendered reformat (E), there is 

multifocal luminal stenosis and irregularity (white arrows) in a beaded pattern involving 

multiple arterial segments. On sagittal T2 (F) and T1 pre-contrast IVW (G), there is minimal 

vessel wall thickening (arrowhead on F and short arrow on G). There is no evidence of 

appreciable enhancement (long white arrow) on sagittal T1 postcontrast IVW (H). On 3D 

TOF MRA coronal volume rendered reformat performed 3 weeks later (I), there is marked 

improvement in luminal stenoses. 3D TOF MRA, three-dimensional time-of-flight MR 

angiography; RCVS, reversible cerebral vasoconstriction syndrome; T2 IVW, T2-weighted 

intracranial vessel wall.
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Figure 3. 
Twenty-one-year-old female with history of Moyamoya disease on the left who had 

undergone previous direct left external carotid artery to middle cerebral artery bypass. On 

3D TOF MRA coronal volume rendered reformat (A), there is occlusion of the left carotid 

terminus (white arrow). Bypass can be seen (arrowheads) with filling of left M3 and M4 

branches. On axial 3D T2 VISTA (B), there is diminution of the left carotid terminus (short 

arrow) without evidence of outer wall remodeling. This is also seen on axial PD VISTA pre-

contrast sequence (arrowhead) (C). On sagittal reformatted postcontrast PD VISTA (D), 

there is circumferential vessel wall enhancement (short white arrows) confirmed (short white 

arrow) on sagittal T1 postcontrast IVW (E). 3D TOF MRA, three-dimensional time-of-flight 

MR angiography.
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Figure 4. 
Fifty-six -year-old female presenting with thunderclap headache. Axial non-contrast CT 

head (A) shows diffuse basal cistern subarachnoid hemorrhage. On 3D TOF MRA (B and 

E), there is a left supraclinoid ICA aneurysm (B short white arrow) and basilar tip aneurysm 

(E long white arrow). There is no corresponding enhancement of the left supraclinoid 

aneurysm (short white arrows) on T1 pre (C) and postcontrast (D) IVW, while the basilar tip 

aneurysm (arrowhead on F and thick arrow on G) shows circumferential wall enhancement 

when comparing T1 pre (F) and postcontrast (G) IVW. The basilar tip aneurysm was 

emergently treated endovascularly (curved arrow) as seen on coronal T1 postcontrast IVW 

(H). 3D TOF MRA, three-dimensional time-of-flight MR angiography; IVW, intracranial 

vessel wall.
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Table 1

IVW MRI sequences and parameters at 3.0 T

Parameters 2D T2W 2D T1W
3D PD
VISTA

3D T2
VISTA

Echo time (ms) 72 10 38 90

Repetition time (ms) 3550 1000 2000 3000

Field of view (cm) 18×18 18×15.8 18×16.5 25×19

Matrix 448×448 448×448 448×413 500×380

Slice thickness (mm) 1 2 0.4 0.5

In-plane resolution (mm) 0.4×0.4 0.4×0.35 0.4×0.4 0.5×0.5

Number of averages 3 4 1 2

TSE factor 22 18 60 60

Startup echoes – – 4 4

Acquisition time per slice (seconds) 10.4 45 – –

Oversampling factor – – 1.2 1.2

# of slices 26 4–10 90 70

Bandwidth 223 207 361.7 164.5

Time – – 8:30 8:51

2D T1W, two-dimensional T1-weighted; 2D T2W, two-dimensional T2-weighted; TSE, turbo spin-echo.
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