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Abstract

The Protein Ontology (PRO) defines protein classes and their interrelationships from the family to 

the protein form (proteoform) level within and across species. One of the unique contributions of 

PRO is its representation of post-translationally modified (PTM) proteoforms. However, progress 

in adding PTM proteoform classes to PRO has been relatively slow due to the extensive manual 

curation effort required. Here we report an automated pipeline for creation of PTM proteoform 

classes that leverages two phosphorylation-focused text mining tools (RLIMS-P, which detects 

mentions of kinases, substrates, and phosphorylation sites, and eFIP, which detects 

phosphorylation-dependent protein-protein interactions (PPIs)) and our integrated PTM database, 
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iPTMnet. By applying this pipeline, we obtained a set of ~820 substrate-site pairs that are suitable 

for automated PRO term generation with literature-based evidence attribution. Inclusion of these 

terms in PRO will increase PRO coverage of species-specific PTM proteoforms by 50%. Many of 

these new proteoforms also have associated kinase and/or PPI information. Finally, we show a 

phosphorylation network for the human and mouse peptidyl-prolyl cis-trans isomerase (PIN1/

Pin1) derived from our dataset that demonstrates the biological complexity of the information we 

have extracted. Our approach addresses scalability in PRO curation and will be further expanded 

to advance PRO representation of phosphorylated proteoforms.
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Protein Ontology (PRO); text mining; post-translational modification; proteoform; 
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I. Introduction

The Protein Ontology (PRO) (proconsortium.org) [1] is an OBO Foundry ontology that 

defines classes of proteins and protein complexes and indicates how these classes interrelate. 

Classes defined in PRO can be either organism-independent or organism-specific and range 

in granularity from more general protein family classes to more specific proteoform classes 

(which account for the precise molecular form of a protein, including specification of 

sequence or splice variant and any post-translational modification [PTM]) [2]. It has long 

been appreciated that PTMs play a pivotal role in protein function, regulating activity, 

localization, and protein-protein interactions (PPIs), and that disruptions in PTM can lead to 

disease [3]. Recent advances in proteomics have revealed that the majority of human 

proteins undergo PTM, often on many sites [3]. The ability of PRO to represent the full 

variety of PTM proteoforms for each gene product, including proteoforms with 

combinations of multiple modifications, makes it an ideal resource for understanding PTM 

cross-talk and PTM-regulated functions. Thus, a major focus of the PRO curation effort is to 

represent and annotate PTM proteoforms and identify corresponding proteoforms across 

species (ortho-proteoforms).

There are currently three curation pipelines for creation of proteoform classes in PRO: (1) 

bulk import of data from other projects that characterize PTM proteoforms, including 

Reactome [4] and the Consortium for Top-Down Proteomics [5]; (2) requests for individual 

terms needed for Gene Ontology annotation in model organism databases (e.g, Mouse 

Genome Database [6]) or for semantic tagging (e.g., Alzforum [7]); and (3) in-house 

literature-based curation using a text mining assisted workflow [8]. The need for extensive 

manual review by domain experts has proved to be a major bottleneck in PRO curation. 

Moreover, coverage of PTM proteoforms in PRO reflects the organisms and pathways of 

interest to individual users. PRO presently contains ~2,550 PTM proteoform classes, 

including 1,700 organism-specific terms and 850 organism-independent parent classes. Of 

the organism-specific terms, about half were created via bulk data import while the 

remainder were created on an individual basis.
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We have previously used two PTM-focused text mining tools to assist with manual curation 

of PTM proteoforms. The first tool, RLIMS-P [9] detects mentions of kinase, substrate, and 

phosphorylation site in free text; the second, eFIP [10], detects causal relationships between 

phosphorylation and PPIs (e.g., the binding between Bad pSer-136 and 14-3-3 in the 

sentence: Akt phosphorylates Bad at Ser136 and promotes the association of Bad with 
14-3-3. PMID: 17342096). Although these tools have considerably speeded up expert 

curation by pinpointing relevant information in the literature, they have an untapped 

potential in further automation of the curation process.

Concurrent with our text mining work, we have developed iPTMnet, an integrated resource 

for PTM network analysis (http://research.bioinformatics.udel.edu/iptmnet/; [11]. iPTMnet 

integrates text mining results from RLIMS-P and eFIP that have been automatically 

normalized (i.e., the proteins detected in text have been mapped to their corresponding 

UniProtKB identifiers) with data from multiple high-quality PTM resources (e.g., 

PhosphoSitePlus [3] and PhosphoGrid [12]), covering organisms from human to yeast.

Here we describe an automated workflow for creation of PTM proteoforms in PRO that 

takes advantage of the information we have integrated in the iPTMnet database. Key 

components of the workflow include i) full scale PubMed text mining using RLIMS-P/eFIP; 

ii) automatic normalization of protein entities in the text mining output; iii) validation of the 

text mining results by comparing to information in expert curated PTM resources; and iv) 

automatic generation of PRO terms, including logical and textual definitions, based on a 

standardized template. In our first application of this approach, we identified ~820 

proteoforms with a single phosphorylation site that can be included in PRO. For many of 

these terms, we also automatically extracted kinase and/or interactant information, which 

can be used to annotate the terms. This work reflects a significant advance in our efforts to 

represent the landscape of PTM proteoforms in PRO.

II. Approach

A. Full Scale Text Mining and Entity Normalization

We have developed the text mining tools RLIMS-P [9] and eFIP [10] to mine kinase-

substrate-site relationships and phosphorylation-dependent PPIs, respectively, from free text. 

The rule-based RLIMS-P has achieved F-scores (harmonic mean between precision and 

recall [13]) of 0.91, 0.92, and 0.95 for kinases, substrates, and sites, respectively, based on a 

corpus of PubMed abstracts [9]. It has been evaluated in the BioCreative Interactive Text 

Mining Task for usability and utility [14] and is being adopted for computer-assisted 

literature-based curation by several databases. eFIP employs RLIMS-P to detect mentions of 

phosphorylation and then examines one or two consecutive sentences for any mention of 

proteins that interact with the substrate. The textual position of this information relative to 

phosphorylation is then used to assess whether the phosphorylation event has a direct effect 

(positive or negative) on the interaction. In an evaluation on 100 sections of full-length 

articles from the PMC Open Access collection, eFIP achieved an F-score of 84% [10]. 

Results of full-scale RLIMS-P/eFIP mining of PubMed abstracts and PubMed Central Open 

Access (PMC) articles are stored in a local database. The stored information includes 

entities, relations, and evidence attribution.
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To normalize the gene/protein names in the text mining results to UniProtKB accession 

numbers (ACs), we use PubTator [15] and the UniProt ID mapping service [16]. PubTator is 

a web interface that provides RESTful APIs to retrieve gene normalization results generated 

by GenNorm [17]. For each PMID, a list of gene mentions and their normalized Entrez IDs 

is retrieved. The Entrez IDs are then mapped to UniProtKB ACs using mapping information 

retrieved from the UniProt website. Any Entrez IDs that cannot be mapped to a UniProtKB 

AC are discarded. To improve data quality, we perform two integrity checks on the 

normalized results: (1) for substrates, we confirm that the mapped protein sequence has the 

correct residue at the position that is reported to be phosphorylated (e.g, if the 

phosphorylation site is Ser-100, we confirm that position 100 of the mapped sequence is a 

serine); and (2) for kinases, we check whether the corresponding UniProtKB record contains 

the keyword “kinase.”

B. Integration of Text Mining Results with PTM Database Information: iPTMnet

iPTMnet (Fig. 1) integrates normalized results of full-scale text mining from RLIMS-P and 

eFIP with PTM data from several expert curated PTM resources for visualization and 

analysis of PTM networks. Underlying iPTMnet is an Oracle (11g release 2) database. The 

text mining results that are consumed by iPTMnet are the normalized RLIMS-P results from 

all PubMed abstracts and the normalized eFIP results from all PubMed abstracts and PMC 

full-length articles. For data integration, gene/protein names from the source databases, 

which are represented in a variety of formats, are mapped to UniProtKB ACs. We used the 

iPTMnet database as the source of PTM information for PRO proteoform term curation (see 

below).

C. Selection of PTM Proteoforms for Automated PRO Curation

To select PTM proteoforms for PRO curation (Fig. 1) we:

• Retrieved from the iPTMnet database all substrate-site pairs that were captured 

by RLIMS-P and at least one PTM database based on the same PMID(s) (Fig. 1, 

Step 1a). We excluded PMIDs where multiple phosphorylation sites were 

detected by RLIMS-P or by the corroborating database(s) because of the 

difficulty of automatically determining whether a combinatoric PTM proteoform 

(simultaneous phosphorylation on multiple sites) or independent singly 

phosphorylated proteofoms were being described. We also discarded cases with 

conflicts between the text mined and database information (e.g., due to errors in 

automated species assignment).

• Obtained normalized kinase and phosphorylation-dependent interactant 

information from the iPTMnet database for the selected substrate-site pairs (Fig. 

1, Step 1b). After manual validation, this information can potentially be used to 

associate annotation with the PRO terms.

• Excluded PMIDs where the abstract contains language that suggests that PTMs 

other than phosphorylation are described (e.g., ubiquitin* and acetyl*). This 

check reduced the likelihood that the proteoform has other PTMs in addition to 

the single phosphorylation site (Fig 1, Step 2)
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• Excluded cases where the substrate-site pair is already in PRO, either as a singly 

phosphorylated proteoform or as part of a multiply modified form (Fig. 1, Step 

2). In addition, we excluded results that were extracted from PMIDs that were 

already curated by PRO as we reasoned that all proteoforms that are supported 

by those PMIDs are likely to have been identified in the expert curation process.

D. Automated Generation of PRO Stanzas

PRO terms can be created for PTM proteoforms that pass all data integrity checks using a 

template (Fig. 1 Step 3). If the substrate is mapped to a specific isoform of a protein, the 

name and text definition will additionally include the isoform number and the parent will be 

the organism-specific isoform. Associated kinase and/or PTM-dependent interactant 

information (i.e., eFIP results) will be prioritized for expert review. Kinase information will 

be added to the stanza comment line and interactant information will be added to the PRO 

Annotation File (PAF) following standard PRO curation procedures (Fig 1, Step 4)1.

III. Results and discussion

A. Identification of PTM Proteoforms for Automated PRO Curation

From full-scale text mining of 25 million PubMed abstracts with RLIMS-P, we identified 

~185,000 papers with kinase, substrate, and/or site information. After normalization of 

protein entities, we obtained ~5,300 normalized substrate-site pairs and ~1,550 kinase-

substrate-site triples. Mining of PubMed abstracts and PMC full-length articles with eFIP 

identified ~8,500 articles with PTM-dependent PPI information; after normalization, we 

obtained ~770 substrate-site-interactant triples.

Of the ~5,300 substrate-site pairs from RLIMS-P, 1,033 were curated by another resource in 

the iPTMnet database based on the same PMID(s). Of these, we eliminated 94 because there 

was a conflict between the text mining results and the curated resource usually related to 

species assignment, 84 because the abstracts they were extracted from mentioned other 

PTMs and 78 because the site and/or PMID(s) were already in PRO (Note: some substrate-

site pairs were eliminated for more than one of these reasons.) After these filtering steps, we 

obtained 818 substrate-site pairs2 potentially suitable for automated PRO term generation. 

Of these, 731 (89%) have kinase information, including 285 (35%) with kinase information 

from RLIMS-P, and 93 (11%) have PPI information (from eFIP), which can be added to 

PRO as annotation after expert review.

Two curators manually reviewed the full-text articles for 91 substrate-site pairs randomly 

chosen from the list of 818 results. The number of results reviewed was determined by the 

time available to the curators. In 83 cases (91%), the evidence supported the existence of the 

singly-phosphorylated PTM proteoform identified by our automated approach. Of the 

remaining eight pairs, there was one case where the species was assigned incorrectly by all 

sources (text-mining and two databases) and seven cases where the article suggested that the 

proteoform had multiple phosphorylation sites, even though only a single site was captured 

1PRO curation guidelines can be found on the PRO website (http://proconsortium.org).
2List available at: http://www.proteininformationresource.org/pro/iptmnet2pro.html
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by all sources. In one of the seven cases, the phosphorylation required prior phosphorylation 

on another site; thus, the singly phosphorylated form we proposed is unlikely to exist. Using 

the RLIMS-P web interface [9], we performed a keyword search for “priming”, a term 

commonly used to describe sequential phosphorylation events, and found ~600 results (only 

0.3% of total RLIMS-P results); also, our pipeline will filter out any of these cases where 

multiple sites are mentioned in the abstract. Therefore, we think that this type of error will 

be relatively rare. In the other six cases, the existence of the singly phosphorylated form was 

not ruled out; moreover, it is acceptable to create a PRO term that names only a subset of the 

modification sites in a multiply modified proteoform because, conformant to the Open 

World Assumption [18], PRO does not make any assertions about sites that are not explicitly 

named. PRO only asserts what is known based on the experimental results. Because the 

existence of other site modifications cannot be excluded, PRO definitions imply only that at 

least the explicit modifications have to be present. Thus, our evaluation indicates that our 

dataset is highly enriched for well-supported singly phosphorylated forms while containing 

very few errors (2/91 (2%)).

B. Use Case: PIN1 Phosphorylation Network

Fig. 2 shows a network centered on the peptidyl-prolyl cis-trans isomerase PIN1/Pin1 

(human/mouse) that illustrates the potential richness of the PTM information in our dataset 

and the advantages of using an ontological representation of PTM proteoforms. PIN1/Pin1 

recognizes a phosphorylated motif in its binding partners and induces a conformational 

change [19]. Currently, the information in PRO about PIN1/Pin1 is limited—no PTM 

proteoforms of PIN1/Pin1 are described and only one case of PIN1 binding to a 

phosphoprotein (CCNE1 pSer-384, PR:000025637) is annotated. In our dataset, we found 

two human PTM proteoforms (NFC1 pSer-345 and BAX pThr-167) that bind to PIN1 in a 

phospho-dependent manner. Several kinases for these proteoforms were identified, including 

MAPK1, which phosphorylates both. In turn, we found three PTM proteoforms of PIN1 

(pSer-16, pSer-71, and pSer-138), phosphorylated by multiple kinases. Interestingly, we also 

found a Ser-16 phosphorylated proteoform of mouse Pin 1. The human and mouse pSer-16 

proteoforms can be connected at the ortho-proteoform level in the PRO hierarchy (Fig 2, 

grey node).

C. Conclusions and Future Work

Here we describe a workflow for automatic generation of PRO terms for PTM proteoforms 

based on text mining results with direct literature evidence attribution. When developing an 

automated curation pipeline, it is important to minimize inclusion of erroneous information; 

thus, we used stringent filtering criteria at the cost of discarding a great majority (~85%) of 

our normalized substrate-site pairs. Even with strict filters in place, we will be able to create 

~820 new organism-specific PRO terms for PTM proteoforms, a 50% increase over the 

number of species specific PTM forms currently curated by PRO. As the use case 

demonstrates, this approach can provide rich information on PTM sites, PTM enzymes, 

biological consequences of PTM (i.e. PTM-dependent PPI), and orthologous proteoforms 

across species. At the same time, the automatic detection and normalization of kinase and 

PPI information will greatly reduce the manual effort required for annotation of the 

automatically created PRO terms.
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In this study, we focused exclusively on data supported by text mining results; however, our 

approach could be applied to substrate-site pairs that are reported in any two resources in the 

iPTMnet database. We also plan to identify proteoform candidates from full-text RLIMS-P 

results. It has been observed that ~90% of phosphorylation sites are mentioned only in the 

body of an article (not the abstract) [9,20] so full-text mining should greatly increase our 

yield of proteoforms as well as improve data integrity. Finally, we are considering 

approaches for automated detection of proteoforms with multiple PTMs. It is often very 

challenging for a curator, let alone an automated system, to determine whether experimental 

evidence supports the existence of a proteoform with multiple PTMs as opposed to a 

population of proteins with individual modifications. One possibility would be to make use 

of PTM proteomic data. Bottom-up proteomic data is usually not useful for detecting PTM 

combinations because the proteins are cleaved into short peptides before identification. If a 

protein has several phosphorylated residues, they will typically be separated across multiple 

peptides, making it impossible determine whether they were orignally present on the same 

protein molecule. However, if two phosphorylation sites on a protein are close enough, they 

could potentially be found on the same peptide. In these cases, proteomic data could be used 

as evidence in support of the multiply modified proteoform.

In conclusion, we have implemented an automated workflow using text mining results and 

curated database information to create new PRO terms for PTM proteoforms. This approach, 

which can achieve large gains in curation efficiency without compromising quality, can 

significantly expand the ontological representation of PTM.
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Fig. 1. 
Workflow for automated generation of PRO terms for PTM proteoforms. Substrate-site pairs 

identified by RLIMS-P and supported by at least one other resource are retrieved from the 

iPTMnet database (1a) along with any pertinent kinase or PPI information (1b). Additional 

filtering to remove cases that are already in PRO or are likely to be part of multiply modified 

proteoforms is performed (2). PRO stanzas are created based on a template (3) and 

annotation (e.g. PPIs) is added to the PRO Annotation File (PAF; 4).

Ross et al. Page 9

CEUR Workshop Proc. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Network of PIN1 kinases, PTM proteoforms, and phosphorylated interacting proteins from 

human and mouse.
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