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INTRODUCTION

Every year, more than 8000 new cases of chronic myeloid leukemia (CML) are diagnosed in 

the United States1. BCR-ABL1, a fusion protein kinase derived from a reciprocal 

translocation between chromosomes 9 and 22, is necessary and sufficient for CML 

pathogenesis2. Tyrosine kinase inhibitors (TKIs) of BCR-ABL1 have revolutionized CML 

therapy, with life expectancy now close to that of the general population3. As a result, the 

prevalence of CML is growing, as patients on TKIs live with what is more and more viewed 

as a chronic ailment rather than a potentially lethal disease. It is estimated that over 25% of 

CML patients will switch TKIs at least once during their lifetime due to TKI intolerance or 

resistance4. Mutations in the kinase domain (KD) of BCR-ABL1 are the most extensively 

studied mechanism of TKI resistance in CML, but fail to explain anywhere from 20–40% of 

resistant cases. Activation of alternative, BCR-ABL1-independent survival pathways has 

been mechanistically implicated in these cases, and may also explain the phenomenon of 

persistence in responding patients who fail to clear minimal residual disease (MRD) or 

experience recurrence upon discontinuation of therapy despite achieving deep molecular 

response (DMR, BCR-ABL1 ≤ 0.01% on the international scale, IS).

DEFINITIONS

The National Comprehensive Cancer Network and the 2013 European LeukemiaNet (ELN) 

guidelines recommend cytogenetic and/or molecular monitoring at 3, 6 and 12 months into 
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frontline TKI therapy5,6. ELN recommendations categorize the molecular and cytogenetic 

responses at each time interval as “optimal”, “warning” or “failure”. Optimal responses are 

associated with a life expectancy similar to that of the general population, whereas failure is 

associated with TKI resistance and increased risk of disease progression/death, necessitating 

a change in TKI therapy. Failure to achieve complete hematologic response (CHR; 

normalization of peripheral blood counts; resolution of splenomegaly and CML-related 

symptoms) or complete cytogenetic response (CCyR; 0% Ph+ metaphases based on analysis 

of 20 bone marrow cells) within an allocated duration of time constitutes TKI failure, as 

does loss of these milestones or progression to accelerated phase (AP-CML) or blastic phase 

(BP-CML) at any time point. Whether failure to achieve major molecular response (MMR; 

BCR-ABL1 ≤ 0.1% on the IS) in patients with CCyR defines failure is subject to ongoing 

debate. Similarly, confirmed loss of MMR while CCyR is maintained does not technically 

constitute failure, although most of these patients will go on to lose CCyR7.

Overt resistance such as loss of CHR or even progression to AP/BC-CML is associated with 

unfavorable clinical outcomes and represents a situation very different from persistent low-

level disease associated with MRD which is clinically relevant only in the context of TKI 

discontinuation. Primary resistance implies failure to achieve time-dependent endpoints of 

CHR, CCyR and MMR upon initiation of TKI therapy, while secondary (acquired) 

resistance is defined as the loss of response8. At the mechanistic level, we classify TKI 

resistance as either BCR-ABL1-dependent or BCR-ABL1 independent (Figure 1). Although 

this distinction seems formalistic, it does have a great degree of clinical relevance, as it 

informs the strategy required to combat resistance: BCR-ABL1-dependent resistance is 

reliant upon mechanisms that subvert effective BCR-ABL1 kinase inhibition, such as point 

mutations in the kinase domain that impair drug binding or cellular/biological processes that 

interfere with TKI availability and result in suboptimal drug concentrations at the target. In 

contrast, BCR-ABL1-independent resistance is mediated through alternative survival 

pathways operating in the context of effective TKI inhibition of BCR-ABL1. Overt clinical 

resistance is observed via both mechanisms, although acquired resistance is more likely to 

be BCR-ABL1 dependent, while primary resistance tends to be BCR-ABL1-independent. In 

BCR-ABL1-dependent resistance, achieving or restoring BCR-ABL1 inhibition is expected 

to induce or recapture responses, and the most effective approach is the use of alternate 

TKIs. For obvious reasons this strategy in isolation will not be effective in BCR-ABL1-

independent resistance. In this review, we will discuss the mechanisms underlying BCR-

ABL1-dependent and independent resistance and therapeutic strategies designed to 

circumvent them.

BCR-ABL1 DEPENDENT RESISTANCE

BCR-ABL1 KD Mutations

General Considerations: The active sites of tyrosine kinases exist in two principal 

conformations that are distinct by the position of key structural motifs, including the 

activation loop (A-loop) that controls access of substrate to the catalytic site, the ATP-

binding loop (P-loop) and the highly conserved aspartate-phenylalanine-glycine (DFG) 

motif that coordinates an adenosine triphosphate (ATP)-bound magnesium ion. In the 

inactive conformation, the activation loop is in a closed position, and the DFG in an outward 
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(“DFG out”) orientation. In contrast, in active kinases the A-loop is in an open 

conformation, and the DFG motif is oriented toward the catalytic site (“DFG-in”) (Figure 

2)9. Depending on whether they recognize an active or inactive kinase conformation, TKIs 

are referred to as type I or type II inhibitors, respectively10. Although all active site 

inhibitors are essentially ATP-competitive, type II inhibitors could be considered as 

stabilizers of an inactive enzyme conformation, while type I inhibitors compete more 

directly with ATP for binding. Of the approved BCR-ABL1 TKIs, imatinib, nilotinib and 

ponatinib are type II inhibitors, dasatinib is a type I inhibitor, and bosutinib exhibits features 

of both11–15. These general structural distinctions have practical consequences as they 

inform the number and types of mutations that confer resistance to a given TKI. Generally, 

type II inhibitors exhibit more stringent binding requirements, exposing more mutational 

vulnerabilities, but have the advantage of increased selectivity16. Type I inhibitors tend to be 

more promiscuous, but less prone to mutational escape.

Clinically observed BCR-ABL1 KD mutations and structure-function 
relationships: Anywhere from 50–90% of CML patients who experience hematologic 

relapse on imatinib have been reported to harbor KD mutations17–20. Point substitutions at 

just twelve residues (M244, G250, Q252, Y253, E255, V299, F311, T315, F317, M351, 

F359 and H396) account for most resistance-associated KD mutations (Figure 3A)21. KD 

mutations develop with greater frequency in AP/BP-CML than in CP-CML18. For instance a 

study of 297 patients with primary or acquired resistance to imatinib reported KD mutations 

in 27% of CP patients, 52% AP patients, 75% myeloid BC patients and 83% lymphoid BC 

patients22. This suggests that reactivation of BCR-ABL1 signaling is critical to conferring an 

aggressive clinical phenotype. KD mutations can also be detected at low levels in patients at 

diagnosis, and may in some cases become clinically relevant upon selection of clones by 

TKI therapy23,24. However, as this is not a predictable development, testing for KD 

mutations at diagnosis is not generally recommended5,24. Interestingly, the duration of 

disease prior to initiation of TKI therapy correlates with the frequency of KD mutations, 

which supports a role for BCR-ABL1 induced self-mutagenesis18. Moreover, advanced 

phase CML, clonal cytogenetic evolution and KD mutation rate are correlated, suggesting a 

temporal relationship between uninhibited exposure to BCR-ABL1 kinase activity and 

degree of genomic instability25.

Of the approved TKIs, imatinib exhibits the broadest spectrum of vulnerabilities and more 

than 50 different imatinib-resistance KD mutations have been described26,27. Solving the 

crystal structure of ABL1 in complex with an imatinib analogue was critical for 

understanding KD mutation-based imatinib resistance. In contrast to expectations imatinib 

was found to recognize an inactive kinase conformation, with the A-loop in a closed 

position. Additionally, there was extensive ‘downward’ displacement of the P-loop11. Lastly, 

imatinib was found to form a hydrogen bond with threonine 315. This binding mode is 

reflected in the types of KD mutations associated with imatinib resistance28. P-loop 

mutations are thought to prevent the structural adjustments required for optimal drug 

binding, the T315I mutant causes a steric clash and A-loop mutations stabilize the kinase in 

an active conformation from which imatinib is excluded. The degree of resistance conferred 

by the various KD mutations varies greatly, and some (such as M351T or F311L) remain 
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amenable to dose escalation. In contrast, second-generation TKIs such as dasatinib and 

nilotinib retain inhibitory activity against the majority of mutants conferring imatinib 

resistance, with the notable exception of the T315I ‘gatekeeper’ mutation29. Nilotinib was 

developed from the imatinib scaffold, but has a much improved topological fit, greatly 

increasing binding affinity. As a result, nilotinib captures many imatinib resistant mutants, 

although their relative sensitivities to imatinib and nilotinib are similar13,30. Thus nilotinib 

overcomes resistance through tighter binding to a very similar (inactive) ABL1 

conformation. Dasatinib was initially reported to bind to ABL1 with less stringent 

conformational requirements compared to imatinib, but sophisticated nuclear magnetic 

resonance studies suggest it is a type I inhibitor12. The dasatinib resistance mutation 

spectrum is distinct and includes V299 and F317 as hotspots31. However, both nilotinib and 

dasatinib make a hydrogen bond with T315 and consequently have no activity against T315I. 

Bosutinib’s resistance mutation spectrum is similar to that of dasatinib, suggesting that type 

I binding is dominant32. Ponatinib in contrast is a type II inhibitor that binds ABL1 in a 

conformation that is quite similar to that observed with imatinib, except that no hydrogen 

bond is formed with T315 (Figure 3B)33. Owing to this and its high target affinity ponatinib 

exhibits activity against all single BCR-ABL1 mutants at achievable plasma concentrations. 

In vitro mutagenesis assays developed by us and others fairly accurately predict clinical 

mutations, validating the fascinating link between structural analysis and clinical 

observations33. Clinically, the type of BCR-ABL1 mutation informs the selection of salvage 

therapy and represents a prime example of individualized cancer therapy. It is important to 

note though that the convenient heat maps displaying the differential activity of the approved 

TKIs toward the various KD mutants are a guide, but not a dogma (Figure 4). For example 

achievable plasma concentrations and plasma protein binding are additional variables not 

captured by in vitro assays of BCR-ABL1 expressing cell lines. Further, correlations are 

tight only toward the negative side. Thus, the presence of a T315I mutation predicts 

resistance, but there is no guarantee that a patient with a ‘sensitive’ mutant will respond to a 

given TKI. Failure to respond to TKI therapy in this setting could be due to alternative BCR-

ABL1-dependent mechanisms of resistance (e.g. efflux pumps, see below), or to BCR-ABL1 

independent mechanisms.

No single BCR-ABL1 KD mutation has been demonstrated to confer resistance to ponatinib. 

However, T315I-inclusive compound mutations, defined as a BCR-ABL1 allele with two or 

more mutations including T315I, have been associated with ponatinib failure21 in advanced 

phase CML and Philadelphia chromosome-positive (PH+) acute lymphoblastic leukemia 

(ALL). A recent analysis of CP CML patients in the PACE trial failed to demonstrate that 

baseline compound mutation status, regardless of T315I inclusion, affects cytogenetic or 

molecular responses to ponatinib in this cohort34.

Increased BCR-ABL1 expression—Increased BCR-ABL1 expression via BCR-ABL1 

gene amplification, Ph duplication and differential regulation of oncogene transcription has 

been demonstrated in patients, but its relationship to acquired clinical resistance is less 

certain than in cases of KD mutations. High levels of the BCR-ABL1 oncoprotein are 

associated with more advanced phase disease, often preceding the development of overt 

resistance via KD mutations35. Thus, higher levels of BCR-ABL1 may allow for sufficient 
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kinase activity to persist despite the presence of TKIs, enabling leukemia cell survival until a 

KD mutation is acquired and confers overt resistance. One indication that these relationships 

are complex is the seemingly paradoxical observation that primary CD34+ CML cells 

engineered to express high levels of BCR-ABL1 have been reported to exhibit increased 

sensitivity to imatinib in vitro19,28,36,37.

Drug influx/efflux pumps

OCT-1: Organic-cation transporter-1 (OCT-1) is a cellular influx pump for imatinib that has 

been demonstrated to influence intracellular drug availability. Low OCT-1 activity imparts 

BCR-ABL1 dependent imatinib resistance. High OCT-1 activity is predictive of improved 

MMR rates, event free survival (EFS) and overall survival (OS) in patients treated with 

imatinib38,39. Patients with low OCT-1 activity and imatinib trough plasma levels 

<1200ng/mL have inferior outcomes and benefit from imatinib dose intensification40. 

Imatinib trough levels <1200ng/mL do not necessarily predict inferior outcomes in patients 

with high OCT-1 activity and these patients are likely to meet molecular milestones on 

standard-dose imatinib. OCT-1 does not regulate cellular uptake of dasatinib, nilotinib or 

ponatinib41–43. In the future baseline OCT-1 testing may identify candidates for trough 

imatinib monitoring and imatinib dose intensification, thereby avoiding unnecessary TKI 

switching due to perceived imatinib failure, but it is not part of current routine clinical 

practice. Similarly, although several members of the ATP-binding cassette (ABC) transporter 

family, including ABCB1 and ABCG2, have been implicated in TKI resistance, testing for 

polymorphisms and increased expression of ABC transporters is not clinically 

routine27,37,43–48 49,50.

TKI bioavailability: All of the TKIs used in CML undergo extensive hepatic first-pass 

metabolism by CYP3A4 and strong inducers of CYP3A4 can contribute to TKI resistance. 

Patients on TKIs should undergo thorough medication reconciliation to avoid potential drug-

drug interactions that can negatively impact TKI efficacy. Common CYP3A4-inducing 

medications and supplements include dexamethasone, rifampicin, phenobarbital, phenytoin, 

carbamazepine and St. John’s wort51. Gastric pH-modifying medications such as H2 

antagonists and proton pump inhibitors can affect the bioavailability of dasatinib due to the 

drug’s poor solubility in solutions with a pH >4.0. These patients must be counseled to take 

antacids 2 hours prior or 2 hours after dasatinib administration to avoid decreases in 

dasatinib exposure that can occur with their concomitant administration52,53.

BCR-ABL1 INDEPENDENT RESISTANCE

General considerations—Point mutations in BCR-ABL1 are an important mechanism 

of TKI resistance in CML, but nearly 40% of cases of clinical TKI failure occur in the 

setting of sustained BCR-ABL1 inhibition54. In this scenario, activation of alternative 

survival pathways must be responsible for primary or secondary resistance. Conceptually 

CML cell survival can be mediated through cell-autonomous (leukemia cell intrinsic) 

mechanisms or through cell-extrinsic microenvironmental factors provided by the bone 

marrow niche55. It is worth noting that while BCR-ABL1 independent resistance can confer 

overt resistance in active disease, it is also an important contributor to MRD, likely 

accounting for leukemia stem cell persistence despite DMR to TKI therapy. Multiple (and 
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counting) signaling pathways have been implicated in BCR-ABL1-independent resistance 

(Table 1). We have proposed that various upstream pathways may converge on common 

downstream mediators, offering therapeutic opportunities despite the diversity of upstream 

signaling56. Moreover it seems that the pathways activated by extrinsic and intrinsic 

resistance mechanisms overlap. In this frame of thinking, extrinsic resistance may enable 

survival of leukemogenic cells despite TKI inhibition of BCR-ABL1, until the surviving 

cells manage to activate the very same pathway through cell-intrinsic mechanisms, leading 

to overt resistance.

STAT3—STAT3 activation has been demonstrated to impart survival cues to leukemic cells 

via cell-intrinsic and extrinsic mechanisms. Co-culture of TKI-sensitive CML primary cells 

with HS-5 human bone marrow stromal cells was shown to promote STAT3Y705 

phosphorylation and leukemia cell survival through soluble BM-derived factors despite 

BCR-ABL1 inhibition57,58. Moreover, in the absence of BM-derived factors, BCR-ABL1 

independent activation of STAT3 was demonstrated to be a recurring feature of TKI-resistant 

cell lines and primary CML cells from patients with clinical resistance to multiple TKIs, 

suggesting that cell-autonomous activation of STAT3 can mediate CML cell survival56. 

Thus, consistent with the concepts described above, pro-survival cues appear to converge on 

STAT3 as a crucial distal signal integrator and arbiter of drug resistance. As a result, 

synthetic lethality approaches designed to inhibit both BCR-ABL1 and pSTAT3Y705 hold 

therapeutic potential, both in active disease and as a tactic to eliminate MRD.

PI3K/AKT—PI3K signaling is required for the proliferation and growth of CML cells59. 

Activation of the PI3K/AKT/mTOR pathway has been shown to facilitate primary CML cell 

survival during imatinib treatment until overt resistance through secondary mutations 

emerges60. Co-treatment of CML primary cells with nilotinib and the PI3K inhibitor NVP-

BEZ235 was shown to inhibit cell growth and increase apoptosis61. Increased cytoplasmic 

retention of FOXO1, a transcription factor downstream of the PI3K signaling axis, has been 

reported to contribute to BCR-ABL1 independent resistance in TKI-resistant CML cell 

lines54. Elevation in FOXO1 levels has also been demonstrated in primary cells from 

relapsed CML patients lacking BCR-ABL1 KD mutations. TKI-resistant cells appear to be 

sensitive to combination drug strategies involving BCR-ABL1 TKIs and PI3K inhibitors that 

facilitate nuclear translocation of FOXO1.

RAF/MEK/ERK—Enhanced MAP kinase signaling has previously been observed in 

imatinib-treated CD34+ CML progenitor cells62. More recently Ma and colleagues 

performed a large-scale RNA interference screen that revealed increased RAF/MEK/ERK 

pathway activity mediated through PRKCH in BCR-ABL1-independent imatinib-resistant 

CML cell lines and patient samples63. They found that dual treatment with imatinib and the 

MEK inhibitor trametinib preferentially killed human CML CD34+ cells while sparing 

normal hematopoietic cells and prolonged survival in their murine models of BCR-ABL1-

independent imatinib-resistant CML. In line with this, another study described paradoxical 

RAS-dependent activation of the RAF/MEK/ERK pathway in nilotinib-treated primary 

CML cells containing T315I and found that nilotinib synergizes with MEK inhibition to 

induce synthetic lethality in these cells64. In TKI-sensitive CML cells, MEK activity appears 
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to facilitate BCR-ABL1-mediated oncogene addiction, suggesting that activation of this 

pathway is critical for leukemia cell survival and a potential target for combination drug 

inhibition strategies65.

Nucleocytoplasmic transport—More recently, XPO1 and RAN, components of the 

nucleocytoplasmic transport complex, were identified as genes whose shRNA-mediated 

knockdown decreased cell proliferation in a BCR-ABL1-independent imatinib-resistant cell 

line66. Both shRNA-mediated inhibition of RAN and treatment with the XPO1 inhibitor 

KPT-330 (selinexor) increased the sensitivity of resistant cells to imatinib. KPT-330 has also 

demonstrated preclinical anti-leukemic activity in mouse models of CML and was observed 

to decrease leukocytosis and palliate symptoms in a TKI-resistant patient with AP-CML 

who was provided the drug on a compassionate use basis67.

EZH2—EZH2, a histone methyltransferase that provides the catalytic subunit of polycomb 

repressive complex 2 (PRC2), has been shown to be overexpressed in CML leukemia stem 

cells (LSCs). Two recent publications have highlighted the importance of EZH2 

misregulation and its association with reprogramming of H3K27me3 targets in LSCs, 

resulting in LSC protection from apoptosis and TKI resistance68,69. EZH2 inactivation was 

shown to delay the development of leukemia and prolong survival in mouse models of CML 

independent of BCR-ABL1 mutational status. In mice with pre-existing gene inactivation of 

EZH2 through CRISPR/Cas9-mediated gene editing slowed disease progression and 

extended survival. Combination treatment with nilotinib and EZH2 inhibitors in CML 

primary cells engrafted into NOD/SCID mice led to a greater reduction of the LSC 

population compared to nilotinib treatment alone. Normal hematopoietic stem and 

progenitor cells appear to be spared from EZH2 inhibition, perhaps due to compensation 

from EZH1, which is expressed at higher levels in normal HSCs compared to LSCs. The 

selective vulnerability of LSCs to EZH2 inhibition may provide a therapeutic window to 

eradicate TKI-persistent LSCs with minimal effects on normal hematopoiesis.

Numerous other BCR-ABL1 independent factors have been proposed to contribute to CML 

LSC persistence and TKI resistance, including activation of SRC family kinases, Wnt-β-

catenin, hypoxia-inducible factor 1α, arachidonate 15-lipoxygenase, miR-126, p53, MYC, 

ADAR1, SIRT1, RAD21 heat shock proteins, PP2A, Fap1, apoptotic regulators, the 

Hedgehog pathway and the IL-2/CD25 signaling circuit55,70–95. The number of theoretical 

synthetic lethality approaches involving TKIs and other inhibitors is destined to grow as new 

resistance mechanisms are unearthed, yet it remains unclear which combinations harbor 

clinical potential above and beyond TKI monotherapy.

NEW THERAPIES

Tyrosine kinase inhibitors

ABL001: One of the most anticipated new therapies for CML is ABL001, a novel allosteric 

inhibitor of BCR-ABL1 targeting the myristoyl pocket of the ABL1 kinase. In physiological 

conditions, the myristoylated N-terminus of ABL1 serves to negatively regulate kinase 

activity, but is lost upon fusion with BCR in CML. ABL001 was designed to restore this 

autoregulatory function to the BCR-ABL1 fusion protein, thereby inhibiting oncogenic 
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signaling. Single-agent ABL001 led to tumor regression in mice xenografted with the 

KCL22 CML cell line, though all tumors eventually recurred. In vivo combination treatment 

with nilotinib and ABL001 induced complete and sustained regression of disease in mice, 

with no relapses observed as long as 5 months out from active drug treament96. These 

encouraging results led to a dose-finding phase I trial of ABL001 monotherapy in CP and 

AP CML patients with failure of ≥ 2 TKIs due to resistance/intolerance97. Over 50% of 

patients enrolled had failed ≥ 3 TKIs. Initial results from the trial are promising – 82% of 

TKI resistant patients in cytogenetic relapse achieved MCyR by 3 months, including 55% 

who achieved CCyR. Nearly 30% of TKI-resistant patients achieved MMR by 5 months, and 

clinical activity was pronounced across a range of mutations. A single relapse was attributed 

to a mutation in the myristoyl pocket97. Overall the drug was well-tolerated, with common 

grade 3 toxicities including lipase elevation and cytopenias. At the time of last reporting, the 

maximum tolerated dose had not been reached. Other arms of the Phase I study are assessing 

the safety and tolerability of ABL001 in combination with imatinib, nilotinib and dasatinib, 

respectively.

Several other TKIs were previously in development for CML, including bafetinib (BCR-

ABL1/Lyn inhibitor), and rebastinib (ABL1/TIE2 inhibitor), but have been sidelined due to 

poor efficacy in early phase clinical trials98,99. A phase I trial of the intravenous ABL1/

Aurora kinase inhibitor danusertib produced modest responses in T315I-positive, TKI-

resistant AP/BC CML and Ph+ ALL100. The VEGFR inhibitor axitinib has been found to 

inhibit BCR-ABL1 mutants with substitutions at positions 315 and 299, but its clinical use is 

limited by this mutational selectivity101,102. Radotinib, a second-generation oral BCR-ABL1 

inhibitor with an almost identical chemical structure as nilotinib, is approved for second-line 

treatment of CML in South Korea. An ongoing Phase 3 study investigating radotinib versus 

imatinib in newly diagnosed CML demonstrated superior 12-month CCyR and MMR rates 

with radotinib 300mg BID (CCyR: 91% vs 76%; MMR: 52% vs 30%)103. Not surprisingly, 

the in vitro efficacy of radotinib against single BCR-ABL1 mutants appears to be similar to 

that of nilotinib104.

Drug combinations to eradicate LSCs and eliminate MRD—Patients who have 

maintained long-term (one to two years minimum) DMR on TKI therapy may be candidates 

for TKI discontinuation. When treated with single-agent TKI therapy, at best half of newly 

diagnosed CML patients will eventually be eligible for TKI discontinuation trials, and of 

these, at most 50–60% will successfully maintain treatment-free remission (TFR) one year 

following TKI discontinuation105. The finding that a portion of patients are “operationally 

cured” following TKI treatment is surprising given the wealth of data suggesting CML LSCs 

are not eradicated by BCR-ABL1 inhibition. It also remains unclear why patients with 

seemingly identical deep responses segregate in their responses to TKI discontinuation. 

Recent data has emerged to support the role of immune surveillance by NK and T cells in 

maintaining successful TFR, implying that alternative biological factors contribute to 

optimal disease control106. Various TKI discontinuation trials are ongoing, and attempts to 

clarify the clinical and biologic characteristics predictive of successful TFR are reflected in a 

trend toward more liberalized patient eligibility criteria and an emphasis on correlative 

studies (Table 2).
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TKI discontinuation is an evolving goal of CML therapy and has been embraced by patients 

motivated to come off these chronic medications due to undesirable side effects, which, in 

some cases, can be quite serious (i.e. pulmonary hypertension on dasatinib or arterial 

occlusive events on nilotinib). The reality that the majority of CML patients will never attain 

TFR with current therapies has led to efforts to combine TKIs with other drugs in hopes of 

eliminating TKI-persistent LSCs and the reservoir of cells responsible for MRD.

TKIs plus immune therapies: Prior to imatinib, interferon-α-(IFN) based therapy was 

standard of care for CML. Anecdotal evidence suggests that IFN preferentially targets 

leukemic stem cells in CML, as demonstrated by the fact a small minority of CML patients 

treated with IFN alone were functionally cured of their disease107. Randomized trials of 

imatinib and pegylated IFN report improved molecular response rates with combination 

therapy compared to imatinib alone108,109. With the advent of TKI discontinuation and 

documentation of successful TFRs, there has been renewed interest in pegylated IFN as an 

adjunct to TKI therapy in promoting DMR. This had led to early phase trials investigating 

pegylated IFN in combination with second-generation TKIs. Non-randomized trials of 

nilotinib or dasatinib in combination with pegylated IFN in newly diagnosed CML patients 

have reported 12-month MR4.5 rates of 17% and 27–30%, respectively, which compare 

favorably to the 12-month MR4.5 rates observed in the registration trials of frontline nilotinib 

(ENESTnd) and dasatinib (DASISION)110–114. A phase 3 randomized trial of IFN in 

combination with nilotinib is underway in Germany. There remains considerable interest in 

developing novel immune therapies against a variety of tumor antigens and while early-

phase trials investigating peptide vaccines have had mixed results, antibody-based treatments 

may hold promise115–122.

TKIs plus inhibitors of additional pathways: Despite mounting evidence implicating 

diverse pathways in BCR-ABL1-independent resistance and LSC persistence, there are a 

limited number of clinical trials investigating inhibitors of these pathways in combination 

with TKIs.

Leukemic stem and progenitor cells may be protected in the bone marrow niche via JAK2/

STAT5 activation by exogenous growth factors in the setting of BCR-ABL1 

inhibition57,123,124. CML CD34+ cells display reduced engraftment when treated ex vivo 

with the combination of TKI and ruxolitinib (a clinically available JAK2 inhibitor) and 

transplanted into NSG mice124. The impact of the addition of ruxolitinib to baseline TKI 

therapy in CML is being studied in a phase 1/2 trial (NCT01751425) and the specific 

combination of ruxolitinib and nilotinib in CML and Ph+ ALL is being investigated in a 

separate phase 1/2 study (NCT02253277).

Pioglitazone, an agonist of peroxisome proliferator-activated receptor-γ (PPARγ) belonging 

to the glitazone family of anti-diabetic drugs, has been found to induce apoptosis in LSCs 

when used in combination with imatinib, presumably by downregulating STAT5 

transcriptional targets, including HIF2α and CITED2125. The addition of pioglitazone to 

TKI therapy in three CML patients unable to reach CMR after several years of continuous 

imatinib treatment was associated with sustained MR4.5 in all three patients at 6 months to 1 

year following initial pioglitazone exposure. These findings led to phase II trial combining 
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imatinib and pioglitazone in patients with persistent MRD on imatinib. The incidence of 

PCR-negativity was reported at 57% for the combination group and 27% for a historical 

cohort receiving imatinib alone. Currently there are several trials investigating pioglitazone 

in combination with TKIs for CML, including one study (PIO2STOP) attempting to define 

its use in a second trial of TKI discontinuation for patients who experienced loss of MMR 

after initial TKI discontinuation.

CONCLUSIONS

Due to improved survival, the prevalence of CML is estimated to exceed 180,000 cases by 

2050, thereby establishing CML as the most common form of leukemia in the United 

States126. While excellent progress has been made through the introduction of targeted 

molecular therapy over the last two decades, new strategies to eliminate MRD and increase 

the pool of candidates eligible for trials of TFR are needed. Eliminating TKI resistance and 

LSC persistence by dual targeting of BCR-ABL1 and alternative pathways appears to be the 

most promising therapeutic avenue to decrease leukemic disease burden and potentiate 

“operational cures.” The number of alternative pathways posited to establish synthetic 

lethality with TKIs is overwhelming, and it will take time and effort to sift through the 

multiple permutations with rigorous clinical testing. Ultimately though, responses to cancer 

therapy depend not just on the efficacy of target inhibition, but also on factors such as patient 

compliance and tolerability of side effects that need to be addressed with a completely 

different set of tools. It is for these reasons that mechanisms of resistance will always keep 

pace with therapeutic developments, and we will be contending with them for as long as we 

continue our fight against cancer.
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Synopsis

Chronic myeloid leukemia (CML) is increasingly viewed as a chronic illness, with most 

patients expected to have a life expectancy close to that of the general population. Despite 

the great progress that has been made using BCR-ABL1 tyrosine kinase inhibitors 

(TKIs), drug resistance via BCR-ABL1-dependent and BCR-ABL1-independent 

mechanisms continues to be an issue for many patients. BCR-ABL1-dependent resistance 

is primarily mediated through oncoprotein kinase domain mutations and usually results in 

overt clinical resistance to TKIs. However, BCR-ABL1-independent resistance, which 

occurs in the setting of effective BCR-ABL1 inhibition, has become increasingly 

recognized a major contributor to minimal residual disease (MRD) and efforts to 

eradicate persistent leukemic stem cells (LSCs) have largely focused on combination 

therapy with TKIs and drugs targeting these pathways.
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Key Points

1. Over 25% of CML patients will switch TKIs during their lifetime due to 

resistance or intolerance. While most cases of clinical resistance are due to 

kinase domain mutations (BCR-ABL1-dependent resistance), 20–40% of 

patients exhibit resistance despite effective BCR-ABL1 inhibition (BCR-

ABL1-independent resistance).

2. Ponatinib is the only TKI effective against the T315I BCR-ABL1 mutation. 

Ponatinib’s activity against this mutant isoform derives from its lack of 

dependence on forming a critical hydrogen bond with residue T315 for high-

affinity binding to BCR-ABL1.

3. Diverse pathways involving growth factors, epigenetic regulators and 

apoptotic machinery have been implicated in BCR-ABL1-independent 

resistance. BCR-ABL1-independent resistance can be classified as cell-

extrinsic or cell-intrinsic depending on the relative influence of the 

microenvironment.

4. CML leukemic stem cells (LSCs) are resistant to TKI therapy and contribute 

to minimal residual disease (MRD). Combination strategies to eradicate MRD 

using TKIs and other drugs are an intense focus of investigation in CML.

5. A minority of CML patients who achieve sustained deep molecular responses 

on TKI therapy are able to discontinue treatment without molecular 

recurrence, entering a state called “treatment-free remission (TFR).” Multiple 

TKI discontinuation trials are ongoing worldwide and will help determine 

which patients are most likely to have successful TFR and what biological 

factors govern maintenance of response.
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Figure 1. 
BCR-ABL1-dependent vs. independent resistance. (A) Native BCR-ABL1 signaling in the 

absence of TKI inhibition is necessary and sufficient for leukemogenesis in CML. (B) 

Kinase domain mutations in BCR-ABL1 can alter the binding of TKIs and lead to 

reconstitution of BCR-ABL1 signaling. (C) In the setting of effective BCR-ABL1 inhibition 

with TKIs, leukemia cells persist due to activation of alternative survival pathways.

Patel et al. Page 19

Hematol Oncol Clin North Am. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Type I and Type II inhibitors. (A) Type II inhibitors stabilize the inactive conformation of 

BCR-ABL1 in which the activation loop is closed and the DFG is in an outward (“DFG 

out”) orientation. (B) Type I inhibitors are ATP-competitive, binding to BCR-ABL1 when 

the activation loop is in an open position conformation and the DFG motif is oriented toward 

the catalytic site (“DFG-in”).

Courtesy of T. Clackson, PhD, Cambridge, MA.
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Figure 3. 
Key residues influence BCR-ABL1-dependent resistance to TKIs. (A) Crystal structure of 

the ABL1 kinase domain in complex with imatinib. Twelve positions (in orange, T315 in 

red) account for most clinical BCR-ABL1 TKI resistance. The phosphate-binding (yellow) 

and activation loops (green) are indicated. (B) Superposition of imatinib and AP24534 

(ponatinib) highlighting the effect of the Thr to Ile mutation. High-affinity binding of 

imatinib and other 2G TKIs to BCR-ABL1 requires a critical hydrogen bond with residue 

T315, which is eliminated upon the conversion of threonine to isoleucine. Unlike other 

clinically available TKIs, ponatinib does not form a hydrogen bond with T315 and has 

activity against the T315I mutant form of BCR-ABL1.

Figure 3A: From Zabriskie MS, Eide CA, Tantravahi SK, et al. BCR-ABL1 compound 

mutations combining key kinase domain positions confer clinical resistance to ponatinib in 

Ph chromosome-positive leukemia. Cancer Cell 2014; 26(3); 430; with permission.

Figure 3B: From O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL 

inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes 

mutation-based resistance. Cancer Cell 2009; 16(5): 403; with permission.
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Figure 4. 
Activity of TKIs against mutant isoforms of BCR-ABL1 in Ba/F3 cells. The relative 

increase in IC50 value over wild-type BCR-ABL1 is depicted for each TKI against single 

BCR-ABL1 mutants. Green indicates sensitive mutants, yellow indicates moderate 

resistance and yellow indicates marked resistance. In patients, TKI efficacy is dependent on 

other factors, such as oral and cellular bioavailability.

From Eiring AM, Deininger MW. Individualizing kinase-targeted cancer therapy: the 

paradigm of chronic myeloid leukemia. Genome Biol 2014;15(9):461; with permission.
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Table 1

Targets for eradication of LSCs in CML

Target References Trial Drug(s) tested Comments

Wnt/β-catenin MNK Zhao et al. Cancer Cell 200772

Lim et al. PNAS 201373 + PRI-724 Difficult target

Hedgehog Dierks et al. Cancer Cell 200884

Zhao et al. Nature 2009
+ BMS-833923

LDE225 Failed (toxicity)

5-Lipoxygenase Chen et al. Nat Genet 200985 + Zileuton Currently recruiting

BCL6 Hurtz et al. JExMed 2011 − RI-BPI Small molecule inhibitor in 
development

MYC Reavie et al. Cancer Cell 201394

Abraham et al. Nature 201695 − – Difficult target

PP2A Neviani et al. J Clin Invest 2007; 201386 − – Fingolimod approved for 
MS

PPAR-γ Prost et al. Nature 2015125 + Pioglitazone Ongoing

SIRT1 Bhatia et al. Cancer Cell 2012 + Panobinostat
Vorinostat Tested in refractory CML

Rad52 Cramer-Morales et al. Blood 201387 − – –

MEK Ma et al. Sci Transl Med 201463

Packer et al. Cancer Cell 201164 + MEK-162 Ongoing

BCL2 family Goff et al. Cancer Stem Cell 2013 + Obatoclax
Tested in advanced 
hematologic malignancies, 
including CML-BC

Autophagy Bellodi et al. J Clin Invest 200990 + Hydroxychloroquine Ongoing (CHOICES)

PML Ito et al. Nature 200891 + As2O3 Ongoing

JAK2 Traer et al. Leukemia 201257

Neviani et al. J Clin Invest 201386 + Ruxolitinib Ongoing

ADAR1 Jiang et al. PNAS 201393 − – –

STAT3 Eiring et al. Leukemia 201456 − – Difficult target

EZH2 Xie et al.69 Scott et al.68 Cancer 
Discovery 2016

− – –

Heat shock proteins Peng et al. Blood 200788 + STA-9090 Ongoing

Fap1 Huang et al. Leukemia 201692 − – –

BCR-ABL1 Pinilla-Ibarz et al. Blood 2000115

Bocchia et al. Lancet 2005116 + Breakpoint peptide vaccines Suggestion of activity

PR1 Molldrem et al. Nat Med 2000117

Rezvani et al. Haematologica 2011118 + Peptide vaccines Negative studies

WT1 Gao et al. Blood 2000119

Dubrovsky et al. Blood 2014120 +

Peptide vaccines
Peptide-specific antibody
WT transduced autologous T 
cells

Ongoing (some)

IL1RAP Järås M et al. PNAS 2010121 − Antibody –

IL3R (CD123) Frolova et al. Br J Haematol 2014122 − DT-conjugated antibody 
(SL-401; SL-501) –
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