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Summary

Purpose: To investigate the robustness of four fit-
ting methods for bi-component effective spin-spin
T2 (T2*) relaxation time analysis of human patellar
tendon.
Methods: A three-dimensional (3D) cone ultra-
short echo-time (UTE) sequence was performed
on the knees of ten healthy volunteers at 3.0T.
Four fitting methods incorporating either Gauss-
ian or Rician noise distribution were used for vox-
el-by-voxel bi-component T2* analysis of the
patellar tendon. The T2* for the short relaxing
(T**,s) and long relaxing (T*2,l) water components
and the fraction of the short relaxing water com-
ponent (fs) were measured, and different fitting
methods were compared using Friedman’s and
Wilcoxon signed rank tests. A numerical simula-
tion study was also performed to predict the ac-
curacy and precision of bi-component T2* para-
meter estimation in tendon at different signal-to-
noise ratios (SNR) levels.
Results: The average T*2,s , T*2,l, fs of human patel-
lar tendon were 1.5ms, 30ms, and 80% respective-
ly. Incorporating different noise models and fit-
ting methods influenced the measured bi-compo-
nent T2* parameters. Fitting methods incorporat-
ing Rician noise were superior to traditional fit-
ting methods for bi-component T2* analysis espe-
cially at lower SNR. fs and T*2,s were less sensi-
tive than T*2,1 to noise at even moderate and low
SNR. The result of the in-vivo bi-component T2*
analysis of tendon agreed well with numerical
simulations.
Conclusion: Our study demonstrated the use of a
3D cone UTE sequence to perform in vivo voxel-

by-voxel bi-component T2* analysis of human
patellar tendon. Incorporating Rician noise was
useful for improving bi-component T2* analysis
especially at lower SNR.
Level of evidence: IV.

KEY WORDS: tendon, T2 relaxation time, bi-compo-
nent, curve fitting, noise.

Introduction

Various imaging methods including radiographs, ul-
trasound, computed tomography, and conventional
and quantitative magnetic resonance (MR) imaging
can be used to evaluate musculoskeletal tissues.
However, only quantitative MR imaging can be used
to provide information regarding tissue composition
and microstructure. Thus, these imaging techniques
play an important role in the non-invasive assess-
ment of disease-related and treatment-related
changes in cartilage, bone, meniscus, and tendon.
Spin-spin (T2) and effective spin-spin (T2*) relaxation
times are the most commonly used quantitative MR
method used in musculoskeletal imaging and have
been shown to useful for evaluating tissue composi-
tion and microstructure 1-4. However, changes in T2
and T2* are nonspecific and can be caused by multi-
ple factors including hydration, macromolecular con-
tent, and tissue anisotropy with comparable changes
occurring in disparate settings 5-9. 
Bi-component T2 and T2* mapping techniques have
been used to improve the specificity of T2 analysis by
assessing the individual water components of muscu-
loskeletal tissues 10-22. Bi-component T2 and T2*
mapping methods have measured two distinct T2
components in cartilage assumed to represent short
relaxing water bound to the macromolecular matrix
and long relaxing bulk water 12-14,21,22. Bi-component
T2* mapping methods have been used in cortical
bone to differentiate between water bound to the or-
ganic matrix and free water in the Haversian systems
15-17, Bi-component T2 and T2* mapping methods
have also been used in the meniscus to differentiate
between macromolecular bound water and bulk water
18-20. 
In tendon, recent studies using bi-component T2*
mapping techniques have measured two distinct T2
components representing short relaxing water bound
to the highly organized collagen fibers and long relax-
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ing bulk water19. Chang et al. detected short and long
relaxing water components in histologically normal
human cadaveric Achilles tendon with a T2* of 1.8ms
and 9.2ms and a fraction of 79.2% and 20.8% re-
spectively23. The Authors later reported that bi-com-
ponent T2* parameters did not change with tensile
loading of the Achilles tendon 24. Jarus et al. com-
pared single-component and bi-component T2* analy-
sis of the Achilles tendon in human subjects and
found that the bi-component analysis provided
greater diagnostic performance for distinguishing be-
tween normal and pathologic tendon 25.
However, multiple factors may affect estimations of
bi-component T2 and T2* parameters within muscu-
loskeletal tissues. Bi-component T2 measurements
have been shown to be strongly influenced by experi-
mental details such as the field strength, gradient
system, pulse sequence, imaging parameters, and
specimen preparation26,27. Bouhrara et al. also
demonstrated that accurate estimation of bi-compo-
nent T2 parameters requires sufficient signal-to-noise
(SNR) ratio and proper noise modeling which is par-
ticularly important when estimating pixel-by-pixel spa-
tial variations across a tissue sample28. In their study,
simulations and imaging experiments on ex vivo
phantoms and bovine nasal cartilage specimens were
used to compare multiple model fitting methods and
to investigate the sensitivity and robustness of bi-
component T2* measurements at different SNR lev-
els. Their conclusion resided in the importance of in-
corporating Rician noise models in bi-component T2*
analysis of cartilage. 
However, questions remain regarding the effectiveness
of using Rician noise models for estimating bi-compo-
nent T2* parameters in in vivo musculoskeletal imag-
ing. Furthermore, the applicability of these models for
imaging tendon which has different tissue composition
and microstructure than bovine nasal cartilage requires
further investigation. In this study, we investigated the
applicability of translating observations derived from
simulations and ex vivo experiments into in-vivo tendon
imaging to provide insight into the best fitting methods
for use in bi-component T2* analysis. More specifically,
our study compared different curve fitting methods in-
corporating different noise models for measuring bi-
component T2* parameters of the patellar tendon in a
numerical simulation study and in healthy volunteers
using a three-dimensional (3D) cone ultra-short echo-
time (UTE) sequence.

Methods

Bi-Component signal model and fitting methods
A bi-component exponential signal model was used
to characterize the short (denoted as s) and long (de-
noted as l) relaxing water components in patellar ten-
don, given by
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where S is the acquired signal at varying TEs with
noise, SN is the underlying noise free signal, A is the
combined factor of proton density and hardware gain,
T*2,s, and T*2,l are T2* for the short and long relaxing
water components respectively, and fs is the water
fraction for the short water component, defined as the
ratio of the short water content to the total water
(short + long) content. e(TE) is the noise term at the
individual echo with noise between each echo as-
sumed to be independent. 
Four different fitting methods using the non-linear
least square minimization of the acquired signal and
theoretical model were compared. Under the simple
assumption of Gaussian distributed noise of the im-
age signal, the first method, M1, is the traditional ap-
proach where ⏐S–SN⏐ is minimized. Under the as-
sumption of a Gaussian distributed noise with equal
variance in both real and imaginary channel of the ac-
quired signal, the noise of the magnitude image can
be described using Rician distribution as 

(3)

where s is the noise standard deviation. I0 denotes the
modified zero order Bessel function of the first kind.
The second fitting method, M2, is minimization of

based on McGibney’s scheme for cor-
recting noise bias at low SNR29. Gudb-

jartsson et al.30 also introduced a simple correction
scheme, M3, for minimization of .
Bouhrara et.al. 28 recently introduced a
fitting scheme, M4, with the minimization of |S – SR| for

where and I1 is the modified first order
Bessel function of the first kind. In all the fitting meth-
ods, the image SNR was estimated for the first echo
signal and defined as 28,29

where the noise standard deviation s was determined
as the mean signal of background regions of all im-
ages acquired at each TE divided by 31.

Simulation study
Numerical simulations were performed to compare
accuracy and precision of bi-component T2* parame-
ter estimation using four different fitting methods.
Theoretical multi-echo spin-echo signal data were
generated based on bi-exponential decay equations
as described in Eq.(1) for the real part of the signal.
To simulate the Rician noise, the imaginary part of
signal was created using only the zero mean Gauss-
ian noise with the same noise standard deviation as
the real part, and the magnitude of the complex sig-
nal was used as the final theoretical signal28. The fi-
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nal signal was fitted with the four different fitting
methods and corresponding bi-component T2* para-
meters were estimated for each individual method. A
total of 10,000 instances of noise were added to the
signal in Monte-Carlo simulations to measure the ac-
curacy and precision of the parameter estimation for
fs, T*2,s, and T*2,l. The performance measure included
the percentage error, which was defined as the differ-
ence between the estimated mean and true parame-
ter value divided by the true parameter value. The
same simulation was repeated with different levels of
added noise at SNR = 20, 50 and 90. 
The set of model parameters used in the numerical
simulations was chosen to mimic bi-component T2*
parameters of tendon previously published in the lit-
erature24. Accordingly, parameters of the two water
pools were chosen as follows: fs =80%, T*2,s = 1 ms,
and T*2,l = 20 ms. The signals were generated using
the experimental design of the in vivo protocol de-
scribed in the next subsection. 

In vivo study
The in-vivo study was performed in compliance with
Health Insurance Portability and Accountability Act
(HIPPA) regulations and with approval from the Uni-
versity Institutional Review Board. The study met the
ethical standards of the Muscle, Tendon, and Liga-
ment Journal 32.  All subjects signed written informed
consent prior to their participation in the study. The
study group consisted of 10 healthy volunteers (6
males with an average age of 28 years and 4 females
with an average age of 27 years) who had no history
of prior knee pain, trauma, or surgery. 
All subjects underwent an MR examination of the
right knee on the same 3.0T scanner (Discovery
MR750, GE Healthcare, Waukesha, WI) using an 8-
channel phased-array extremity coil (InVivo, Orlando,
FL). Foam padding was used to firmly secure the
knee within the coil to minimize subject motion during
the MR examination. The patellar tendon was imaged
in the sagittal plane using a 3D gradient-echo-based
multi-echo UTE sequence 33. The UTE sequence uti-
lized a k-space sampling scheme of a center-out
twisted 3D cone trajectory which allowed a minimal
echo time (TE) of 0.03ms. A total of 16 echoes were
acquired at TEs of 0.03, 0.1, 0.8, 1.6, 4.3, 6.0, 8.0,
10.0, 14.0, 16.0, 18.0, 20.0, 24.0, 26.0, 28.0, 30.0 ms
based upon TE selection from a previous tendon
study 24. For each acquisition, the same repetition
time (TR) was used, and four echoes were acquired.
Other imaging parameters included 40ms TR, 20o flip
angle, 16cm field-of-view, ±150KHz readout band-
width, 1.21ms readout length, 256x256 in-plane ma-
trix, 3mm slice thickness, one excitation, and 10
slices covering the entire patellar tendon. The total
imaging time was approximately 12 minutes. 
All images were registered to the first echo using a
rigid registration method implemented in Elastix soft-
ware to correct for subject motion between scans 34.
The patellar tendon of all 10 subjects on all sagittal
images was manually segmented by an experienced
research assistant under the supervision of a muscu-

loskeletal radiologist using an in-house software pro-
gram developed in Matlab (Matlab 2010b, MathWorks
Inc, Natick, MA). A voxel-by-voxel signal curve fitting
was performed to obtain 3D parameter maps for fs,
T*2,s, and T*2,l. The tendon masks were then superim-
posed over the bi-component T2* maps to measure
the mean and standard deviation of fs, T*2,s, and T*2,l
of the entire patellar tendon for all subjects.
The voxel-by-voxel curve fitting was performed using
an in-house T2*, mapping software program devel-
oped based on the non-linear least square “fmincon”
function implemented in Matlab. The initial parameter
guess T*2,s = 1 ms, T*2,1 =20 ms and fs =80% based
on previous published tendon studies was used in the
iterative optimization 24. The parameter searching
space were [0ms, 20ms], [0ms, 100ms] and [0%,
100%] for T*2,s, and T*2,l, and fs respectively, reflect-
ing a reasonable parameter range within the patellar
tendon. The algorithm converging iterations were
continued until the step size between the successive
estimates was small (<10-8), the object function was
small (<10-8), or total iteration of 1000 was achieved.
The voxels failing the converging iteration criteria or
converged at the parameter searching space bound-
aries were recorded as the outliers, and the corre-
sponding bi-component T2* parametric values were
substituted with the value of 0 or boundary values re-
spectively. The outliers were excluded prior to the
statistical analysis to avoid statistical bias, and the
percentage of outliers was recorded for each subject.
To demonstrate the quality of the curve fitting models
for the acquired image data, quality of fit measures
were compared for the mean signal from a homoge-
nous ROI chosen on a sagittal slice in the central por-
tion of the patellar tendon to avoid partial volume ef-
fect with adjacent tissues. The relative residual error
defined as the percentage of the residual error to the
signal at different echo times was used to measure
the fitting quality of the models at individual echoes.
The overall measure of goodness-of-fit was tested for
all the four methods by using chi-square, c2, value.
The SNR was calculated on all subjects and referred
to as SNRnormal. To estimate the model fitting robust-
ness at different SNR levels, a set of repeat scans
were performed on one subject using the same imag-
ing parameters except for a 1.0mm slice thickness to
decrease image SNR (referred to as SNRlow). Anoth-
er set of repeat scans were performed on the same
subject using the same imaging parameters except
for four excitations to increase image SNR (referred
to as SNRhigh). 

Statistical analysis
Statistical analysis was performed using Matlab.
Friedman’s tests were used to compare the means
and standard deviations of fs, T*2,s, and T*2,l of the en-
tire patellar tendon of all subjects for the four fitting
methods. The Friedman’s test is a non-parametric
one-way ANOVA test used to compare more than two
groups. For those bi-component T2* parameters in
which there was a significant difference between the
four models, Wilcoxon signed rank tests were used
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for pairwise comparison to determine if there was sig-
nificant differences between any two of the four fitting
methods. The Holm-Bonferroni correction method
was used to adjust all p-values to account for com-
parison of multiple MR parameters within the knee
joint 35. 

Results

Figure 1 demonstrates the accuracy and precision of
bi-component T2* parameter estimation when using
four different fitting methods at different SNR levels in
Monte-Carlo simulation. At low SNR (top row,
SNR=20), M1, M3 and M4 provided more accurate
estimation for fs (1.6%, 1.3% and 0.1% error) and
(0.9%, 0.1% and -2.2% error) compared to that of
M2. M2 provided biased estimation for fs (5.4% error)
and T*2,s (4.3% error) and more estimation uncertain-
ty (i.e. less precision) for both parameters indicated
by a much broader spectrum. M3 (11.8% error) and
M4 (-0.1% error) provided better estimation accuracy
of T*2, l, M3 than M1 (44.6% error) and M2 (21.4% er-
ror) at low SNR. In addition, the peak at 100ms in the
estimation of T*2, l indicates that all of the four fitting
methods yield small amount of estimation outliers at
low SNR. At moderate SNR (middle row, SNR=50),
all four fitting methods provided accurate estimation
for fs (0.4%, 0.6%, 0.1% and 0.1% error), T*2,s (0.5%,
0.4%, 0.1% and 0.1% error), and T*2, l (6.2%, -0.3%,

0.4% and 0.6% error), while M2 provided slightly larg-
er estimation uncertainty. At high SNR (bottom row,
SNR=90), all four fitting methods provided accurate
estimation for fs (0.1%, 0.2%, 0% and 0% error), T*2,s
(0.1%, 0.1%,-0.1% and 0% error) and T*2, l (1.7%, -
0.5%, 0% and 0% error), while M2 provided slightly
larger estimation uncertainty. Overall, the accuracy
and precision of bi-component T2* parameter estima-
tion increased with increasing level of SNR for all four
fitting methods. 
Figure 2 shows sagittal images at all 16 echoes ac-
quired using the 3D cone UTE sequence. The mean
SNR of the patellar tendon for all subjects was 54.5
with a standard deviation of 7.6 and a range between
41.3 and 70.4. There was a monotonic decay of the
MR signal of the patellar tendon with much stronger
decay occurring prior to 4.3ms than after 4.3ms. Oth-
er tissues including cartilage, bone marrow fat, and
subcutaneous fat also demonstrated signal decay
from the short echoes to the long echoes. 
Figure 3A shows the mean signal from a ROI in the
central portion of the patellar tendon. All four fitting
methods showed visually good fit. However, the over-
all goodness-of-fit was better (i.e. lower c2 value) for
M1(c2=160), M3(c2=140) and M4(c2=145) than that of
M2(c2=389). Figure 3B demonstrates the relative
residual errors in percentage for the four fitting meth-
ods. For all fitting methods, there was unbiased sig-
nal fitting prior to 5ms with no more than 5% residual
error, while the fitting had relatively larger error and
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Figure 1. Histogram of bi-component T2* parameter estimation in Monte-Carlo simulation at different SNR levels (Top row:
SNR=20, Middle row: SNR=50, Bottom row: SNR=90). The dark arrows indicate the ground truth value for each individual
parameter.



more uncertainty after 5ms. M1, M3 and M4 showed
visually almost identical fitting quality with small rela-
tive residual errors at all echoes. M2 showed similar
fitting quality as the other three methods prior to 5ms
but slightly larger residual errors at the later echoes. 
Table I shows the mean and percentage of outliers of

fs, T*2,s , and T*2, l of the patellar tendon of all subjects
for all four fitting methods. M2 had the largest (13.53%)
and M1 the smallest (6.05%) mean percentage of out-
liers. There was a significant difference between the
four fitting methods for the mean fs (p = 0.001), T*2,s (p
= 0.04), and T*2, l (p = 0.004) of the patellar tendon. M1
provided significantly higher mean fs (p<0.05) and T*2, l
(p<0.05) than M3 and M4. M3 provided significantly
higher mean fs (p<0.05) and T*2, l (p<0.05) than M4,
while M2 provided significantly higher of T*2,s (p<0.05)
than M1, M3 and M4.
Table I also shows the standard deviations of fs, T*2,s,
and T*2, l of the patellar tendon of all subjects for all four
fitting methods. There was a significant difference be-
tween the four fitting methods for the standard devia-
tion of T*2,s (p < 0.001), T*2, l (p < 0.0001), and fs (p <
0.001) of the patellar tendon. M2 provided significantly
higher standard deviation of fs (p<0.05), T*2,s (p<0.05),
and T*2, l (p<0.05) than M1, M3 and M4. M1 provided
significantly higher standard deviation of T*2, l (p<0.05)
than M3 and M4. 
The SNR of the patellar tendon was 84.2, 48.3, and
21.3 for the SNRhigh, SNRnormal, and SNRlow images re-
spectively. Figure 4, 5, and 6 show fs, T*2,s, and T*2, l
maps of the central portion of the patellar tendon in one
subject at different SNR levels. Tables 2 and 3 show
the mean and standard deviations of fs, T*2,s and T*2, l
of all patellar tendon voxels in one subject at different
SNR levels. There was a dramatic increase of mean
T*2, l with decrease in image SNR, while fs and T*2,s re-
mained relatively the same. There was an increase in
the standard deviation of fs, T*2,s , and T*2, l with de-
crease in image SNR. The standard deviation of fs,
T*2,s, and T*2, l was much larger for M2 than for M1, M3
and M4.

Discussion

Various imaging methods including ultrasound and
conventional MR imaging have been used to evaluate
tendon 36. However, tendon and other musculoskele-
tal tissues containing abundant highly organized col-
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Figure 2. Sagittal UTE images from the central portion of the patellar tendon of a 31-years-old healthy male volunteer. The
white dash line delineates the region of patellar tendon after manual segmentation. The series of images demonstrate signal
decay within the patellar tendon at different TEs from the shortest echo (TE=30μs) to the longest echo (TE=30ms).

Figure 3. (a) The average signal from an ROI (white circle)
in the patellar tendon shows a monotonically signal decay
from 30μs to 30ms. Rapid signal decay is shown at TEs
prior to 5ms followed by slow signal decay. All four model
fitting methods show good fit to the data. (b) Fitting meth-
ods M1, M3 and M4 show almost identical fit quality with
small relative residual errors. Fitting method M2 shows
similar fit quality as the other three methods at TEs prior to
5ms, but slightly larger residual errors at later echoes.

a

b
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Table I. Mean and standard deviation and mean percentage of outliers of fs, T*2,s, and T*2,l of the patellar tendon of
all 10 subjects for all four fitting methods.

Outliers [%] fs [%] T*2,s [ms] T*2,l [ms]

mean mean SD mean SD mean SD
M1 6.05 82.45 10.08 1.54 0.56 31.21 22.81
M2 13.53 82.49 11.35 1.68 0.69 29.96 26.15
M3 9.17 81.88 10.14 1.54 0.56 28.42 18.13
M4 9.31 81.72 10.17 1.54 0.56 28.11 18.10

Figure 4. Sagittal fs (%) maps of the cen-
tral portion of the patellar tendon in a 29-
year-old healthy female volunteer show
the noise performance at three different
SNR levels for the four different fitting
methods.

Figure 5. A sagittal T*2,l (ms) maps of
the central portion of the patellar tendon
in a 29-year-old healthy female volun-
teer show the noise performance at
three different SNR levels for the four
different fitting methods.

Figure 6. A sagittal T*2,l (ms) maps of
the central portion of the patellar tendon
in a 29-year-old healthy female volun-
teer show the noise performance at
three different SNR levels for the four
different fitting methods.
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lagen fibers are difficult to assess using quantitative
MR techniques due to their extremely rapid signal de-
cay. New MR techniques including ultra-short echo-
time (UTE) imaging 10,37,38, variable echo time (VTE)
imaging 25,39 and zero echo-time (ZTE) imaging 40,41

have been recently developed to capture the rapidly
decaying signal within musculoskeletal tissues. The
UTE sequence used in our study utilized a center-out
twisted 3D cone k-space trajectory which has been
shown to increase sampling uniformity, decrease un-
dersampling artifact, and provide better SNR perfor-
mance when compared to traditional 2D and 3D radi-
al UTE sequences33. The sequence has had suc-
cessful applications in sodium imaging42,43 and ex-vi-
vo Achilles tendon imaging24. In our study, the 3D
cone UTE sequence provided complete anatomic
coverage of the patellar tendon in human subjects at
3.0T with clinically feasible spatial resolutions and
scan times and with an SNR of 54.5, which has been
shown to be adequate to accurately estimate bi-com-
ponent T2* parameters from previous literature 28 and
the results of our simulation study. 
Recent studies have demonstrated that bi-component
exponential signal models are better suited than sin-
gle-component models for evaluating tendon19,23-25.
Bi-component models have detected two distinct T2
components within tendon representing fast relaxing
water bound to the highly organized collagen fibers
and slow relaxing bulk water. The T2* of the two wa-
ter components in tendon have varied in different
studies between 0.3 ms and 1.3 ms for the short
component and 8.2ms and 20.4ms for the long com-
ponent 19,23-25. The differences in measured T2* para-
meters is likely due to multiple factors including differ-
ent field strengths, vender platforms, sequence de-
signs, imaging parameters, imaging conditions, and
tendon types. Our study reported a short T2* of
around 1.5ms and a long T2* of around 28 ms which
is close to the values of 0.9 ms and 20.4 ms reported
by Chang et al.24. This may be due to the fact that
both studies used similar 3D Cone UTE sequences
although the sequence used by Chang et al. to evalu-
ate ex-vivo Achilles tendon in human cadavers had a
scan time of 60 minutes which was much longer than
the 12 minute scan time of our sequence. 
Bi-component T2* analysis has been shown to pro-
vide better diagnostic performance than single-com-
ponent T2* analysis for distinguishing between pa-
tients with Achilles tendinopathy and asymptomatic
volunteers 44. Furthermore, previous studies have
found a significant increase in short T2* in pathologic
tendon when compared to normal tendon, which is
specifically due to disruption of the highly organized
collagen fiber network, but no significant difference in
long T2* 25,39. Accurate estimations of bi-component
T2* parameters requires sufficient SNR and proper
noise modeling which is particularly important when
estimating pixel-by-pixel spatial variations across a
tissue sample 28. Both our simulation and in-vivo
studies showed that T*2, l in tendon has much greater
spatial variation, as indicated by the standard devia-
tion of image voxels, and much higher sensitivity to

noise when compared to T*2,s and fs. Thus, the diag-
nostic performance of T*2, l for detecting tendon
pathology could be substantially reduced by both low
image SNR and by large spatial variations (i.e. uncer-
tainty) in the setting of normal or high image SNR21.
One explanation for the large uncertainty and high
sensitivity to noise of T*2, l is the relatively small frac-
tion of the long T2* component in tendon which pro-
vides little MR signal at later echoes. More accurate
estimations of T*2, l may require a larger number of
later acquired echoes, use of multiple excitations, or
further optimization of echo number and echo spac-
ing. However, our results in both simulation and in-vi-
vo study also showed that fs and T*2,s measurements
are relatively insensitive to image SNR which sug-
gests that they may serve as robust MR parameters
for evaluating tendon composition and microstructure.
Our study has demonstrated that bi-component T2*
measurements are influenced by the method used for
curve fitting. Previous studies performed by Karlsen
et al.45 and Raya et al.46 have described methods for
single-component T2 analysis at low image SNR with
incorporation of the Rician noise distribution. Recent-
ly, a simulation study performed by Bouhrara et al.
extended the work to bi-component T2* analysis
where comparison of noise performance among dif-
ferent fitting methods was conducted using Monte-
Carlo and Cramer-Rao lower bound (CRLB) simula-
tions28. Their results showed that the M1 and M2 fitting
methods provided higher estimation bias and greater
estimation uncertainty than the M3 and M4 fitting meth-
ods. Our numerical simulation and in-vivo study evalu-
ating the patellar tendon in human subjects showed
similar findings with the M2 fitting method having the
greatest uncertainty which could be attributed to the
fact that M2 yields neither the Rician nor Gaussian
noise distribution at low SNR30,45. The M3 and M4 fit-
ting methods in our study provided nearly identical per-
formance at all SNR conditions which agrees with the
simulation results from Bouhrara et al.28 and Karlsen et
al.45. Thus, proper modeling of image noise may im-
prove the accuracy of bi-component T2* measure-
ments, especially for the long T2* component which is
most severely affected by image noise. Since the M3
and M4 fitting methods are almost equally effective and
M3 is less computational expensive, our general rec-
ommendation is that the M3 fitting methods should be
used for in-vivo bi-component T2* analysis of tendon in
human subjects.
Our study has several limitations. First, our study fo-
cused only on the patellar tendon and included only a
small number of healthy volunteers. In addition, sta-
tistical analysis could not be performed to more thor-
oughly evaluate the influence of image SNR on bi-
component T2* measurements. Although we attempt-
ed to acquire SNRhigh scans on multiple subjects to
perform statistical analysis, only one individual was
able to tolerate the more than 45 minute four excita-
tion 3D Cones UTE sequence without significant mo-
tion artifact. In addition, our study did not use phan-
toms to investigate bias of the different fitting meth-
ods relative to true parameter values or clinical pa-
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tients with patellar tendinopathy to investigate
whether the choice of fitting method and image SNR
influences the diagnostic performance for distinguish-
ing between normal and pathologic tendon.
In conclusion, our study has demonstrated the use of
a 3D cone UTE sequence to perform in-vivo voxel-by-
voxel bi-component T2* analysis of the patellar ten-
don in human subjects at 3.0T with clinically feasible
spatial resolutions and scan times. Our simulation
and in vivo results have shown that incorporating Ri-
cian noise is helpful for improving bi-component T2*
analysis of tendon especially at lower SNR. However,
additional studies in patients with patellar tendinopa-
thy and other tendon disorders are needed to deter-
mine whether bi-component T2* analysis can be used
to detect tendon pathology and investigate the influ-
ence of the fitting method and image SNR on the
identification and quantification of tendon disease.
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