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Abstract

Stem cell therapy (SCT) raises the hope for cardiac regeneration after ischemic heart disease. 

However, the molecular mechanisms underlying repair of dead myocardium in the ischemic heart 

is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential 

expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their 

roles on transplanted stem cells, for the myocardial repair of the ischemic heart, remain unclear. 

Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead 

myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel 

therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry 

microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. 

MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular 

matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process 

that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, 

and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates 

the specific roles of these regulatory components on cardiac regeneration in ischemic hearts during 

SCT.
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Introduction

Ischemic heart disease is a leading cause of mortality in the world. As per the 2012 World 

Health Organization report 7.4 million people die due to ischemic heart disease (http://

www.who.int/mediacentre/factsheets/fs310/en/). Restricted blood supply to the ventricular 

muscles, due to narrowing of coronary arteries, results in ischemia that compromises oxygen 
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supply to cardiomyocytes and other cells in the myocardium. Severe ischemia leads to acute 

myocardial infarction (MI) that results into massive loss of cardiomyocytes (1). The adult 

mammalian heart does not have adequate regenerative capacity to replenish the loss of 

damaged myocardium after MI. Therefore, MI leads to heart failure (2). Stem cell therapy 

(SCT) provides a strategy to regenerate new myocardium to replenish dead/damaged 

myocardium of MI hearts by using exogenous stem cell transplantation (3, 4). However, the 

survival, proliferation, and differentiation of transplanted stem cells depend on several 

factors including the stiffness of extracellular matrix (ECM) surrounding the stem cells 

(5-10). Proteolysis of ECM by matrix metalloproteinase (MMPs) is common in 

cardiovascular diseases (CVD) (11). MMP9 plays an important role in ECM degradation in 

pathological hearts that leads to cardiac fibrosis, a stiffer ECM, that may influence cardiac 

stem cell survival and differentiation (8). MMPs are regulated by microRNAs (miRNAs) 

(12, 13). MiRNAs are tiny non-coding RNAs that regulate biological functions of a cell by 

modulating expression of genes (14). MiRNAs have emerged as a novel therapeutic target 

for CVD (15-17). MiRNAs may play a pivotal role in stem cell survival because they 

regulate stem cell autophagy (18, 19). Autophagy is a lysosomal degradation process that 

regulates cellular homeostasis (20). MiRNAs may regulate cardiac stem cell proliferation 

and differentiation (21) by acting in an autocrine and/or a paracrine fashion (22, 23). 

MiRNAs encapsulated in an exosome circulate through blood and may have paracrine 

effects (24). Exosomes are lipid bilayer nanovesicles released by different types of cells 

when endosomes carrying multivesicles fuse with plasma membrane. Exosomes exert their 

therapeutic actions by involving in cell-cell interactions and transferring proteins, RNAs 

(25), and miRNAs (23). Exosomes derived from cardiac stem cells are promising therapeutic 

candidate because in one hand it may regulate survival, proliferation and differentiation of 

the transplanted stem cells whereas on the other hand it may overcome the limitations of 

SCT due to immune rejections, teratoma, or ethical concerns. In this review, we elaborated 

the roles for exosomes, miRNAs, autophagy, and extracellular matrix turnover in cardiac 

regeneration during stem cell therapy in ischemic hearts.

Stem cells characteristics and types

Stem cells are pluripotent cells that can differentiate into different lineages to regenerate 

different types of cells (26). Based on origin, stem cells are classified into embryonic stem 

cells (ESCs) and adult stem cells (ASCs). ESCs can be maintained in tissue culture, while 

retaining their pluripotency (27). ESCs in cell culture express the intrinsic transcription 

factor Oct4 and constitutively receive the extrinsic signal from the leukemia inhibitory factor 

(LIF) to maintain their pluripotent state (28, 29). Adult stem cells (ASCs) are slow cycling 

cells that are able to respond to specific environmental signals to either proliferate or 

differentiate. During differentiation, these ASCs enter into a transient state of rapid 

proliferation (30), withdraw from cell-cycle, and execute terminal differentiation. ASCs are 

localized in specific niches, where they utilize many of the extrinsic and intrinsic cues used 

by their embryonic counterparts in selecting a specific fate. ASCs are roughly categorized 

into bone marrow stem cells (BM-SCs), circulating pool of progenitor cells such as 

endothelial progenitor cells (EPCs), and tissue-resident stem cells such as cardiac stem cells 

(CSCs). BM-SCs are further categorized into mesenchymal stem cells (MSCs) and 
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hematopoietic stem cells (HSCs) (31). According to the expression of surface markers and 

properties, resident CSCs were classified into different subsets such as c-Kit-positive (c-

Kit+) cells, Sca-1-positive (Sca-1POS) cells, side population (SP) cells, cardiosphere cells, 

and Isl1-positive (Isl1POS) cells (32). CSCs are multipotent cells that can differentiating into 

multiple lineages; such as cardiomyocytes, smooth muscle cells, and endothelial cells (33, 

34).

Regulators of CSCs proliferation and differentiation

The adult heart has small number of CSCs that may have potential for cardiac regeneration 

(35-37). Stem cells can be differentiated into cardiomyocyte with the treatment of a specific 

combination of factors (38). CSCs were identified and validated using various markers such 

as c-kit, MDR-1, and Sca-1 (38, 39). They are heterogeneous and expresses 7%-10% of 

important cardiogenic transcription factors like Nkx2.5, GATA4, and MEF2 (36). CSCs can 

divide both symmetrically and asymmetrically, however, asymmetrical division is 

predominant (40). They regulate myocytes turnover, which is heterogeneous across the 

heart. Myocytes turnover is faster at the apex and atria and slower at the base-and mid- 

regions of the ventricle (38, 41). The studies on CSCs differentiation were performed 

primarily on mice and chick embryos. The formation of cardiomyocytes from mesoderm is 

regulated by Wnts, BMPs, and Nodal (42, 43). Inhibition of Nodal (a family member of 

TGF-β), and Wnt promotes formation of cardiomyocytes in xenopus and chick embryos 

(44-46). Inhibition of Nodal and Wnt is also important for differentiation of mouse ESC into 

cardiomyocytes (46-48). The transmembrane receptor Notch induces a combination of 

growth factors that up regulates differentiation of ESC-derived mesoderm subpopulations 

into cardiac progenitors (49). These growth factors include Wnt5a, BMP6, and secreted 

frizzled-related protein1 (Sfrp1) (50). The differentiation of committed cardiac progenitors 

into cardiomyocytes is the last step of differentiation, and is poorly understood. It is believed 

that Wnt11 plays a crucial role in this last step (48, 51). The transduction of Wnt11 

promotes mesenchymal stem cell trans-differentiation into cardiac phenotypes in vitro 
(52). Several transcription factors regulates differentiation of pluripotent stem cells (PSCs) 

into cardiac fate. These transcription factors include T Brachyury for primitive streak 

mesoderm, mesoderm posterior 1(Mesp-1) for cardiogenic mesoderm, and Nkx2.5, T-box 

(Tbx5/20), GATA4, MEF2C, and Hand1/2 for cardiac mesoderm (53-57). Cardiac 

development is a complex process that is tightly controlled by the sequential expression of 

multiple signal transduction proteins and transcription factors working in a synergistic 

manner. The most studied of these growth factors and signaling pathways include FGFs, 

BMPs, and Wnts/Nodal (58-61). We have summarized the important regulators of stem cells 

proliferation and differentiation in Figure 1.

Role of autophagy in homeostasis of stem cells

Autophagy is an evolutionary conserved adaptive process required for cellular homeostasis 

and protecting against various pathological conditions including CVD. During autophagy 

defective cytoplasmic cargoes are sequestered into double membrane autophagosome which 

after fusion with lysosome are degraded and recycled (62). Autophagy maintains the quality 

control of stem and progenitor cells (63). Various properties of the stem cells such as 
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pluripotency, quiescence, differentiation and self-renewal depends on autophagy activation 

(64, 65). Therefore, autophagy plays an important role in normal functions of stem and 

progenitor cells (66). Suppression of autophagy through fibroblast growth factor (FGF) 

signaling inhibits CSC differentiation (67). Autophagy may have different roles in different 

types of stem cells. It induces apoptosis in BM-MSCs of non-obese diabetic (NOD) mice 

(68) but promotes MSC-mediated hepatic regeneration in CC14-injured rat liver model (69) 

and MSC-mediated wound healing in diabetic mellitus patients (70).

Trans-differentiation of cells

Although differentiation of stem cells into a particular lineage is canonically the strategy for 

SCT, recent studies revealed that differentiated adult cells can be transdifferentiated into 

another phenotype by using certain factors. Fibroblasts are present in a large pool in the 

postnatal heart and they contribute to pathological remodeling via fibrosis. It is observed that 

by using developmental transcription factors (Gata4, Mef2c, and Tbx5), somatic fibroblast 

can be reprogrammed into cardiomyocytes in mouse heart (71). In neonatal and adult 

humans' fibroblasts addition of Gata4, Hand2, Tbx5, myocardin, miR-1 and miR-133 causes 

trans-differentiation of fibroblast into cardiomyocyte phenotype (72). There are several other 

factors are involved in this trans-differentiation process (73, 74). However, whether these 

cardiomyocytes can maintain the cardiomyocytes properties including contractility for 

prolong time and can maintain synchronous beating with resident cardiomyocytes, is unclear 

and requires further investigation.

Effect of extracellular matrix turnover on stem cell differentiation

The mechanical force of ECM may influence survival, proliferation, and differentiation of 

stem cells, and also trans-differentiation of other cells into cardiomyocytes. The mechanical 

load of the ECM contributes to differentiation of MSCs (75-78). Transforming growth 

factor- beta (TGF-β) promotes MSC differentiation into a smooth muscle lineage on stiff 

substrates (79, 80). Soft matrix promotes MSC differentiation into chondrogenic and 

adipogenic lineages. However, matrix stiffness may not be specific for only one lineage. 

Biochemical factors such as TGF-β are required to define a unique differentiation pathway 

(81). ECM stiffness depends on matrix turnover, which is determined by the balance 

between MMPs and tissue inhibitors of metalloproteinases (TIMPs) (82). MMP-9 and 

TIMP-4 are predominantly involved in cardiac remodeling. MMP-2 and MMP-9 are 

collagenases that degrade ECM and contribute to fibrosis (82, 83), where ECM is stiffer 

(Figure 2). Stiffness of cardiac ECM may play a pivotal role in stem cell therapy (84). 

MMP9 is also involved in inhibiting EPCs-mediated increase in vessel density in the peri-

infarct area in the mouse brain (85). Moreover, it is implicated in migration of c-Kit+ CSCs, 

which is partially mediated by stem cell factor (SCF) via the activation of PI3K/AKT/

MMP-2/-9 signaling pathway (86). These reports indicate the diverse roles of MMPs. Along 

with MMPs, it was reported that various miRNA family members also regulate ECM. These 

miRNAs have either pro-, or anti-fibrotic roles in various tissues (87).
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MicroRNAs in stem cell proliferation and differentiation

MiRNAs are 22 nucleotide long, non-coding RNAs that modulate gene expression and stem 

cell proliferation and differentiation (88). They have emerged as a biomarker and a 

therapeutic target for cardiovascular diseases (15, 89, 90). MiR-29 was found to be an 

important component of TGF-β signaling, which also regulates collagen synthesis (87). 

MiR-1, miR-24, miR-29b, miR-101, and miR-200b are anti-fibrotic, whereas miR-15 family, 

miR-21, miR-34a, miR-192, miR-199b, and miR-208 are pro-fibrotic miRNAs (87). As 

discussed above, fibrosis changes the ECM tensile properties and ECM related miRNAs can 

influence stem cell physiology in normal and pathological conditions. In Table 1, we have 

shown the list of miRNAs targeting important ECM regulators including MMPs, TIMPs, 

CTGF, and TGF-β (91-137). The information is obtained from online database miRTarbase 

(http://mirtarbase.mbc.nctu.edu.tw/).

MicroRNAs (miRNAs) regulate differentiation of stem cells into cardiomyocyte (138). 

MiR-1 induces differentiation of mESCs and hESCs into cardiac phenotype (51, 139). 

MiR-1 promotes differentiation of stem cell by targeting HDAC4, which is a negative 

regulator of MEF2, whereas miR-133 promotes stem cell proliferation by targeting SRF. The 

differential expression of miRNAs in ESCs and CSCs is nicely reviewed by Kuppusamy et 

al (140). MiR-1, miR-21, miR -133a, miR -133b, and miR -145 are upregulated both in 

mouse and human ESC differentiation into cardiac lineage, whereas miR-20b is 

downregulated during this process in both species (140). Empirical evidences demonstrate 

that several miRNAs are deregulated during differentiation of embryonic stem cells into 

cardiac stem cell lineage (140-143). It is also reported that miR-499 along with miR-1 and 

miR-208 regulates cardiomyocyte differentiation (143). MiR-133-a, -b, miR-125-a, -b, 

miR-126, miR-23-a, -b, miR-24, miR -30C, miR-132 are differentially expressed during 

mouse CSC differentiation (144). There are several miRNAs that regulate both ECM 

turnover (Table 1) and stem cell proliferation and differentiation (Table 2). MiR-1, 

miR-21-5p, miR-26a-5p, miR-26b-5p, miR-30c-2-3p, miR-126-3p, miR-126-5p, 

miR-145-5p, miR-30a, miR-30b, miR-99b, miR-125a-5p, miR-129-3p, miR-133a, 

miR-133b, miR-148a, miR-181b, miR-652 are upregulated whereas miR-17-5p, 

miR-124-3p, miR-200c-3p, miR-205-5p, miR-20a, miR-20b, miR-106a, miR-106b, 

miR-182, miR-183, miR-183*, miR-302c, miR-302c* are downregulated during 

differentiation of SC into cardiomyocytes (140, 143). MiRNAs which are involved in 

regulating ECM turnover include let-7e-5p (124), miR-100-5p (106), miR-103a-3p (121), 

miR-125b-5p (109), miR-132-3p (111), miR-140-5p (108), miR-143-3p (110), miR-144-3p 

(121), miR-16-5p (124), miR-181b-5p (119), miR-18a-5p (132), miR-18b-5p (124), 

miR-19a-3p (137), miR-19b-3p (132), miR-203a (104), miR-221-3p, miR-222-3p (119), 

miR-24-3p (125), miR-27a-3p (108), miR-27b-3p (107), miR-29b-3p (145), miR-335-5p 

(99), miR-338-3p (96), miR-375 (136), miR-423-5p (124), miR-451a (94), miR-491-5p 

(95), miR-519a-3p, miR-519c-3p, miR-519d-3p (112), miR-633, miR-663a (128), miR-9-5p 

(105). Therefore, miRNAs play an integral role in SCT (Figure 3).
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MicroRNAs in trans-differentiation

Cardiac fibroblasts can be reprogrammed to cardiomyocytes using combination of different 

miRNAs (miR-1, miR- 133, miR- 208 and miR- 499) (146). Administration of these 

miRNAs into ischemic boarder zone of MI hearts induces trans-differentiation of cardiac 

fibroblasts into cardiomyocytes. Although miR-1 may be sufficient to induce cardiomyocyte 

trans-differentiation, the combination of miR-133, -208, and -499 is much more effective in 

the trans-differentiation process. Fibroblast-turned cardiomyocytes have all the properties of 

functional cardiomyocytes including contractility and spontaneous calcium oscillations 

(146). Therefore, trans-differentiation of fibroblast to cardiomyocytes by miRNAs provides 

a novel opportunity in SCT.

Stem cell therapy for cardiac regeneration

Stem cell therapy (SCT) is one of the propitious approaches to promote cardiac regeneration 

or repair myocardium after MI (147, 148). In vitro and in vivo studies have shown the 

transformation of various types of stem cells such as ESC (149), iPSCs (150), BM-SCs(151, 

152), and adult tissue derived MSCs(14, 152, 153), HSCs (154), CSCs (155), adipose stem 

cells (156), and EPCs (157, 158) into cardiomyocyte lineage. Growing evidence suggest that 

cardiac regeneration by SCT is influenced by several paracrine factors (159, 160). Moreover, 

the homing of transplanted stem cells is dictated by the cytokines released from the damaged 

tissue (161). Broad range of cytokines, chemokines, growth factors such as vascular 

endothelial growth factors (VEGF), fibroblast growth factors (FGF), insulin-like growth 

factor-1 (IGF-1), and hepatocyte growth factor (HGF) have been shown to stimulate 

regeneration. Exosomes are one of the various paracrine mediators, which play an important 

role as regulators in cell autonomous repair mechanisms (162).

Role of miRNA containing exosomes in cardiac regeneration

Exosomes originate from inward folding of cell membranes which results in the formation 

of multiple intraluminal vesicles in the endosome called multivascular bodies (MVBs). 

These MVBs fuse with the plasma membrane releasing intraluminal vesicles into the 

extracellular matrix in the form of exosomes (163-165). They are present as extracellular 

space as vesicles (163). The diameter of exosome range from 30-120 nm. Exosome was first 

reported in sheep reticulocytes in early 1950s (165, 166). Exosomes are secreted from 

various types of cells including stem cells (167), cardiomyocytes (168), B cells (169), T 

cells (170), dendritic cells (171), platelets (172), Schwann cells (173), endothelial cells 

(174), and tumor cells (175). They are present in various body fluids such as blood, urine, 

plasma, semen, and broncho-alveolar lavage, and play an important role in intercellular 

communication (176, 177). They also play a pivotal role in modulation of immune responses 

and cell signaling pathways (178-180).

Different types of exosomes behave differently based on their origin. Stem cell exosomes are 

released by different types of stem cells such as pluripotent stem cell (embryonic stem cell 

and induced pluripotent derived exosomes) and adult stem cell (mesenchymal, endothelial 

progenitor and cardiac progenitor cell derived exosomes). The role of stem cell exosomes on 
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cardiac repair along with their roles in normal and infarcted heart is reviewed by others (165, 

181). Exosomes released during stress or pathological conditions behave differently 

compared to healthy conditions (182). ESCs serve as a promising source of exosomes due to 

their unique microRNA and protein content to augment endogenous CPCs proliferation and 

differentiation. Mir-290 family is highly expressed in ESC-derived exosomes in the mouse 

cardiomyocytes, which is evident from the elevated levels of miR-291, miR-294 and 

miR-295. These exosomes might have an important role in ESC exosome-mediated cardiac 

repair. Therefore, these exosome are implicated in stem cell survival, proliferation and 

differentiation into cardiomyocyte lineage (183). Few studies have reported cardioprotective 

effects of CPC-derived exosomes in myocardial ischemia/reperfusion (I/R) injury and MI 

model. CPC exosomes with miR-451/144 might exert beneficial effects (184). They also 

enhanced endothelial cell migration through extracellular matrix metalloproteinase inducer 

(EMMPRIN) (185). Exosomes with various miRNAs derived from CPCs in hypoxic 

conditions improve cardiac function in the injured heart (186). Cardiosphere derived cell 

(CDC) exosomes with miR-146a have elicited signature beneficial effects in MI model by 

improving global function and decreasing scar mass. Though therapeutic regeneration was 

observed with miR-146a-treated hearts but CDC exosomes excel in having more promising 

effects (187). CDC exosomes carrying miR-22 and miR-24, and play a prominent role in 

cardiac regeneration (188, 189). Exosomes are also released from mature cells present in the 

heart like cardiomyocytes and fibroblasts (190, 191). MiR-320 enriched exosomes in 

diabetic cardiomyocytes transfer miR-320 into endothelial cells and inhibit endothelial cell 

proliferation, migration, and myocardial angiogenesis in diabetics (191).

Stem cell therapy and stem cell-derived exosomes in clinical trial

The first stem cell based clinical trial with intracoronary infusion was “transplantation of 

progenitor cells and regenerative enhancement in acute myocardial infarction (TOPCARE)”, 

where bone marrow-derived mononuclear cells (BMMNCs) were used (192). Although, 

there was initial success with this population of cells for acute myocardial infarction (AMI) 

and chronic heart failure (CHF) but later in larger trials, no significant improvement in heart 

conditions was observed (193). Subsequent clinical trials were based on purified cell 

population. In Act34-CMI trial, CD34+ EPCs were used for chronic myocardial infarction 

(CMI) and reduction in frequency of angina was reported. However, in another trial 

(POSEIDON) using purified BM derived human MSCs, no improvement in ejection fraction 

was observed in patients (193). Cardiac specific stem cells were used in recently concluded 

SCIPIO trial. It is reported that c-kit-positive, lineage negative CSCs improve post- 

infarction left ventricle function (194). However, another group found that c-kit+ cells have 

minimal contribution to cardiomyocytes in the adult heart (195). There is controversy on 

whether c-kit positive cells are the marker of cardiac stem cells (196). CADUCEUS clinical 

trial used CSC cardiosphere and observed no cardiac benefits in AMI patients whereas C-

CURE trial used cardiopoietic hMSCs and reported positive results in ischemic 

cardiomyopathy patients (193). Apart from various phase-I and II clinical trials, there are 

few ongoing phase-III clinical trials – BMI, CHART-1, CHART-2. The BMI trial used 

BMMNCs whereas CHART-1 and 2 used MSCs isolated from patient's bone marrow (197). 

Clinical trials on human ESCs and iPSCs in various ailments is reviewed by others (198). 
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Transcoronary infusion of CPCs in patients with hypoplastic left heart syndrome, the 

(HLHS)- TICAP trial showed improvement in right ventricular ejection fraction that 

persisted during 36-month follow up (199). A list of existing and ongoing stem cell clinical 

trials are summarized in a recent review article by Poulin et al (200).

Limitations and Future perspective of stem cell therapy

Although several types of stem cells were used in clinical trials, they were successful only at 

different phases of clinical trials but mostly failed in larger trials, may be due to 

inappropriate choice of endpoints and/or less considerations for regulatory pathways 

involved in myocardial regeneration (201). Careful analyses of results from clinical trials 

will help us to understand the challenges to get success in stem cell therapy for heart failure 

(202, 203). To understand the cause of failure of larger clinical trial, it is imperative to 

evaluate the gene expression profiles of the transplanted stem cells after engraftment and to 

develop strategies that can facilitate the engraftment and differentiation of transplanted stem 

cells. The success of stem cell therapy may depend on homing and differentiation of 

transplanted stem cells to cardiac lineages that contribute to myocardial regeneration, the 

effect of paracrine factors that stimulate endogenous resident stem cell's differentiation to 

contribute to myocardial regeneration, and the microenvironment surrounding the niche of 

the stem cells that facilitate survival and differentiation of stem cells (88, 204). Recent 

studies demonstrated that stem cell exosomes could be a promising target for myocardial 

regeneration, and several preclinical trials reported improvement in myocardial regeneration 

by stem cell exosomes (205-208). Therefore, exosomes could be a novel approach for 

cardiac regeneration (209), and are given in pre-clinical studies for evaluating its safety and 

efficacy. MiRNAs from these exosomes can be also used as a biomarker for clinical outcome 

of the patients (210). Although miRNAs are now in clinical trials (211), stem cell-derived 

exosomes need further investigations to translate its role in SCT. One of the limitations of 

exosome-mediated cardiac regeneration is specificity and yield of exosomes (212). 

Developing techniques to isolate cardiac specific exosomes, and to deliver them to the 

border zone of the ischemic heart, understanding the mechanism of action of exosomes 

delivered to the ischemic heart, are some of the strategies for successful use of exosomes in 

regenerating damaged myocardium. An alternative strategy for replenishing the dead 

myocardium could be trans-differentiation of fibroblast into functional cardiomyocytes or 

inducing cardiomyocyte to reenter into cell cycle (213). Considering of ECM stiffness and 

its impact on stem cells, regulation of MMPs especially inhibition of MMP9 can be an 

important approach. Similarly, regulating of autophagy of stem cells is crucial for their 

survival and differentiation.

In summary, we can harness the basic science knowledge and clinical outcomes from the 

previous clinical trials to understand the factors that regulate survival of transplanted stem 

cells, differentiation of engrafted stem cells into a specific lineage such as cardiomyocytes, 

maintenance of cardiomyocyte's properties for prolong time. At the same time, we need to 

use systematic approach to improve cardiac regeneration in MI hearts and it may include 

autophagy, exosome, miRNAs, ECM stiffness, and trans-differentiation (Figure 4).
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Figure 1. 
Regulators for embryonic stem cell (ESC) differentiation into cardiomyocytes. Transcription 

factors Oct4, KLF4, Sox2 and c-Myc are required for maintaining embryonic stem cell 

pluripotency. Inhibition of signaling molecules Wnt3a, and nodal while upregulation of FGF, 

BMP4, and Activin A are required for differentiation of ESC into cardiac stem cell (CSC). 

Activity of BMP6, Srfp1, and Wnt5a are required for differentiation of CSC into cardiac 

lineage specific cardiac progenitor cell (CPC). Nkx2.5, GATA4 and MEF2 maintain cardiac 

lineage specificity. Wnt11 is involved in differentiation of CPC into cardiomyocytes.
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Figure 2. 
Extracellular matrix (ECM) remodeling in diabetic heart. In healthy heart collagen and 

elastin are present in optimal ratio which might help in maintaining the integrity of the ECM 

and niche of stem cells. In pathological heart such as diabetic heart, activity of MMPs is 

augmented, expression of cardio-protective miRNAs is attenuated, stiffness of ECM, and 

apoptosis of stem cells are induced.
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Figure 3. 
MiRNAs involve in ECM turn over and stem cell differentiation. Left panel shows 33 

miRNAs that regulate ECM turnover, right panel shows 19 miRNAs that regulate stem cell 

homeostasis, and middle panel represents miRNAs that regulate both stem cell homeostasis 

and ECM turnover.
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Figure 4. 
Schematics for systemic approach for stem cell therapy. Cardiac regeneration can be 

achieved by using different approaches such as regulating autophagy in stem cells, using 

stem cell-derived exosomes, inhibiting matrix metalloproteinase-9 (MMP9) that may reduce 

stiffness of extracellular matrix to promote stem cell proliferation and differentiation, 

inducing trans-differentiation of fibroblasts into cardiomyocytes.
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Table 1

MiRNAs that regulates extracellular matrix turn over in mouse and human hearts.

Genes 
involved in 
ECM turn 
over

miRNA (Mouse) Ref. miRNA (Human) Ref.

MMP9 miR-204-5p, miR-212-3p, 
miR-132-3p, miR-320-3p

(91-93) miR-451a, miR-491-5p, miR-338-3p, miR-21-5p (91, 94-97)

MMP2 --- --- miR-29b-3p, miR-451a, miR-335-5p, miR-338-3p, 
miR-21-5p, miR-17-5p

(94, 96-100)

MMP7 --- --- miR-126-5p, miR-126-3p (101)

MMP12 --- --- miR-145-5p (102)

MMP-14 --- --- miR-335-5p, miR-145-5p (99, 102)

MMP1 --- --- miR-222-3p, miR-203a, miR-145-5p (102-104)

MMP13 --- --- miR-9-5p, miR-100-5p, miR-27b-3p, miR-140-5p, 
miR-27a-3p, miR-125b-5p, miR-143-3p, miR-132-3p

(105-111)

TIMP-1 --- --- miR-519a-3p, miR-26b-5p (112, 113)

TIMP2 --- --- miR-519d-3p, miR-519c-3p, miR-200c-3p (112, 114)

TIMP3 miR-181b-5p, 
miR-206-3p, miR-7b-5p, 
miR-181a-5p, 
miR-149-5p, miR-124-3p

(115-118) miR-181b-5p, miR-21-5p, miR-1, miR-222-3p, miR-221-3p, 
miR-103a-3p, miR-335-5p, miR-124-3p, miR-423-5p, 
miR-30c-2-3p, miR-18b-5p, miR-16-5p, let-7e-5p

(99, 119-124)

TGF-β --- ---- miR-24-3p, miR-29b-3p, miR-144-3p, miR-633, miR-663a, 
miR-21-5p

(124-129, 145)

CTGF miR-122-5p, miR-425-5p, 
miR-297a-5p, miR-9-5p

(117, 130) miR-124-3p, miR-18a-5p, miR-26a-5p, miR-205-5p, 
miR-145-5p, miR-375, miR-19b-3p, miR-19a-3p

(117, 131-137)

Abbreviations: MMPs, Matrix metalloproteinases; TIMPs, Tissue inhibitor of metalloproteinases; TGF-β, Transforming growth factor-β; CTGF, 
Connective tissue growth factor; ECM, Extra cellular matrix.
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