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Abstract

The role of spatial arrangements on the spread and management strategies of a cholera epidemic is 

investigated. We consider the effect of human and pathogen movement on optimal vaccination 

strategies. A metapopulation model is used, incorporating a susceptible–infected–recovered 

system of differential equations coupled with an equation modelling the concentration of Vibrio 
cholerae in an aquatic reservoir. The model compared spatial arrangements and varying scenarios 

to draw conclusions on how to effectively manage outbreaks. The work is motivated by the 2010 

cholera outbreak in Haiti. Results give guidance for vaccination strategies in response to an 

outbreak.
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1. Introduction

Questions have arisen regarding the importance of spatial features for disease spread and 

how movement patterns affect management strategies. Recently, population movement and 

water pathways impacted the spread of cholera through the departments of Haiti [13, 24, 

31]. There is a need to find intervention strategies that could help control the disease while 

also optimizing the use of available resources. In addition, this strategy needs to consider the 

patterns of mobility of the population. The cholera situation in Haiti raised the interesting 

question: How do metapopulation spatial arrangements affect disease management strategy?

Cholera is an infectious disease caused by the infection of the intestine with the aquatic 

bacterium, Vibrio cholerae. In recent years, there have been several cholera epidemics 

throughout the world. The disease is also endemic in several areas of Asia and Africa. There 
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are an estimated 3–5 million cholera cases and 100,000–120,000 deaths due to cholera every 

year [35]. The disease causes rapid dehydration and electrolyte imbalances. Without prompt 

treatment, a person with cholera may die of dehydration within a few hours of infection [11].

Cholera is a waterborne disease with multiple modes of infection, both direct/fast and 

indirect/slow transmission. Waterborne diseases are characterized by the capability for the 

disease to persist outside human hosts and transmission through aquatic sources is possible 

[35]. Cholera can be transmitted from an aquatic reservoir to human hosts through the 

ingestion of contaminated food or water. Infected individuals shed pathogen and new 

infections arise both from indirect exposure to contaminated water and from person-to-

person transmission [29].

How the pathogen spreads to other communities can greatly affect disease dynamics. 

Previous work found evidence that the aquatic reservoir played an important role in the 

transmission of the disease [6, 7, 11, 31]. Pathogen movement through the population and 

environment have been suggested to influence the spatial spread of the disease in Haiti.

Tien and Earn [29] introduced a model using ordinary differential equations (ODEs) for 

multiple transmission pathways of a waterborne pathogen. They extended the traditional 

susceptible–infected–recovered compartmental model framework by adding a water 

compartment, tracking pathogen concentration in an aquatic reservoir. They introduced two 

modes of transmission, both direct and indirect transmission, allowing for infection through 

the environment as well as the classical person-to-person contact. Tuite et al. [31] applied 

the model to the 2010 cholera outbreak in Haiti. They investigated the spread of cholera in 

Haiti due to water contamination and human mobility by a gravity model, where the 

pathogen level was modelled as a function of both distance between communities as well as 

community size. Their model incorporated both fast and slow transmission but ignored water 

movement.

More recently, Eisenberg et al. [14] and Tien et al. [30] extended the model of Tien and Earn 

to incorporate a multi-patch structure with both pathogen and human movement. Global 

dynamics as determined by the domain ℛ0 are established in Eisenberg et al. Tien et al. give 

analytical formulas for the domain ℛ0. In particular, their results illustrate how network 

structure and patch characteristics combine to determine the ability of disease to invade the 

network. Tien et al. show that to the lowest order, the domain ℛ0 involves a weighted 

average of patch transmissibilities, with weights corresponding to the rooted spanning trees 

of the network (‘network risk’) [30]. This allows identification of communities that have the 

greatest contribution to the domain ℛ0.

More broadly, the use of multi-patch metapopulation models is an effective way to model 

the spread of a disease through a system of patches. There has been a large body of work in 

ecology using this modelling strategy [17, 22]. The use of metapopulation modelling has 

become popular in infectious disease modelling. One illustration is from Castillo-Chavez 

and Yakubu [8], who built an epidemic model for the dispersal of susceptible and infected 

individuals among patches in order to answer questions about the role of population 

dynamics on disease dynamics. Arino and his collaborators have also done work on 
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epidemic models with spatial dynamics. Arino and van den Driessche [2] introduced a multi-

city epidemic model that incorporated travel between the cities using directed graphs. Later 

work investigated multi-species models within a patchy environment with movement [4]. 

For a survey of other epidemic metapopulation models, see [1, 3, 19].

There are several intervention strategies to limit cholera outbreaks. Neilan et al. [23] used 

optimal control theory to study the effect of three control efforts on cholera outbreaks in a 

system of ODEs: vaccination, sanitation and the provision of clean water. Although 

improved water and sanitation infrastructure would be invaluable in preventing the spread of 

cholera, in many developing countries, this is not a viable short-term option. One short-term 

intervention strategy is the use of vaccinations. Vaccinations are currently being used as an 

intervention strategy to control cholera, specifically in Haiti [20]. In work by Chao et al. [9], 

an individual-based stochastic model for cholera transmission was analysed, comparing 

preemptive to responsive vaccination strategies.

V. cholerae has over 200 serotypes, however, only two cause epidemic disease, V. cholerae 
O1 and O139. There are currently two types of oral cholera vaccines available: Dukoral 

(WC-rBS) and the identical vaccines, Shanchol and mORCVAX. There are several 

differences between the two types. Dukoral consists of killed whole-cell Vibrio cholerae O1 

while Shanchol (or mORCVAX) is a bivalent vaccine protecting against V. cholerae O1 and 

O139 [33]. Both are administered in two doses where Dukoral is administered for ages ≥ 2 

at least a week apart, while Shanchol is for ages ≥ 1 administered 14 days apart. In addition, 

Dukoral requires a buffer or water for administration. Also, the cost of production of 

Shanchol is less than Dukoral, with a total cost of production and distribution ranging from 

$3 to 4 U.S. dollars per dose, depending on region demography [33].

Both vaccines offer significant protection against cholera during the first two years after 

vaccination. There have been significant studies in cholera vaccine efficacy for each type of 

vaccine in different areas of the world (see [10, 26, 28, 36]). The protective efficacy, found 

in these and other studies range from 86% to 66 % at 4–6 months, from 62% to 45 %, at one 

year, and from 77% to 58 % at 2 years after vaccination [33]. For more detailed information 

about oral cholera vaccines, see [27, 34].

To study the use of vaccinations to manage this disease effectively, we use optimal control 

together with models that incorporate varying spatial arrangements. We investigate how the 

spatial structure of patches with their corresponding connectivity can affect intervention 

strategies for disease outbreaks. We use an extension of the Tien and Earn model [29] to 

answer questions of where control efforts should be focused depending on spatial structure 

and patch dynamics. We start an investigation of certain spatial features and intervention 

strategies in epidemic models, motivated by the cholera outbreak in Haiti.

The model includes both population and pathogen movement. Incorporating water 

movement along hydrological connections is one way to model the spread of pathogen in 

aquatic reservoirs. By including both movement pathways, we decide how to apply control 

measures for a system of interconnected communities. We also investigate the importance of 

spatial connectivity of communities. We compare a linear spatial arrangement of connected 
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patches with a hub arrangement with connecting smaller patches. The idea of a hub allows 

the model to account for patches of larger populations with higher connectivity to 

surrounding patches. The use of data [31] associated with the recent cholera outbreak in 

Haiti will help to analyze the effectiveness of our model. We apply a single control, 

vaccination, as an intervention and determine how the optimal control strategies in response 

to an outbreak depend on chosen spatial arrangements.

After a brief background on the Tien and Earn model [29], we introduce and describe our 

metapopulation model, as well as the parameters, for our problem in Section 2. In Section 3, 

we explain the role of connectivity and the associated spatial arrangements. The model is 

analysed by computing the basic reproduction number in Section 4. We formulate the 

optimal control problem and corresponding state system of equations in Section 5. We also 

prove the existence and uniqueness of the optimal control. In Section 6, we use numerical 

simulations to illustrate solutions to the problem for varying scenarios. The paper ends with 

a conclusion section.

2. Description of model

We extend the model of Tien and Earn [29] to include spatial movement among patches in a 

metapopulation setting. Each patch has dynamics modelled by a system of four ODEs 

(SIWR). The model incorporates both population movement and the hydrological links 

between communities that spread the disease. We also include a death due to disease term. 

The model accounts for both direct person-to-person transmission and indirect transmission 

from the environment to person. Infected individuals contribute the pathogen to an aquatic 

reservoir. The pathogen can then infect individuals within that community or could be 

transported to surrounding communities, infecting their aquatic reservoirs, which could lead 

to further transmission of the disease.

We investigate the cholera model with scaled pathogen concentration. The pathogen levels 

contributed to the water compartment from the infected population is known to be highly 

variable, depending on the individual. Due to the high variability in the ‘shedding’ rate, α, 

we scale the water compartment to eliminate the term from our model, using the scaling 

factor ξ/αN. We consider the system of equations:

(1)

(2)
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(3)

(4)

subject to initial conditions:

(5)

We let Mi,j and Hi,j be the connectivity of human and pathogen movement from patch j to 

patch i, respectively. We assume that the travel rate of individuals and pathogen from patch j 
to patch i is nonnegative, Mi,j ≥ 0, Hi,j ≥ 0, respectively. The parameters μ and ξ are positive, 

while the parameters γ and δ are nonnegative. We also assume that the transmission rates, βI 

and βW, are nonnegative. The compartments and parameters of the model with units are 

described in Tables 1 and 2, respectively.

Assume that the patches of the system are located along a river and that the patches are 

positioned such that one patch is located at the uppermost part of the river and another at the 

farthest downstream. Just as pathogen moves among the patches through the hydrological 

connections, there is a proportion of the pathogen that leaves the system at the bottom of the 

river and a smaller proportion leaving at the top. The patches located in the positions at the 

top and bottom of the river will be referred to as the source and terminal patches, 

respectively.

In order to appropriately model the pathogen movement in water through the 

metapopulation, we incorporate boundary conditions to account for pathogen leaving the 

system. We assume that the outbreak begins within the network; thus, there is no import of 

pathogen, after the initial time, from outside the system. The coefficient ϕi appears in 

boundary patches, defined as follows:

(6)

where ρu and ρd are the coefficients for pathogen movement outside of the system in the 

upstream and downstream directions, respectively.
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3. Role of connectivity and metapopulations

We consider two types of spatial arrangements, each representing interconnected 

populations along with their corresponding water sources. The arrangements are weighted 

directional graphs involving both water and population movement. We specifically 

investigate spatial arrangements by varying their connectivities, rates of movement, 

parameters, and population sizes. The connectivity patterns of linear and hub arrangements 

can be visually represented in Figure 1.

3.1. Linear spatial arrangement

Our first scenario is a sequence of patches along a river, where all travel is between nearest 

neighbours only. The connectivity matrix for population movement in the n-patch linear 

spatial arrangement is given by

(7)

We assume that individuals move bidirectionally, moving both to and from a patch, at 

identical rates, thus the coefficients are equal in both directions, Mi,j = Mj,i for all i,j.

The connectivity matrix for water movement has an identical form:

(8)

We assume that pathogen moves in both the up and downstream directions, however, due to 

the directional flow of the river, the movement rate downstream will be larger than upstream. 

This natural occurrence is incorporated into the model through the coefficients of the 

connectivity matrix. Thus, Hi,j (downstream) > Hj,i (upstream) for i > j.

3.2. Hub spatial arrangement

We compare the linear spatial arrangement with a scenario which incorporates a hub patch, 

representing a large, populous area with higher human movement to and from each of the 

other patches in the system. For example, assuming Patch 1 is the hub, the coefficients M1j 

and Mi1 for i, j = 1, …, n, represent movement to and from the hub patch, with the following 

inequality conditions, M1j > Mi,j for all i, j ≠1.
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We still have the patches located along a linear river arrangement and assume movement of 

the population in non-hub patches is to the hub and its nearest neighbours. The connectivity 

matrix for population movement in an n-patch hub arrangement, with Patch 1 as hub is given 

by

(9)

We consider the same pattern of pathogen movement in water as the linear spatial 

arrangement, thus the same connectivity matrix (Equation (8)).

4. Basic reproduction number

We begin by finding the basic reproduction number for our model. We use the next-

generation approach, introduced by Diekmann and Heesterbeek [12] and Watmough and van 

den Driessche [32]. We arrange our system of equations into the form x̄′= ℱ − , with ℱ 
containing new infected terms and  containing transition terms, with the order of 

components being (I1, …, In, W1, …, Wn, S1, …, Sn, R1, …, Rn). The equations of our 

system that correspond to infected compartments are the following. For i = 1, …, n

A unique disease-free equilibrium (DFE) exists since removing the infected population and 

pathogen leaves a fully susceptible population that will remain disease free. The DFE is 

found by setting Ii = Wi = 0 for i = 1, …, n, and calculating the null vector of the Laplacian 

of the human movement matrix, M:

The DFE can be written as
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where , and ui, referred to as the network risk [30], is the component of the 

null vector such that . By taking the Jacobian of the submatrix of ℱ with respect 

to each of the infected and water compartments and then evaluating at the DFE, we get the 

following 2n × 2n matrix, F:

where  and , both n × n matrices. Similarly, taking the 

Jacobian of the submatrix of  with respect to the infected and water compartments and 

evaluating at the DFE, we get the 2n × 2n matrix, V:

where V21 = diag(ξi), an n × n matrix,

and

We use an approach by Arino [1], incorporating block matrices to compute the basic 

reproduction number. The matrices V11 and V22 are both non-positive on the off-diagonal 

and satisfy the definition of non-singular M-Matrices, meaning that they can be written in 

the form, A = sI−B, where s > 0 and B ≥ 0, and s > ρ(B), the spectral radius of B. Since both 
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matrices, V11 and V22, are non-singular M-Matrices, they have positive inverses and are 

both irreducible [5]. Thus, we have

We form the next-generation matrix, FV−1:

The spectral radius for FV−1 is the same as the spectral radius of the matrix in the upper left 

block of FV−1,

which is dependent on spatial structure and the corresponding connectivity matrices, M and 

H. In the case of a single patch, ℛ0 simplifies to the following:

From [32], we obtain the stability result: When ℛ0 < 1, the disease-free equilibrium is 

locally asymptotically stable but if ℛ0 > 1, the equilibrium will be unstable.

5. Optimal control formulation and analysis

To investigate how the control strategy depends on the spatial arrangement of patches, we 

include vaccination in the system (1)–(4). The term, vi(t), represents the rate of vaccine 

effort transferring susceptibles directly to the recovered class within patch i. Those in the 

recovered class are now considered immune or ‘removed.’ The term, vi(t) = ησi(t), is a 

combined coefficient where η represents the efficacy of the vaccination distribution and σi is 

the rate of vaccine distribution. We assume that individuals removed from the susceptible 

class have received the complete two-dose vaccine program. When including vaccination 

terms, vi(t), our metapopulation takes the form:

(10)
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(11)

(12)

(13)

with previous initial conditions (5).

We seek to find an optimal vaccination strategy that minimizes the number of infecteds in 

the network while minimizing some nonlinear cost involved with the vaccination program. 

The cost involved with the vaccination strategy includes two terms. We have a nonlinear cost 

associated with vaccination which incorporates the cost of housing distribution centres, 

employing individuals to administer the vaccines, and other large costs for implementing a 

vaccination campaign. The linear part represents the total number of susceptibles vaccinated, 

which includes the cost of vaccination for each individual. See [16] for some justification for 

including such a nonlinearity in the cost with vaccination control.

The objective functional is given by

(14)

over the control set:

The positive constants, Ai, Bi, Ci, are used to weight the relative importance of each of the 

terms in the objective functional. The optimal control problem is stated as follows.

Find v* ∈ V

such that subject to state equations (10)–(13) and initial conditions (5).
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Now that we have formulated the optimal control problem, we can show easily that there 

exists a nonnegative, bounded solution to the initial value problem defined by Equations 

(10)–(13) with initial conditions (5). By a similar approach as [30] and using assumptions on 

the model, we see the system is positively invariant. Thus, the solutions of the system, 

starting with nonnegative initial conditions, stay nonnegative for all t > 0. In proving the 

boundedness of the state system solutions, we follow a similar approach as [14].

5.1. Existence of the optimal control

In order to use Pontryagin’s maximum principle (PMP) [25], the existence of an optimal 

control must be proven.

Theorem 5.1—There exists an optimal control vector,  with 

corresponding states , that minimizes the objective 
functional J(v) defined by Equation (14).

Proof: Since objective functional values are nonnegative, there exists a minimizing sequence 

of controls, , in V such that

The controls in V are uniformly bounded in L∞ and by Friedman [15], there exists v* ∈ V 
such that on a subsequence, for each i,

To pass to the limit in the ODEs, we need a stronger convergence on the states. The state 

sequence corresponding to the sequence of minimizing controls is also uniformly bounded. 

Then, the right-hand sides of the ODE system are uniformly bounded and we obtain 

uniformly bounded derivatives, for all k and i = 1, …, n. Thus, the state solution sequence 

{xk} is equicontinuous, and by the Arzelà–Ascoli Theorem, there exists x* such that

This uniform convergence is needed to get convergence of terms like viSi in our system. By 

passing the limit in the system of differential equations, we can show that x* is the state 

corresponding to the control v*. Using lower semicontinuity of L2 norms with respect to L2 

weak convergence and the convergences above, we have
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Thus, v* is an optimal control.

5.2. Optimality system

Having obtained the existence of an optimal control, we can now apply PMP, forming the 

Hamiltonian, H:

(15)

where the adjoint variables (λj), corresponding to their respective states, attach the right-

hand side of the state equations to the objective functional. Since an optimal solution exists, 

we can obtain the necessary conditions for optimality using Pontryagin’s maximum 

principle.

Theorem 5.2—Given an optimal control vector v* ∈ V, and corresponding states x*, there 
exist adjoint functions satisfying

(16)

(17)

(18)
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(19)

for i = 1, …, n with the following transversality conditions at the final time, T,

(20)

This optimal control is characterized by

(21)

Proof: The differential equations for the adjoint are standard results of Pontryagin’s 

maximum principle [25]. The right-hand sides of the differential equations are easily 

computed by

The final time conditions are the transversality conditions. The adjoint differential equations 

are linear in the adjoint function, and thus a unique adjoint solution exists.

Using standard arguments from ∂H/∂vi, we have a characterization for this optimal control 

(Equation (21)). Also note,  confirming that our optimal control 

minimizes the Hamiltonian.

The optimality system for our problem consists of the state equations (10)–(13), the adjoint 

equations (16)–(19), and the control characterization (Equation (21)).

6. Numerical simulations

The stability and control analysis were completed for any finite number of patches. For 

numerical purposes, we consider a five patch network of varying connectivities. We will 

consider linear and hub arrangements. Initially, we assume identical patch dynamics. We 

later investigate the role of ‘hot spots’ (HSs), or patches with higher infectivity.

The forward–backward iterative technique [21] was used to solve the optimality system, 

which consists of Equations (10)–(13), (16)–(19), and (21). To solve the ODE systems, we 

use a fourth-order Runge–Kutta method.
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6.1. Linear spatial arrangement

We first investigate disease dynamics and optimal vaccination strategies within a system of 

patches with a linear spatial arrangement, illustrated in Figure 1 and described in Section 

3.1. The parameter values chosen are found in Table 3. Parameter values were chosen from 

the work of Tuite et al. [31] based on the outbreak in Haiti. The maximum vaccination rate 

was chosen to resemble the Partners in Health pilot vaccination campaign in Bocozelle, 

Haiti [18]. The model is subject to initial conditions that depend on the outbreak patch. The 

weight coefficients in J were chosen to represent approximate costs of implementing a 

vaccination program in Haiti.

We assume that the values of the non-zero elements of the movement adjacency matrix, Mi,j, 

are identical and equal to one. The value for the non-zero downstream connectivity 

movements, Hi,j where i > j, is equal to one, while for the non-zero upstream connectivity 

movements, Hi,j for j > i, was chosen to be one-tenth the rate of the downstream movement. 

This is due to a stronger movement of pathogen downstream than upstream, which is 

consistent with the direction of river flow.

For all simulations, the outbreak patch begins with 9700 susceptible individuals and 300 

infected. This was chosen to simulate an epidemic, where a significant number of infected 

would need to be present in a community before a large-scale intervention strategy would be 

implemented. We assume the same value of 300 for the scaled pathogen concentration, W0, 

to match the number of infecteds in the outbreak patch. To ensure numerical convergence of 

the optimal control, we require trace amounts of pathogen to be present in all patches. This 

may reflect a more biologically realistic scenario, as an epidemic with 300 individuals would 

likely have spread at least small amounts of pathogen to the other water compartments. We 

took the non-outbreak patches to have small, decreasing levels of pathogen as we move 

away from the outbreak patch, that is, for an outbreak in Patch 1, W0 = [300, 1, 0.5, 0.1, 

0.05]. We assume that each non-outbreak patch begins with 10,000 susceptibles so the 

metapopulation totals 50,000 individuals. We focus our study on outbreaks occurring either 

at the head of the river network or centralized in the metapopulation, that is, in Patch 1 and 

Patch 3, respectively. We also discuss outbreaks at the lower end of the river, in Patch 5.

Without vaccination, the dynamics of the infected population for two outbreak scenarios is 

given in Figure 2. Notice the patterns that form as the disease travels to the nearest 

neighbour throughout the metapopulation. We also see the disease spreading to patches 

downstream at a faster rate than those upstream. Due to each patch having identical 

dynamics, the basic reproduction number for each patch is  for i = 1, …, 5, while 

the basic reproduction number of the network is

The difference in the domain R0 and the patch  values is due to the boundary conditions 

applied to the source and terminal patches removing pathogen from the system.
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We consider specific linear arrangement scenarios to illustrate the dependence of the 

intervention strategy on outbreak location. For each scenario, the total infected with and 

without vaccination is listed in Table 4. The total vaccinated in each patch of the 

metapopulation for each outbreak case is illustrated in Figure 3. We illustrate our results for 

varying outbreak scenarios in Figures 4–6. For convenience, we refer to the vaccination 

effort as the control level and vaccination rate as the number of individuals vaccinated per 

time. We report the control effort, the total number of susceptible individuals vaccinated in 

each patch at each time, and how the control strategy affected the infected population.

For linear arrangements, we can draw several conclusions. It is evident that the optimal 

control strategies depend on where outbreaks occur. Effort is always focused on patches 

neighbouring the outbreak patch, whether a direct or close proximity neighbour (see Figure 

3).

Outbreaks upstream result in higher control efforts in near-neighbouring patches 

downstream to prevent disease invasion at the bottom of the network. The vaccination 

strategy shifts with outbreaks occurring lower in the metapopulation. Due to more 

susceptible patches upstream and the slower rate of pathogen movement upstream than 

down, more effort is spent protecting patches immediately upstream.

In all cases, we saw significant decreases in the number of infecteds in all patches outside of 

the outbreak patch. This is due to the difficulty in controlling a patch by vaccination that is 

already invaded by the disease. Although the total distribution of vaccination is almost 

uniform for each of the outbreak scenarios (see Figure 3(f)), the effects are quite different. 

The vaccination strategy has the greatest effect in lowering the number of infected 

individuals when the outbreak occurs downstream in the river network. It is evident that 

outbreaks occurring in a central location, especially if farther upstream compared to closer 

to the bottom of the patch network, are more complicated to control effectively, as seen in 

Table 4.

6.2. Hub spatial arrangements

We now introduce patches known as hubs, as discussed in Section 3.2. We consider a five-

patch hub spatial arrangement illustrated in Figure 1, although we vary the location of the 

hub patch. We consider scenarios when an outbreak occurs in the hub or in surrounding 

patches. We consider an initial population at equilibrium, with a hub size of 18,000 

individuals and 8000 individuals in surrounding patches. In all cases, we still consider 300 

infected individuals and either 17,700 or 7700 susceptibles, respectively, wherever the 

outbreak occurs. The same initial conditions as the linear arrangement are used for the water 

compartment. We assume that all patches outside the hub are identical (apart from their 

initial conditions).

The basic reproduction numbers of the hub (regardless of location) and surrounding patches 

are
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(22)

The basic reproduction number of the network is determined by the network structure and 

thus depends on hub patch location. The values for three distinct hub locations in network 

are recorded in Table 5. The reproduction number is independent of where the outbreak 

begins.

We illustrate the example when Patch 1, at the top of river, is the hub. Results when hubs are 

located in alternative patches of the metapopulation are also discussed (with some 

illustrations for comparison). Without vaccination, the dynamics of the infected population 

with outbreaks occurring at the top and middle of the metapopulation are given in Figure 7. 

For each outbreak scenario, the total infected with and without vaccination is given in Table 

6. The total vaccinated in each patch is illustrated in Figure 8. Results for when the outbreak 

occurs either in the hub patch or outside the hub in Patch 3 are shown in Figures 9–11. There 

is also discussion when the outbreak occurs in Patch 5.

We draw several conclusions from hub arrangements. First, notice the basic reproduction 

number of the networks. The location of the hub matters as the highest network R0 value 

occurs in the centralized patch.

Regardless of hub location, an outbreak that originates in the hub patch is always hardest to 

contain due to the difficulty in preventing disease spread to surrounding patches through the 

hub. Although the total number of infecteds is smallest when an outbreak is in the hub 

(Table 6), vaccination has the least impact on decreasing the total number of infecteds. 

Similar results occur with hubs located at other locations in the metapopulation.

The importance of the hub is obvious. With an outbreak outside of the hub, a much different 

strategy is implemented. In every non-hub outbreak scenario, the number of vaccinations in 

the hub is significantly higher than in the surrounding patches (see Figures 8 and 12). 

Maximum effort is sustained longest in the hub and drastically decreases the number of 

infecteds in the hub. Due to the high connectivities with the hub, outbreaks will spread to the 

hub quickly and then to the surrounding patches. Using high levels of effort to prevent, or 

lessen, the spread in the hub in order to limit its spread to the other patches is critical. 

Limiting the number of infecteds in the hub will ultimately help limit the outbreak in other 

patches.

Similar to the linear spatial arrangement cases, there are low levels of vaccination 

administered in the outbreak patch with only a slight decrease in the number of their 

infecteds. This points to the fact that it is usually too late to contain the outbreak once it has 

already invaded a patch and more effort should be focused on surrounding patches.

Outside the hub and outbreak patches, the effort spent in other patches follows similar 

patterns as in the linear arrangement cases. However, there are cases when the strategies 

differ and the highest number of vaccinations is given to protect patches closer to the hub 
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rather than the outbreak patch. This is seen in Figures 8 and 12. Since any outbreak will 

almost immediately invade the hub and then progress downstream the network, protecting 

patches immediately downstream the hub would be important. This is especially true when 

you take into account the higher movement of pathogen downstream rather than upstream 

the network.

6.3. Linear spatial arrangement with a hotspot

Motivated by the work of Tien et al. [30] and Eisenberg et al. [14], we consider scenarios 

with heterogeneity among the patches, where, although population sizes are identical, 

certain patches possess a higher risk of infectivity. Two potential reasons could be worse 

sanitation or lower availability of clean water. Areas that have a higher risk of infectivity will 

be referred to as ‘HSs’. The idea of an HS with accompanying scenarios and the network R0 

is discussed in [30]. We investigate HSs in the linear arrangement.

The contact rates for the HS were chosen to be 150% of the other patches, described in Table 

7. Similar to the hub, we investigate HSs at varying locations on the metapopulation. We use 

the same initial conditions as in the previous linear arrangement simulations. These results 

are compared to scenarios where an HS is located in alternative locations of the 

metapopulation. The scenario with an HS in Patch 1 is illustrated in Figures 9, 13, and 14. 

The total infected with and without vaccination when an HS is in Patch 1 is given in Table 9. 

Due to heterogeneity now incorporated in the network, we illustrate results for HSs in 

Patches 1, 3, or 5. The total vaccinated in each patch for each scenario are illustrated in 

Figures 15–17, respectively.

The basic reproduction numbers of the network for varying HS locations are recorded in 

Table 8. The basic reproduction number in an HS was R0HS = 8.84 and  in all 

surrounding patches.

Tien et al. [30] show that for unbalanced linear network arrangements, network risk 

increases moving downstream, and thus the domain ℛ0 increases when HSs are located 

further downstream. Despite this, the optimal vaccination strategies identified here did not 

deploy the least control effort in the furthest upstream patch. Similar results occurred within 

the hub arrangements. This may reflect the fact that implementation of vaccination in our 

model acts as “damage control” after an outbreak has already begun. Optimal control 

strategies may differ in the situation of preemptive vaccination.

Another potential reason for the differing results could be our more complicated movement 

structure, allowing for the movement of the population and the inclusion of hubs in certain 

cases, not addressed in [30]. Also, our model incorporated pathogen leaving the system both 

at the upper and lowermost patches in the water arrangement. This eliminates the water 

compartment in the upper and lowermost patches differing from other patches in the 

arrangement, in terms of pathogen in the aquatic reservoir. Unlike [30], the best case for an 

HS, based on network R0 values, would be in the centre or upstream of the spatial 

arrangement, but not necessarily at the top.
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As seen in our results, disease control efforts are not always highest in patches considered to 

have the highest network risk, defined as the patch contributing most to the network R0. 

Although HSs have higher  values, the control effort for each patch varies depending on 

location and where an outbreak begins (Figures 15–17). This is important to consider when 

implementing a responsive control strategy.

Regardless of where an outbreak occurs in the metapopulation, we see similar effort levels in 

the outbreak patch as in previous scenarios. The level of vaccine effort in the HS is 

dependent on the proximity of an HS to the outbreak patch. The closer the HS is to the 

outbreak, the less effort is applied there. The farther the distance, the higher the vaccine 

effort. This is comparable to the hub arrangements with outbreaks outside the hub. There is 

high effort in nearest neighbour patches but the HS is the priority due to its high potential for 

invasion. In comparing several results of the linear arrangements, with and without HSs, 

Figures 3 and 15–17 reveal that the vaccination strategies differ most when the distance 

between an HS and outbreak is large. When there is no direct connection between the HS 

and outbreak patch, increasing the effort in the HS almost eradicates the outbreak from this 

patch.

All simulations incorporated networks with the same magnitude of movement rates, for 

humans and pathogen. It is important to note that the size of the diffusion parameters 

governing this movement is important, especially in regard to timing. As human and 

pathogen movement increase, the speed of outbreak increases. Vaccinations are then 

distributed on a shorter time scale with the initial effort in each patch increasing. However, 

the timing and prioritization of patches are maintained.

7. Conclusions and discussion

After developing and analyzing an optimal control problem for a waterborne disease 

metapopulation model, we used numerical simulations to approximate solutions. We 

considered three arrangements and found the optimal vaccination strategies. We investigated 

a linear spatial arrangement with strictly nearest neighbour movement, hub spatial 

arrangements with one patch having a larger population, higher connectivity, and higher 

movement rates, and linear spatial arrangements with patches of higher infectivity known as 

‘HSs’. We sought answers to the question of where control efforts should be focused 

depending on metapopulation structure and path dynamics.

We give several guiding strategies based on our spatial arrangement scenarios below:

The outbreak patch almost always receives least amount of effort

Once the disease invades a patch, it becomes too difficult to contain in that patch so effort is 

spent elsewhere. This result differs in cases where the outbreak patch is the hub or a 

centrally located HS. In these cases, the effort is almost evenly distributed among the 

system.
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Due to the directional flow of rivers affecting pathogen movement, more vaccinations can 
be administered when outbreaks occur downstream rather than upstream

Pathogen moving more rapidly downstream than up allows for fewer individuals to be 

vaccinated. Slower upstream movement allows more time to vaccinate before the pathogen 

arrives upstream, thus increasing the amount of protection. The role of water pathways and 

the ability of the pathogen to spread along river networks must be considered when 

implementing a vaccination program. Effort is distributed depending on the location of 

populations in relation to the outbreak.

Outbreaks are hardest to contain when starting in a hub, which implies that preemptive 
prevention of disease invasions in hubs is highly important

The added connectivity of the hub makes the outbreak much harder to contain due to disease 

invasion in every patch of the metapopulation shortly after outbreak begins. When the 

outbreak occurs within a hub, vaccination effort is spent evenly among surrounding patches 

but its effect in preventing the disease is minimal.

With outbreaks beginning outside of a hub, the focus of vaccinations should be in the hub

There is greater importance in protecting the hub due to its potential to spread the outbreak 

to all patches of the metapopulation.

Location of high risk areas (‘HSs’) in relation to the outbreak matters

Despite the existence of HSs in the network, if these areas are not located in close proximity 

to the outbreak location, it is not necessarily more important to contain outbreak in the HS 

than in surrounding patches (location matters). Depending on location, it may be more 

important to vaccinate nearest neighbours instead to prevent the outbreak from ever reaching 

the HS.

Our work shows convincingly that spatial arrangements and heterogeneity in features (such 

as HSs, sizes, and connectivity) are important to management strategies. These features can 

have a signinicant impact on intervention decisions. An investigation of more heterogeneous 

sets of patches will be important to further understand spatial dynamics for disease spread 

and intervention strategies. These optimal control tools, applied to the varying scenarios, can 

give guiding ‘rule of thumb’ strategies for the management of disease epidemics when 

concerned about spatial features of a landscape.

Results are shown for response control strategies once an outbreak has already occurred. 

They provide the optimal way to control an outbreak but not necessarily how to eradicate 

outbreak completely. There is a need to find preemptive control strategies for a spatial 

landscape, whether before an outbreak occurs or in an endemic setting. There is question on 

how much vaccination would be needed to completely eliminate the outbreak from the 

population. Work by Tien, Eisenberg, and their collaborators investigated this while 

investigating the role of spatial features on the disease risk of networks [14, 30]. Our work 

used a maximum vaccination effort consistent with the recently implemented vaccination 

program in Haiti. It would be important to consider what vaccination effort would be 
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necessary to get ahead of the outbreak to control it and consider the time frame of control 

and whether shorter time frames with higher doses would alter the control strategies.
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Figure 1. 
Visual description of five-patch linear (left) and hub (right) spatial arrangements.
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Figure 2. 
Linear arrangement: infected population dynamics when outbreak occurs upstream and 

centre of metapopulation (without vaccination).
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Figure 3. 
Linear arrangement: total individuals vaccinated in each patch for each scenario. The total 

vaccinated in metapopulation for each scenario is given in (f). (The outbreak patch is shown 

in red.)
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Figure 4. 
Linear arrangement: vaccination effort of patches with outbreaks in Patch 1 and Patch 3.
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Figure 5. 
Linear arrangement: infected population dynamics comparison with and without vaccination 

with outbreak in Patch 1.
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Figure 6. 
Linear arrangement: infected population dynamics comparison with and without vaccination 

with outbreak in Patch 3.
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Figure 7. 
Hub Patch 1 arrangement: infected population dynamics when outbreak occurs in two 

distinct areas, Patches 1 and 3, of the metapopulation (without vaccination), where plot on 

the left is the hub only, plot on the right is surrounding patches.
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Figure 8. 
Hub Patch 1 arrangement: total individuals vaccinated in each patch for each scenario. The 

total vaccinated in metapopulation for each scenario is given in (f). (The hub is shown in 

green and the outbreak patch is represented by red. When outbreak is in the hub, it is 

represented by red with green border.)
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Figure 9. 
Hub Patch 3 arrangement: total individuals vaccinated in each patch for each scenario. The 

total vaccinated in metapopulation for each scenario is given in (f). (The hub is shown in 

green and the outbreak patch is represented by red. When outbreak is in the hub, it is 

represented by red with green border.)
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Figure 10. 
Hub Patch 1 arrangement: vaccination effort of patches with outbreak in hub, Patch 1, and 

outside in Patch 3.
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Figure 11. 
Hub Patch 1 arrangement: infected population dynamics comparison with and without 

vaccination with outbreak in hub, Patch 1.
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Figure 12. 
Hub Patch 1 arrangement: infected population dynamics comparison with and without 

vaccination with outbreak in Patch 3.
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Figure 13. 
Hot Spot Patch 1 arrangement: infected population dynamics (without vaccination) of a 

linear arrangement with an HS in Patch 1. The outbreak in the HS (a) is given in comparison 

with an outbreak in the middle (b) and bottom (c) patches of the metapopulation.
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Figure 14. 
Hot Spot 1 arrangement: total individuals vaccinated in each patch for each scenario. The 

total vaccinated in metapopulation for each scenario is given in (f). (The HS patch is shown 

in yellow and the outbreak patch is represented by red. When outbreak is in HS, it is 

represented by red with yellow border.)
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Figure 15. 
Hot Spot 3 arrangement: total individuals vaccinated in each patch for each scenario. The 

total vaccinated in metapopulation for each scenario is given in (f). (The HS patch is shown 

in yellow and the outbreak patch is represented by red. When outbreak is in HS, it is 

represented by red with yellow border.)
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Figure 16. 
Hot Spot 5 arrangement: total individuals vaccinated in each patch for each scenario. The 

total vaccinated in metapopulation for each scenario is given in (f). (The HS patch is shown 

in yellow and the outbreak patch is represented by red. When outbreak is in the HS, it is 

represented by red with yellow border.)
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Figure 17. 
Hot Spot Patch 1 arrangement: vaccination effort for a linear arrangement with an HS in 

Patch 1, with outbreaks in Patches 1, 3, or 5.
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Table 1

Description of compartments with units for metapopulation model.

Compartments Description Units

Si Susceptible individual density ind. km−2

Ii Infected individual density ind. km−2

Ri Immune due to vaccination or recovery ind. km−2

Ni Total population density ind. km−2

Wi Scaled pathogen concentration in water reservoir ind. km−2
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Table 2

Description of parameters with units for metapopulation model.

Parameters Description Units

μi Birth and death (non-disease related) day−1

Person–person contact rate km2 ind.−1 day−1

Reservoir–person contact rate km2 ind.−1 day−1

γi Duration of infectiousness of the disease day−1

δi Death due to disease day−1

ξi Pathogen decay in water day−1

dS Diffusion coefficient (for all susceptibles) day−1

dR Diffusion coefficient (for all recovered) day−1

dI Diffusion coefficient (for infected) day−1

dW Diffusion coefficient (for pathogen) day−1
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Table 3

Parameter values for numerical simulations with identical patches.

Parameters Description Value

μi Birth and death (non-disease related) 1.00E–4

Person–person contact rate 2.64E–5

Reservoir–person contact rate 1.21E–4

γi Duration of infectiousness of the disease 0.25

δi Death due to disease 5.0E–4

ξi Mean survival of pathogen in water 7.56E–3

dS Diffusion coefficient (for all susceptibles) 5.00E–3

dR Diffusion coefficient (for all recovered) 5.00E–3

dI Diffusion coefficient (for infecteds) 1.00E–3

dW Diffusion coefficient (for pathogen) 3.00E–5

ρd Coefficient for pathogen leaving network downstream 3.00E–5

ρu Coefficient for pathogen leaving network upstream 3.00E–6

vmax Max vaccination 0.015

T Final time (days) 200

Ai Cost to minimize infecteds 1

Bi Quadratic cost of vaccination 300,000

Ci Linear cost of susceptibles vaccinated 3.25
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Table 4

Linear arrangement: total number of infected individuals in metapopulation, with and without vaccine.

Outbreak Total infecteds (no vaccine) Total infecteds (with vaccine) Difference (%)

Patch 1 49,173 21,694 55.88

Patch 2 49,192 25,353 48.46

Patch 3 49,190 25,755 47.64

Patch 4 49,003 23,447 52.15

Patch 5 48,646 17,579 63.86
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Table 5

Basic reproduction number of the network for varying hub patch locations.

Hub Patch 1 Patch 3 Patch 5

Network R0 7.92 8.01 7.92
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Table 6

Hub Patch 1 arrangement: total number of infected individuals in metapopulation, with and without vaccine.

Outbreak Total infecteds (no vaccine) Total infecteds (with vaccine) Difference (%)

Patch 1 48,493 38,716 20.16

Patch 2 48,712 33,134 31.98

Patch 3 49,396 33,188 32.81

Patch 4 49,413 32,325 34.58

Patch 5 48,782 30,357 37.77
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Table 7

Parameter values for infectivity in HS and surrounding patches.

Parameter Description Value in HS Value elsewhere

βI Person–person contact rate 3.96E−5 2.64E−5

βW Reservoir–person contact rate 1.82E−4 1.21E−4
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Table 8

Basic reproduction number for the network with varying HS patches.

Hotspot Patch 1 Patch 3 Patch 5

Network R0 6.72 6.81 6.73
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Table 9

Hot Spot Patch 1: total number of infected individuals in metapopulation, with and without vaccine.

Outbreak Total infecteds (no vaccine) Total infecteds (with vaccine) Difference (%)

Patch 1 49,223 22,384 54.53

Patch 2 49,569 27,475 44.57

Patch 3 49,668 29,082 41.45

Patch 4 49,555 25,943 47.65

Patch 5 49,232 19,702 59.98
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