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Abstract

We present a statistical-mechanical model for the behavior of intertwined DNAs, with a focus on 

their torque and extension as a function of their catenation (linking) number and applied force, as 

studied in magnetic tweezers experiments. Our model produces results in good agreement with 

available experimental data, and predicts a catenation-dependent effective twist modulus distinct 

from what is observed for twisted individual double-helix DNAs. We find that buckling occurs 

near to the point where experiments have observed a kink in the extension versus linking number, 

and that the subsequent “supercoiled braid” state corresponds to a proliferation of multiple small 

plectoneme structures. We predict a discontinuity in extension at the buckling transition 

corresponding to nucleation of the first plectoneme domain. We also find that buckling occurs for 

lower linking number at lower salt; the opposite trend is observed for supercoiled single DNAs.

I. INTRODUCTION

Double-helix DNA molecules are sufficiently flexible, with a thermal persistence length A ≈ 
50 nm, that they often become intertwined around one another in the cell. An important 

example of this intertwining occurs in vivo at the end stages of DNA replication [1–4] due to 

the remnant linking of the strands of DNA in the parental double helix. Mathematicians 

often refer to a pair of intertwined filaments as a “2-ply” or a “2-braid” [5]; below we will 

describe such structures simply as braided DNAs [6, 7].

Braided DNAs have also been studied in precise single-molecule manipulation experiments. 

Most such experiments have used “magnetic tweezers” to apply a constant force to a particle 

to which two double-helix DNAs are attached; the opposite ends of the DNAs are tethered to 

a surface [8–11] (Figure 1). The resulting double tether can have a controlled force applied 

to it using a magnetic field gradient, while at the same time, the total linking number of the 

two double-helix molecules can be adjusted by rotating the magnetic field so as to rotate the 

magnetic particle. As a result, one can study the extension of the two DNAs as a function of 

inter-DNA linking number (often called “catenation number”, or Ca). Experiments of this 

type have been used to study removal of DNA catenations by type-II topoisomerases 

(enzymes which change DNA topology by cutting one double helix and then passing the 

other double helix through the resulting gap) [9, 10, 12–14]. Braided DNAs have also been 
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used to study the decatenation activity of type-I topoisomerases [15, 16], as well as the 

double-helix segment-exchange activity of site-specific DNA recombinases [17–19].

Understanding these kinds of DNA-topology-changing enzyme experiments depend on the 

understanding of the physical properties of the DNA braids, but this has lagged behind our 

understanding of the simpler problem of a single twisted stretched double helix [20–28]. The 

reason for this is that braided DNAs are a more complex physical situation than a single 

supercoiled DNA; as a result, while there have been prior theoretical studies of helically 

intertwined DNAs [6, 11, 29–33], those works have not quantitatively analyzed the buckling 

(“braid supercoiling”) behavior that one would expect as catenation number is increased. 

While it has been assumed that the experimentally observed change in the slope of braid 

extension versus catenation number corresponds to the onset of braid supercoiling [9–11], 

the precise location and nature of braid buckling have not been theoretically understood. 

Two factors that make the problem of braided DNAs distinct from the mechanics of a single 

twisted DNA under tension are first, the lack of an intrinsic braid twist elastic modulus, and 

second, the dependence of the braid mechanics on the distance between the tethering points 

of the two double helices [9–11].

In this paper, we present the first complete theory of the mechanics of braided DNAs, 

treating the initial intertwining and the supercoiled-buckling behavior in a unified way. As is 

the usual situation in experiments [9–11], we treat the case of braids of nicked DNAs 

(double helices with a break in one of the strands, such that the broken strand can freely 

swivel around the intact one) to avoid the further complexity of the constraint of the double-

helix linking number change on top of that of the catenation number. As a result, our model 

treats positive and negative catenations equivalently, a symmetry observed in experiments to 

a remarkable degree [9–11]. We consider various salt concentrations, DNA lengths, and 

intertether distances, with a focus on comparing our results to the analogous behavior of 

supercoiled single DNAs.

The layout of the paper is as follows. Sec. II contains detailed description of the 

mathematical model, where we study the braid Hamiltonian in the thermodynamic limit 

(Sec. II A). Free energies corresponding to a tethered braid and thermal averaging of 

fluctuations are discussed in Sec. II B and Sec. II C respectively. The results and predictions 

are contained in Sec. III, where we study braids at physiological salt (Sec. III A), as well as 

the effect of varying salt concentration (Sec. III B) and other finite-size effects (Sec. III C 

and III D).

II. MODEL

We build a free energy model for braids considering double-helix DNAs as electrically 

charged semi-flexible polymers residing in an ionic solution. We define β = 1/kBT, and use 

T = 290 K for all numerical computations.

Figure 1 shows how we view braided DNA structure. The ends of two nicked DNA 

molecules are tethered to a fixed wall and a rotating bead respectively, such that the 

intertether distance on either end is d. This scenario is similar to the setup for tweezer 
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experiments [8–11]. The beads used in experiments are large enough to safely assume no 

leakage of catenation number via looping of the DNA over the beads. By applying a 

constant force to the rotationally constrained bead it is possible to study DNA braids in a 

fixed force and fixed catenation ensemble.

A. The Hamiltonian

We express the Hamiltonian ℋ associated with two nicked double-helix DNA molecules of 

length L, held at a fixed inter-DNA linking or catenation number and under a constant 

applied force fẑ as an integral over the arc length scaled by A, where the thermal bending 

persistence length of DNA A sets the order of magnitude of thermal deformations:

(1)

where ξ is the dimensionless arc length; ri(ξ) and ti(ξ) ≡ (1/A)(∂ri/dξ), are respectively the 

position vector and the tangent of the i-th braiding strand for i ∈ {1, 2}. The first term in the 

integrand containing the sum of the squares of the local curvature of the two strands 

correspond to elastic bending energy of the two double helices. The second term containing 

the external force fẑ corresponds to the entropic elasticity of the two chains, and the 

electrostatic part of the Hamiltonian is represented by U(r1, r2). Since we only consider 

nicked double-helix DNAs, there are no DNA-twist-energy terms in the above Hamiltonian, 

and we neglect the triangular end regions (Figure 1) till Sec. II B.

Two catenated elastic rods, many persistence lengths long, under a high stretching force 

form coaxial helices. We take the average shape of the braiding strands to be that of a regular 

helix oriented parallel to the direction of the external force fẑ (Figure 1), and propose a 

perturbative expansion of the braid Hamiltonian (Eq. 1) around a mean-field solution 

parameterized by radius R and pitch 2πP of the helix.

We expand the tangent vectors t̂i (i ∈ {1, 2}) in Eq. 1 about a mean-field direction tio:

(2)

where ti⊥ = ti⊥r + ti⊥θ. We introduce two rotating right-handed orthonormal triads: (t̂io, t̂i⊥r, 

t̂i⊥θ), where i ∈ {1, 2} (Figure 1), such that the unit vector t̂io points along the tangent to the 

mean-field helix corresponding to the i-th strand, t̂i⊥r points along the radially-inward 

direction, and t̂i⊥θ ≡ t̂io × t̂i⊥r. Note that the ẑ-projection of the basis vectors depend only on 

the helix parameters:

(3)
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where δ ≡ arctan(R/P), is the braiding angle.

The derivatives of the orthonormal basis with respect to normalized arc length ξ are given by 

the following equations:

(4)

where κ ≡ AR/(R2 + P2), is the total mean-field curvature per unit persistence length of the 

strands and a ≡ P/R. The above set of equations (Eq. 4) are also known as the Frenet-Serret 

formulas. We neglect any space-varying component of the mean-field helix curvature [30, 

34–36], which is a good approximation in the thermodynamic limit of long braids.

Using the above equations, the square of the local curvature is written as

(5)

where we have neglected  terms.

Physical micromanipulation experiments on DNA have been performed in varied 

concentrations of aqueous buffers, whereas ≈ 100 mM Na+ or K+ is the physiologically 

relevant range of salt. Counterion condensation on the negatively charged DNA backbone 

(2e− per base pair) results in a screened Coulomb potential over a characteristic length scale 

called the Debye screening length,  for M molar univalent salt. DNA-

DNA repulsion over a few screening lengths is that of the Debye-Hückel type, i.e., the 

electrostatic potential decays exponentially at large distances and diverges like the Coulomb 

potential at distances shorter than λD.

The electrostatic potential due to a close proximity of two parallel DNAs has been shown to 

be described by Debye-Hückel interaction of uniformly charged rods [37, 38]. For helically 

wrapped DNA chains, also the case for plectonemes in single supercoiled DNA an empirical 

modification of the parallel rod potential has been shown to account for the enhancement 

due to helical bends in the structure [39]. Furthermore, there is an electrostatic contribution 

from the self interaction of the braiding helices, for which we propose an empirical form that 

agrees with the numerical solution of the Debye-Hückel-type self interaction (Appendix A). 

The total electrostatic potential energy per unit length A of the braid, in kBT units is given 

by

(6)
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where a = cot δ and Z(a) ≡ 1 + m1/a2 + m2/a4.

The first term in Eq. 6 is the electrostatic interaction potential between the braiding strands 

and Z is the correction factor for helix curvature with m1 = 0.828 and m2 = 0.864 [39]. The 

second term corresponds to the self-electrostatic energy of a helix, where c1 = 0.042, and c2 

= 0.312, are chosen to closely match the numerical solution [Figure 6]. ζ ≡ 2AℓBν2, is the 

amplitude of the Debye-Hückel potential, where ℓB = e2/(εkBT), is the Bjerrum length of the 

solution with dielectric constant ε and ν is the effective linear charge density of the double-

helix DNA, which is a parameter used to satisfy the near-to-surface boundary conditions for 

the far-field Debye-Hückel solution [21, 25, 37–40]. We use ℓB = 0.7 nm corresponding to 

water at 290 K; numerical values of the effective charge ν and the Debye screening length 

λD, used for various salt concentrations are given in Table I. The bending persistence length 

of DNA A is also known to slightly modify on changing the salt concentration [41, 42], but 

we neglect such small changes as they are inconsequential to our qualitative results.

We approximate the total braid electrostatic potential as the average potential arising from 

self and mutual repulsion of two coaxial helices, and consider radial fluctuations in the braid 

in the asymptotic limit of parallel chains. We consider small uniform deviations in the braid 

radius Aw(ξ) such that,

(7)

where ti⊥r are given by Eq. 2 and we assume the boundary condition w(0) = 0. The above 

definition of normalized radial deformations w(ξ) assumes a parallel configuration of the 

two strands. We define the electrostatic part of the Hamiltonian as:

(8)

where 0 ≡ (R, P), is given by Eq. 6; g ≡ A∂ /∂R, and η ≡ (A2/2)(∂2 /∂R2) is the 

effective modulus of the electrostatic potential. The first term gives the mean electrostatic 

energy per unit length A of braid with fixed radius and pitch, while the subsequent terms are 

corrections for small uniform derivation in braid radius. We neglect expansion of the 

electrostatic potential in the pitch of the braid because the fluctuations in the pitch are 

predominantly controlled by the external tension.

Now, we expand the total Hamiltonian (Eq. 1) to the quadratic order in transverse-tangent 

fluctuations:
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(9)

where μ ≡ (βAf cos δ)/2, is the dimensionless effective tension in each strand of the braid. 

The first term, associated with t̂io (i ∈ {1, 2}) component of the tangent vectors is the 

leading order term that gives the total mean-field energy of the braid.

We represent the real-space components of the transverse-tangents as a sum over 

dimensionless Fourier modes q:

(10)

where , j ∈ {1, 2} and k ∈ {r, θ}. We set the reference of the fluctuation free energy 

by setting the amplitude of zero-momentum transverse fluctuations to zero: t ̃j⊥k(0) = 0, 

where j ∈ {1, 2} and k ∈ {r, θ}. The contribution from zero momentum is accounted for by 

the mean-field parameters, and this boundary condition precludes order-mean-field 

perturbations. Also, subject to the zero-momentum boundary condition, the second term in 

Eq. 9 (terms linear in tj⊥k) vanishes.

The third term in Eq. 9, containing quadratic transverse tangents, accounts for the free 

energy contribution due to Gaussian fluctuations of the two braided strands about their 

average helical shapes. We write the third term as a sum over the Fourier modes q:

(11)

where ω(q) is a 4 × 1 column vector and ℳ(q) is a 4 × 4 Hermitian matrix such that,
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(12)

Now, we compute the fluctuation free energy in the limit of zero curvature (κ → 0), which 

simplifies the configuration to that for two fluctuating parallel chains and makes the problem 

analytically tractable. Also, note that in our scheme to include fluctuations in the 

electrostatic part of the Hamiltonian (Eq. 7) we have already assumed zero curvature.

We construct the canonical partition function for two fluctuating parallel strands:

(13)

and obtain the fluctuation correction to the mean-field free energy from the partition 

function:

(14)

where we drop constants dependent on only the ultraviolet cutoff. The RHS of Eq. 14, which 

is real and positive for all positive values of μ and η gives the fluctuation free energy per unit 

length A of the braid. There are four degrees of freedom for transverse fluctuations in a 

stretched braid; three of them (t̂1⊥θ, t̂2⊥θ, and one in t1̂⊥r where there is no relative 

displacement between the strands) are controlled solely by the external tension, as seen in 

the first term of Eq. 14. The second term accounts for fluctuations in t̂1⊥r that correspond to 

displacement of the two strands relative to one another, and is controlled by both the external 

tension and the electrostatic forces.

Fluctuations in the radius of the braid (σR) (Appendix B) decrease with increasing modulus 

of the electrostatic potential (η): σR ~ η−3/8 (Eq. B.3), which implies a scaling of the 

fluctuation free energy with the radial fluctuations: . A similar scaling relation 

appears for the confinement entropy of a worm-like chain trapped in a rigid cylindrical tube, 

where the confinement entropy scales with the radius of the tube: ΔF ~ 〈R〉−2/3 [43]. 

Theoretical studies of supercoiled DNA have used the confinement entropy scaling to 

account for strand undulations in a plectoneme structure [21, 27]. Again in the context of 

plectonemic DNA, the scaling ansatz was modified: for Gaussian fluctuations of a worm-

like chain trapped in a potential well, the average radius 〈R〉 could be replaced by the radial 
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fluctuation σR, which was then chosen to be the Debye length of the solution [28, 39, 44]. 

Indeed, we find that σR of the free energy minimized braid is of the order of the Debye 

length (Figure 7b, Table I). The existing literature on plectonemic and braided DNAs, to the 

best of our knowledge uses the confinement entropy scaling approach to account for strand 

undulations [21, 27–33, 39]. Our calculations treat fluctuations systematically and without a 

scaling ansatz, and produce the previously assumed scaling behavior.

B. Mean-field theory

In this section, we develop the free energy expressions for a tethered braid (Figure 1), where 

the total length of each of the braiding molecules is partitioned into a force-extended state 

(straight phase), and a plectonemically buckled state (plectoneme phase). The plectoneme 

state also consists of a braid “end loop”, a teardrop-shaped loop at the end of every 

plectoneme structure (Figure 1).

The amount of catenation per helical repeat of the DNA molecules is defined as the 

catenation density in braids, σc ≡ Ca/Lk0 (Lk0 = L/h, where L is the contour length of each 

DNA and h = 3.6 nm, is the length of one helical repeat of double-helix DNA). Total 

catenation (Ca) is divided between the straight phase (Cas) and the plectoneme phase (Cap), 

which are further redistributed between twist and writhe as dictated by minimization of the 

total free energy.

1. Straight braid—The length of each double helix in the straight phase Ls is divided into 

two parts: (1) the helical intermolecular wrappings of length Lb, such that 

, where Rs and 2πPs are respectively the radius and the pitch of the 

helical interwounds; and (2) the end regions of length Le (Le = Ls − Lb), which do not 

contain any inter-molecular links and connect the helical wrappings to the tethered points 

(Figure 1). The mean-field energy of the straight braid is obtained using the leading order 

term in the expansion of the Hamiltonian (the first term in Eq. 9):

(15)

The first term (with the brackets) corresponds to the helical region of the straight phase, 

which is a sum of free energy contributions from elastic bending, force-extension, and 

electrostatic repulsion respectively. Here δs is the braiding angle (tan δs = Rs/Ps) in the 

straight phase. The second term contains the force-extension free energy of the end regions, 

where ϕ is the opening angle at the end of the braid (sin ϕ = d/Le, where d is the intertether 

distance, see Figure 1). Note that for a given length (Ls) and catenation (Cas), the radius (Rs) 

and the pitch (2πPs) of the braid are the only free parameters in the free energy of the 

straight phase, minimizing which we obtain the equilibrium state (Table I).

The fluctuation correction to the mean-field free energy in the straight phase is obtained 

from Eq. 14,
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(16)

The first term (with the brackets) corresponds to the fluctuation contribution to the free 

energy of the helically wrapped section of the straight phase, where μs = μ(Rs, Ps) and ηs = 

η(Rs, Ps) (Eq. 8 and 9). The second term corresponds to the worm-like-chain fluctuations of 

the end regions and is obtained by plugging μ = (βAf cos ϕ)/2 and η = 0 in Eq. 13.

2. Plectonemically buckled braid—The plectonemic braid is a buckled structure where 

the braid centerline writhes around itself (Figure 1). Buckling achieves a lower energy state 

by the release of torque in the braid, due to increase in the writhe contribution to the total 

linking number. Total writhe in the plectoneme formed of superhelical wrappings of the 

braid with total double helix length Lp, superhelix opening angle α, and superhelical radius 

ℛp is given by

(17)

where δp is the helix angle of the braid in the plectoneme [21, 39, 45].

As mentioned above, every plectoneme domain is accompanied by a finite sized loop-shaped 

structure where the braid bends back (Figure 1). The braid end loop presents an energy cost 

to nucleation of a plectoneme domain; thermodynamically, the situation is similar to 

plectoneme nucleation in supercoiled single DNAs [26, 27, 46, 47]. The equilibrium size of 

the end loops Γ is obtained by separately minimizing the elastic energy cost of forming 

them:

(18)

where the first term is the bending energy contribution, and the second term is the work done 

in decoupling the plectoneme end loop from the external tension f [26, 27]. We use ε = 16, 

corresponding to a “teardrop” geometry of the loop [48–50]. Minimizing ℰΓ (Eq. 18) yields,

(19)

Considering the writhe contribution of an end loop to be unity (WrΓ ≈ 1), the total 

catenation in the plectoneme phase (Cap) made up of m domains is partitioned into the twist 

(Twp), containing the local twisting of the braid, and the writhe (Wrp), reflecting the overall 

structure of the plectoneme.
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(20)

where Rp is the radius of the braid. Considering a simple geometric picture of closely-

packed braids, we set the superhelical radius to be twice the braid radius in the plectoneme: 

ℛp = 2Rp. As a simplifying assumption, we ignore local structural rearrangements in the 

plectoneme that may lead to spatially-varying mean-field superhelical radii.

The mean-field free energy of the plectoneme phase is given by

(21)

where the first bracketed term is the sum total of elastic bending energy and electrostatic 

energy of the braid inside the plectoneme, obtained from the mean-field term in Eq. 9. The 

second bracketed term is the energy contribution from elastic bending and electrostatic 

repulsion in the superhelix, where 2πPp and 2π p are the braid pitch and the superhelical 

pitch in the plectoneme respectively. The factor of 2 multiplying the superhelix electrostatic 

term is because the length of the superhelix is half of that of the DNA length in the 

plectoneme while the effective charge is two times that of the double helix. The third term 

corresponds to the elastic energy of m braid end loops (Eq. 18), and finally, the logarithm 

term is the free energy associated with the configuration entropy of m loops. The origin of 

this entropy is from the following two sources: (1) sliding of a plectoneme domain along the 

braid contour, and (2) exchange of DNA length among the plectonemic domains. We define 

the arc length corresponding to unit twist in the braid ( , see Table I) as the 

characteristic length distinguishing these energetically degenerate but structurally distinct 

states. The total number of such states (Ω) for a plectoneme phase constituted of m domains 

(where m ≥ 1) can be written as a product of two combinatorial factors [27]:

(22)

where the first term corresponds to the sliding entropy of m loops (2πCas is the total number 

of possible plectoneme nucleation sites) and the second term is the number of distinct 

configurations associated with the exchange of DNA length among the domains. Note, for a 

plectoneme of given length (Lp), catenation (Cap) and number of domains (m), the total free 

energy has two free parameters (namely, δp, α and Rp constrained by Eq. 20) that determine 

the equilibrium structure (Table I).
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Similar to the straight braid case (Eq. 16), the fluctuation free energy correction to the mean-

field energy of the braid in the plectoneme is obtained from Eq. 14 using μp = μ(δp) and ηp = 

η(δp, α):

(23)

The above expression gives the total free energy associated with worm-like-chain 

fluctuations in the braiding strands forming the plectoneme structure.

C. Thermal averaging: partition function

In an ensemble of fixed catenation and fixed force, the total free energy of the braid can be 

obtained by minimizing the sum total of the straight and the plectoneme phase energy. We 

thermally average over states with all possible plectoneme lengths and number of domains, 

where the free energy in each state is minimized with respect to the partition of the total 

linking number, thus ensuring torque balance between the two structural phases. The free 

energy of the braid for each fixed Lp and m is obtained via numerical minimization over Cas 

(Eq. 15, 16, 21 and 23),

(24)

The above minimization is constrained by conservation of total catenation (Ca = Cas + Cap) 

and total DNA length (L = Ls + Lp + mΓ). The states described by Eq. 24 for all possible 

values of Lp and m are then thermally averaged over to construct a partition function:

(25)

where the first term is the purely straight phase, and the second term corresponds to a sum 

over all possible coexistence states. The sum over Lp in Eq. 25 is done numerically using a Δ 

= 1 nm mesh. An averaging scheme as described above takes into account various thermally 

accessible equilibrium states which allow the possibility of torque fluctuations in the fixed 

catenation ensemble. A similar approach was taken in Ref. [27] to study single supercoiled 

DNA.

Equilibrium values of the end-to-end distance (z), the torque in the braid (τ), and the size of 

the helical wrappings in the straight phase (Lb) are obtained from the partition function (Eq. 

25):
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(26)

(27)

(28)

Now, the average values of the pure-state free variables X and the coexistence-state free 

variables Y are computed from Eq. 25 as follows,

(29)

(30)

where X ∈ {Rs, Ps, Cas} and Y ∈ {δp, α, Lp, m}.

III. RESULTS

A. Braids at 100 mM salt

Figure 2a shows the comparison of theoretically-predicted extension curves for various 

forces: 1.25 (lowest curve), 2, 3 and 4 pN (highest curve) with experimental observation for 

2 pN (filled circles) at 100 mM univalent salt concentration [11]. The size of the intertether 

distance d being comparable to the length of the braiding molecules results in a sharp 

decrease in extension when the first catenation is added. The decrease is due to the 

formation of the first helical bend in the braid along with the end-regions from the zero-

catenation parallel configuration. The extension shortening is used to estimate the intertether 

distance by simply using the Pythagorean theorem [9–11]. Notably, the intertether distance d 
is a parameter that has not been controlled in experiments to date.

Further addition of catenation decreases the end-to-end extension of the braid (Figure 2a) 

due to double helix length being passed from the end-regions to the helically wrapped 

section. The size of the helically-wrapped straight braid increases with catenation and 

reaches a maximum just before the onset of buckling (Figure 2d). Elastic bends in the 
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braiding double helices generate torsional stress, which increases non-linearly with 

catenation (Figure 2b); this nonlinearity has been seen in previous models of the straight 

braid [11, 29, 30]. When the torque reaches a critical value, which mainly depends on 

thermodynamic parameters such as the external force, nucleation of the first plectonemically 

buckled domain becomes energetically favorable.

The onset of buckling can be identified as a knee in the extension plots (Figure 2a), past 

which DNA length is passed into the force-decoupled buckled phase (Eq. 21), resulting in a 

steeper decrease of the end-to-end extension. The torque in the braid shows a small non-

monotonic “overshoot” at the buckling transition, and continues to increase with a small 

slope in the coexistence phase. In the coexistence region, the writhe contribution to the total 

linking number reduces torsional strain in the braid. The abruptness of the buckling 

transition owes to the finite-energy cost to nucleating a plectoneme domain, vis-à-vis the 

plectoneme end loop. The coexistence phase at 100 mM salt is characterized by multiple 

domains of plectoneme (Figure 2c), where the number of domains is equal to the 

equilibrium number of plectoneme end loops. The total size of the plectoneme phase 

increases after the buckling transition (Figure 2d), where DNA length is transferred to the 

buckled region from the straight phase.

Higher external tension lowers the total energy of the straight braid (Eq. 15 and 16), 

resulting in a higher end-to-end extension at a given catenation (Figure 2a). The stabilization 

of the straight phase upon increasing force has an effect of delaying the buckling transition, 

i.e, buckling occurs at a higher value of catenation. The torque is higher in both the straight 

and the buckled braid under larger external tension (Figure 2b).

Stretched, supercoiled single DNAs at 100 mM salt also shows a buckling transition 

separating a force-extended phase from a plectoneme-coexistence phase [21, 42, 51], 

although the mechanical response of braids is fundamentally different than that of 

supercoiled DNA. The torque in a supercoiled single DNA increases linearly with the 

linking number [46, 52], as opposed to a non-linear increase in braids (Figure 2b). The 

linearity of torque in supercoiled single DNA arises from a constant effective twist modulus 

in the double helix (C ~ ∂τ/∂σsc ≈ 100 nm [22, 42, 46]), which is attributed to the strong 

base-pairing interactions holding the DNA strands together. Conversely, braids are soft 

structures (the two braiding molecules are not attached to each other), where twist-stiffening 

occurs as the catenation is increased, making the twist modulus of braids a quantity that 

depends on catenation as well as external parameters like the salt concentration (Sec. IIIB).

B. Effect of salt concentration

Lowering the ionic strength of the solution causes an increase in excluded volume of the 

double-helix DNA in the solution, due to less screening of the negative charge on the 

double-helix backbone. At low salt, the Debye length (λD) of the solution increases, causing 

the Coulomb-repulsion effect to propagate a longer distance before it is cut off, thus 

increasing the effective diameter of the double helix.

Figure 3a shows braid extension curves under various salt concentrations (10, 50, 100 and 

500) mM at 2 pN force. The buckling transition occurs at a lower catenation for lower salt 
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concentrations. The larger effective DNA diameter increases the braid radius at lower salt 

conditions (Table I), which destabilizes the straight phase and consequently causes buckling 

at a lower catenation number. The predicted trend of buckling with varying salt has been 

observed experimentally [11]. The total length of DNA for 10 mM and 100 mM 

experimental data sets [11] differ slightly (~ 0.2 µm); we renormalized the length of the 10 

mM case (open squares) to be close to that of the 100 mM data (filled circles) for 

comparison in Figure 3a.

As the salt concentration is increased, the average number of superhelical turns per 

plectoneme domain increases, i.e., the average size of each plectoneme domain increases. 

This effect is directly related to the decrease in DNA excluded volume at higher salt 

concentrations (Table I), which stabilizes the superhelical bends in a braid plectoneme.

In the supercoiled single DNA case, the opposite trend is observed, where lowering the salt 

concentration of the solution makes plectonemic buckling occur at a higher supercoiling 

density [47]. In stretched supercoiled DNA, the stability of the force-extended phase is 

unaltered by changing the ionic strength, but the supercoiled plectoneme phase (containing 

intra-molecular writhes) is relatively destabilized on decreasing the salt concentration, again 

due to the increase in effective diameter of the double helix, resulting in the observed trend 

of buckling at a lower linking number for higher salt concentrations.

The torque in the braid plotted as a function of the catenation (Figure 3b) shows a non-linear 

increase and a small non-monotonic overshoot at the buckling transition at all salt 

conditions. For a given catenation, the torque is higher for lower salt concentrations due to 

effective “swelling” of the braid. The torsional stress in the braid decreases with increasing 

salt, a trend also observed in supercoiled DNAs [42]. At 2 pN, we find nucleation of 

multiple domains of plectonemes at lower salt concentrations (<500 mM, see Figure 3c), 

while single plectoneme domain is favored at higher salt concentrations (≈ 500 mM). At 

lower salts, larger braid diameter increases the energy associated with superhelical bending 

of the braid in the plectoneme, making the formation of looped structures of braid favored 

over a superhelical structure, consequently favoring formation of multiple domains of 

plectoneme. We also find that the multiple domain structure of the plectoneme is favored at 

higher forces, e.g., at 500 mM salt and forces > 3 pN more than one domain of plectoneme 

is energetically favorable. Post buckling, nucleation of plectoneme domains per added 

linking number is similar at lower salt concentrations, seen as the constant slopes in 10, 50 

and 100 mM cases in Figure 3c. The length of the straight phase helical section increases 

faster for lower salt conditions due to the larger radius of the braid. The total size of the 

helical wrappings in the straight phase peaks at the buckling transition, after which double 

helix length is transferred into the growing plectoneme phase (Figure 3d).

At high salt concentrations (> 500 mM), we find a reversal of the above-mentioned trend 

with salt, i.e., buckling transition occurs at a lower catenation for increasing salt (Figure 8). 

It may be possible to experimentally observe this effect, although we caution that at such 

high salt concentrations the applicability of the Debye-Hückel theory is questionable at best.
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C. Effect of the intertether distance

The intertether distance d between the two braided molecules affects the critical catenation, 

i.e., the catenation at which buckling occurs (Figure 4a). Braiding molecules with larger d 
makes a helix with a larger aspect ratio (ratio of radius to pitch of the helix), which causes a 

steeper increase of the torque in the braid (Figure 4b). In effect, the twist modulus of the 

braid is larger for larger intertether distances and causes buckling at a lower catenation 

(Figure 4a). The torque at which a braid buckles is a thermodynamic property dependent on 

the external force and remains roughly the same on changing the intertether distance (Figure 

4b) or the salt conditions (Figure 3b).

As mentioned before, the difference in extension between the states Ca = 0 and 1 is 

dependent on the intertether distance, but the two intertether distances at the two ends of the 

braid need not be the same. In fact, these distances being uncontrolled parameters in 

experiments, are almost never equal. Now, the theoretically predicted extension plots are a 

characteristic of the arithmetic mean of the intertether distances at the two ends of the braid; 

although, not surprisingly, the structure of the braid depends on the specific values of the 

two intertether distances (Figure 9a). In the case of unequal intertether distances, we find 

that the end-region associated with the larger intertether distance is bigger in size, i.e., the 

helically wrapped region of the braid does not form at the center of the structure but is 

pushed towards the end with the smaller intertether distance.

We also find that the energy cost of fluctuations in the relative size of the two end regions, 

i.e., small displacement of the entire helical section away from the equilibrium position are 

(kBT), hence permissible, especially in the regime of low catenation (Figure 9b). The 

energy cost increases with increasing catenation, reflecting the sliding of the helical section 

is energetically expensive when the torque in the braid is higher. Such behavior of a braid 

may be possible to probe in braiding experiments done on DNA molecules labeled along 

their length with fluorescent tags.

D. Braiding short DNA molecules

Braiding DNA molecules shorter than ≈3 kb in size shows the same qualitative trends of 

extension decrease with catenation and formation of multiple buckled domains past the 

critical catenation density, as seen for larger molecules. However, due to the small size of the 

molecules and hence the smaller number of fluctuation states, discrete nucleation of buckled 

domains may be observed as steps in the extension plot (Figure 5a). The torque also shows 

multiple overshoots associated with nucleation of buckled domains (Figure 5b and 5c). 

Similarly, a step-like behavior can be seen in the length transfer between the straight and the 

plectoneme phase. The discrete jumps in extension or torque are masked by thermal 

fluctuations in longer molecules (≳ 4 kb or 1.3 µm). Similarly, at lower forces, large 

fluctuations make the average extension of the braid decrease more uniformly (Figure 5a).

IV. CONCLUSION

We have presented a statistical-mechanical theory for the mechanics of a DNA braid, or a 

pair of catenated DNAs, as a function of catenation number and applied force (Figure 2). 
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Our results are in good quantitative agreement with available data, and make a number of 

predictions for future experiments, including the non-linear nature of the torque associated 

with DNA interwinding. A novel feature of DNA braids is a twist-dependent twist rigidity 

(Figure 2b) that arises from the lack of an intrinsic elastic twist stiffness for two catenated 

DNAs.

For the first time, we have quantitatively described the onset of the post-buckled state of the 

braid, and we find that the post-buckled “supercoiled” state is actually composed of many 

small buckled structures, each terminated by a small “end loop” (Figure 2c). This situation is 

reminiscent of the many-plectoneme state for a supercoiled single DNA at low salt [27, 28, 

53]; however, for braids, this multi-buckled-structure state occurs for a broader range of salt 

concentrations (<0.5 M, see Figure 3c). The reason for the prevalence of the multi-buckled 

state is simply that the braided DNAs are relatively bulky, mimicking the effect of the larger 

excluded diameter that drives the multi-plectoneme state for single twisted DNAs. Inside the 

braid, there are electrostatic interactions between the two DNAs that force it to increase in 

radius, driving an increase in effective braid twist modulus as salt concentration is reduced 

(Figure 3b). This gives rise to a decrease of catenation number required for the onset of 

buckling as the salt concentration is decreased (Figure 3), the opposite of the trend observed 

for individual twisted double-helix DNAs. For the same reason, braid extension at fixed 

catenation number and force decreases with decreasing salt concentration (Figure 3a), again 

distinct from what is observed for twisted double-helix DNAs.

Under physiological conditions (100 mM salt), past the buckling transition point, the 

proliferation of new buckled domains leads to a decrease in the average size of each domain, 

i.e., the average number of superhelical turns in a plectoneme domain decreases as the 

catenation is increased in the buckled braid. Now, an increase in the salt concentration, 

followed by a decrease in the DNA excluded volume (Table I) results in a decrease of the 

curvature energy associated with the superhelical bends in a plectoneme. Consequently, at 

high salt (≈ 0.5 M), the average number of superhelical turns per domain increases past the 

buckling point, leading to the formation of long superhelical structures instead of the 

appearance of multiple domains (Figure 3).

We also find that the mechanics of the braid and its buckling behavior are sensitive to the 

distance between the tethered DNA ends (Figure 4). Increased intertether distance leads to 

lower extensions (Figure 4a), higher torques, and buckling at lower catenation number 

(Figure 4b). We note that as the intertether distance is changed at a fixed force, the torque at 

the buckling point is nearly constant, e.g., roughly 30 pN·nm at a force of 2 pN (Figure 4b).

The nucleation of the braid end loop at the buckling transition can likely be observed 

experimentally, possibly as a discontinuity in the extension versus catenation (Figure 2a) or 

dynamic switching of extension or as an overshoot in the torque versus catenation plots 

(Figure 2b). When the torsional stress in the braid is close to the critical buckling torque, the 

buckled state, separated by the nucleation energy cost becomes thermally accessible, 

resulting in equilibrium fluctuations between the straight and the buckled phase. 

Experimental studies [46, 47] on supercoiled single DNAs under torsional constraint have 

observed the discrete nucleation of the first plectoneme domain, which is associated with the 
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abrupt nucleation of the plectoneme end loop. This abrupt transition has also been analyzed 

theoretically [26–28, 54], discussing the trends of the magnitude of the extension 

discontinuity with varied external force, salt concentration and contour length of the duplex 

DNA.

This paper qualitatively improves the way that fluctuations of the duplex DNAs in the braid 

around their average helical shape are accounted for. Instead of the semi-quantitative 

scaling-like approach taken in prior works [20, 21, 28, 30, 32, 39], we systematically 

analyze the fluctuations of the DNAs around their average helical shape; we find that these 

fluctuations are small enough that it makes sense to think of the conformation of the braid as 

a helix (Figure 7), rather than the more disordered structure implicitly assumed in prior 

works.

As mentioned before, we assume spatially-uniform mean-field curvature in the braiding 

helices, and the introduction of a space-varying component to the helical curvature will be 

an interesting addition to the model. The effect of the spatially-varying helical pitch has been 

studied for loaded plies at zero temperature [34–36] as well as for straight DNA braids [30, 

31]. Variable pitch solutions for many persistence-lengths long braided helices feature a 

constant helical angle inside the braid, which is smaller than the end angle that connects the 

helices with the end regions [30]. We note that we determine the end angle ϕ from free 

energy minimization, and we indeed find that an end angle larger than the helical angle δ is 

energetically favored, consistent with the effect observed in Ref. [30].

It may be interesting to study short braided DNAs (≈ 2 kb or 650 nm) because we find that 

for molecules of that short length, the successive addition of small buckled domains leads to 

a series of buckling transitions (Figure 5), possibly observable as steps in the extension. This 

is directly related to less thermal fluctuations in smaller DNA molecules. The effect of 

variable curvature is more prominent in short braids, which may provide additional 

fluctuations that further mask discrete jumps in extension for short DNA braids.

We also present a comprehensive treatment of the electrostatic effects (Appendix A) in 

helical braids, which will be useful for other problems where two DNAs are wrapped around 

one another.
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Appendix A

Self-electrostatic energy of DNA braids

The minimum energy state of a charged rod in an ionic solution is the straight configuration, 

such that the electrostatic repulsion between the length elements of the rod is minimized. 

External work has to be done against the electrostatic repulsion to keep the rod bent in a 
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helix shape, which is stored as the self energy. Prior theoretical works on braids [6, 30] as 

well as supercoiled single DNA plectonemes [20, 27, 28, 39] ignore the Debye-Hückel self 

energy of helically intertwined DNAs. In the following, we numerically compute the self 

energy in braids and propose an empirical fit function. We find that the energy contribution 

from Debye-Hückel-type self-interaction of the coaxial helices increases for helices with 

higher aspect ratio (ratio of radius to pitch), and is non-negligible for braids under 2 pN 

force at 100 mM monovalent salt concentration (Figure 6c and 6d).

We parameterize the helical arc length by a rotation angle u such that the distance ρ between 

any points on the helix is given by,

(A.1)

where R and 2πP are radius and pitch of the helix respectively; we define 

. The authors of Ref. [39] used a similar parameterization 

scheme to study the enhancement of electrostatic interaction energy between two helically 

intertwined strands of a plectoneme as a function of the helix angle.

We write Ψs, the total self-electrostatic potential for a braid of length L by integrating the 

spherically symmetric solution of the Debye-Hückel equation:

(A.2)

Now, the self-electrostatic potential per unit length A of the braid is given by s ≡ Ψs/(L/A), 

such that

(A.3)

where a ≡ P/R, is the inverse of the aspect ratio of the helix, and w ≡ 2R/λD, is the scaled 

diameter of the helix. We have defined ζ = 2AℓBν2, where ℓB is the Bjerrum length and ν is 

the effective linear change density in inverse-length units (Eq. 6 and Table I). We have 

shifted the reference of the free energy to subtract the contribution of the self-electrostatic 

energy of a straight rod.

We numerically evaluate the self-energy integral (Eq. A.3) for a range of practically relevant 

values of w and a, and propose the following empirical function that captures the behavior of 

the self-energy functional,
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(A.4)

Figure 6a and 6b shows the comparison between the numerically evaluated value of the 

integral (Eq. A.3) and the empirical fit-function (Eq. A.4) with ζ = 1, c1 = 0.042 and c2 = 

0.312.

Finally, we write the electrostatic potential energy per unit length A of braid with radius R 
and helix angle δ:

(A.5)

The first term is the interaction potential with m1 = 0.828, m2 = 0.864 [39], and the second 

term is the self-energy contribution, where c1 = 0.042 and c2 = 0.312.

Figure 6c and 6d shows the comparison between the self and the interaction energy 

component of the total electrostatic potential for various braid radii (R) and braiding angles 

(δ). For typical values of the braiding angle ≈ 25° (Table I), the self-energy contribution 

becomes significant in braids with radius ≳ 3 nm, which corresponds to to ≲ 2 pN stretching 

tension on the braid at 100 mM Na+ (Figure 7a).

Appendix B

Radial fluctuations

The average energy corresponding to radial fluctuations for each wavenumber q can be 

obtained from the fluctuation Hamiltonian (Eq. 9),

(B.1)

Now, the two-point correlation function associated with radial undulations can be computed 

as follows,

(B.2)

where Δξ is the distance between the two points. Note, the two-point correlation of radial 

fluctuations decays exponentially with the distance between the points: 〈w(0)w(Δξ)〉 ~ 

exp(−kΔξ), where , which is typical of Gaussian fluctuations.
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We obtain the radial fluctuations in the braid from the zero-distance behavior of the above 

correlation function:

(B.3)

where σR is the fluctuation in braid radius. The radial probability distribution:

(B.4)

Figure 7a shows the probability distribution of braid radius for various forces. Higher forces 

result in a smaller average radius of the braid with less radial fluctuations. Figure 7b shows 

the variation of the mean and the fluctuation in braid radius for various forces at 100 mM 

salt. Radial fluctuations decrease with increasing force and are much smaller than the 

average value of the radius, suggesting small fluctuations of the braiding strands about their 

average shape.

Appendix C

Braids at high salt concentration

We find that the position of the buckling transition varies non-monotonically with the 

concentration of univalent salt in the solution. The amount of catenation at which the braid 

buckles increases with the salt concentration in the range 0.01 to 0.5 M, while decreases for 

higher salts (>0.5 M) (Figure 8a). We use ν = (47.8, 78.1) nm−1 corresponding to (0.75, 1) 

M salt concentrations respectively [39]. We also find that for 2 pN force at salt 

concentrations ≈ 0.5 M single domain plectoneme is favored over multiple domains, but 

multiple domains are again favored for > 0.5 M salt (Figure 8b). However, at salt 

concentrations above a few hundred millimolars, the Debye length of the solution is smaller 

than the DNA radius (Table I), which is an extreme limit of the mean-field Debye-Hückel 

theory.

Appendix D

Intertether distance

For a braid with unequal intertether distances d1 and d2, we define a dimensionless 

parameter ε such that

(D.1)
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where the total length in the end-regions Le (Eq. 15) is divided into ℓ1 and ℓ2 corresponding 

to the two end-regions. Hence, ε = 1/2 indicates the scenario of a braid with symmetric end-

regions. Figure 9a shows the minimized total free energy (Eq. 15 and 16) versus ε for three 

pairs of intertether distances, keeping the arithmetic mean of the distances the same in all 

three choices. The extension plots are a characteristic of the arithmetic mean, but the relative 

size of the end-regions depends on the particular choice of d1 and d2. The end-region 

associated with the larger of the two intertether distances contains more length of double-

helix DNA.

Figure 9b shows minimized free energy versus ε for a braid with symmetric ends but various 

catenations. The stiffness of the potential near the equilibrium value of ε increases with 

increasing catenation in the braid. This suggests the possibility of fluctuation in the relative 

sizes of the end-regions, which would be higher for lower catenations and becomes 

energetically expensive in the regime of tight braid or braid with high catenation density. It 

may be possible to directly visualize the sliding of the braid helical intertwines in a braiding 

experiment using DNA molecules labeled with fluorescent tags.
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FIG. 1. 
(a) Schematic of a DNA braid under torsional stress, showing coexistence of straight and 

plectonemically buckled states. The individual dsDNAs are able to swivel around their 

contact with the wall, keeping the dsDNAs from twisting. (b) Two duplex DNAs (dark and 

gray shaded) helically braided in a right-handed manner on the surface of a cylinder of 

radius R oriented parallel to the ẑ-axis, viewed from two angles. The orthonormal triad (tîo, 

t ̂i⊥r, t̂i⊥θ), where i ∈ {1, 2} is shown for one of the curves. t̂1o is in the direction of the 

tangent to the helix, t̂1⊥r is oriented radially inward, and t̂1⊥θ ≡ t̂1o × t̂1⊥r. The projection of 

the triad on the ẑ axis is a constant dependent on the helix parameters (Eq. 3).
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FIG. 2. 
DNA braids at 100 mM monovalent salt under various forces, the shaded arrows show the 

direction of increasing force. Theoretical predictions are for ≈11 kb (L = 3.6 µm) long 

double helices, tethered 1.5 µm (d = 0.42L) apart. Catenation (Ca) and catenation density (σc 

= Ca/Lk0) are plotted on the top and the bottom x-axes respectively. (a) Relative end-to-end 

distance (left y-axis) or extension (right y-axis) versus catenation. Lines are theoretical 

predictions for 1.25 (lowest curve), 2, 3 and 4 pN (highest curve) force, while filled circles 

are experimental data at 2 pN [11]. The change in slope of the lines corresponds to 

plectonemic buckling transition, which is at a higher catenation for larger external tension 

due to increased stability of the force-coupled straight state. The kink at the onset of 

buckling transition is related to the plectoneme-nucleation cost presented by the braid end 

loop. (b) Torque in the braid shows a non-linear increase in the straight phase, and continues 

to increase in the coexistence phase but with a much weaker slope. The torsional stress is 

released in the coexistence phase due to the contribution from plectoneme writhe (Eq. 17). 

(c) Number of plectonemic domains versus catenation, showing that the buckled phase is 

characterized by multiple plectoneme domains. Nucleation of new domains causes the 
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increase of torque in the coexistence phase, as opposed to a constant torque expected in the 

case of a single plectoneme domain. (d) Plot of the size of the straight-phase helical region 

〈Lb〉 (left y-axis, solid gray curves) and the size of the plectoneme region 〈Lp + mΓ〉 (right 

y-axis, dashed black curves) as a function of catenation. Lb increases in the straight phase 

with catenation till the buckling point, after which Lb decreases as DNA length is passed 

into the plectoneme phase, also seen in the increase in the total size of the plectoneme.
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FIG. 3. 
Effect of salt concentration on ≈11 kb (L = 3.6 µm) DNA braids under 2 pN force. The 

tether points are 1.5 µm (d = 0.42L) apart. Theoretical curves are plotted for (0.01, 0.05, 0.1 

and 0.5) M salt concentrations, where the shaded arrows show the direction of increasing 

salt concentration. Catenation (Ca) and catenation density (σc ≡ Ca/Lk0) are plotted on the 

top and the bottom x-axes respectively. (a) Relative end-to-end extension (left y-axis) or 

extension (right y-axis) versus catenation shows smaller extension and buckling at a lower 

catenation for lower salt concentrations. Low salt increases the effective DNA diameter, 

which effectively increases the twist elasticity of the braid, thereby decreasing the stability 

of the straight phase. The filled circles (0.1 M) and open squares (0.01 M) are experimental 

data reproduced from Ref. [11]. (b) Torque in the braid shows a non-linear increase in all 

salt conditions. Also, twist stiffening occurs faster for braids at lower salt concentration due 

to the larger radius of the braid. The critical buckling torque, being a thermodynamic 

variable does not vary significantly with the salt concentration. (c) The number of 

plectoneme domains versus catenation or catenation density, showing nucleation of multiple 

domains of plectoneme at lower salt concentrations, while a single plectoneme state is 
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favored at higher salts. Smaller excluded diameter of the braid at higher salt makes the 

superhelical bending in the plectoneme phase favorable over nucleation of new domains. (d) 

The size of the straight phase helical wrappings 〈Lb〉 (left y-axis, solid gray curves) and the 

size of the plectonemic phase 〈Lp + mΓ〉 (right y-axis, dashed black lines) versus catenation. 

Lb increases faster for lower salt concentrations due to larger braid radii (Table I).
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FIG. 4. 
Effect of the intertether distance for braids with ≈6 kb (L = 2 µm) long DNAs under 2 pN 

force at 100 mM salt. The shaded arrows show the direction of increasing intertether 

distance d = 0.1L, 0.25L, 0.35L and 0.5L, where the top and the bottom x-axes show 

catenation (Ca) and catenation density (σc ≡ Ca/Lk0) respectively. (a) Variation of relative 

extension (left y-axis) or extension (right y-axis) with catenation in the braid. Larger 

intertether distance results in a larger initial jump in the extension and lowering of the 

critical catenation density. (b) The torque in the braid is higher for larger intertether 

distances. The increase of torque per unit catenation or effective twist modulus of the braid 

is also higher for larger intertether distance, resulting in buckling at a lower catenation. 

However, the critical value of torque at which buckling occurs is a bulk property of the braid 

and remains roughly the same for various intertether distances, ≈ 30 pN-nm at 2 pN external 

force. (c) The average number of plectonemes as a function of catenation showing the 

formation of multiple domains at all intertether distances. (d) The size of the helical straight 

braid (left y-axis, solid gray curves) and the total plectoneme length (right y-axis, dashed 

black curves) as a function of catenation. For braids with larger intertether distance, buckling 
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occurs at relatively smaller size of the straight braid helical section due to the larger size of 

the triangular end regions (Figure 1).
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FIG. 5. 
Braiding ≈2 kb (L = 0.65 µm) DNA at 100 mM Na+ with forces f = 1.25, 2, 3 and 4 pN, 

where the shaded arrows show the direction of increasing force. The intertether distance is 

0.26 µm (d = 0.4L), where the top and the bottom x-axes show catenation and catenation 

density (σc ≡ Ca/Lk0) in the braid. (a) Relative extension (left y-axis) or extension (right y-

axis) versus catenation for short DNA molecules. (b) Torque vs catenation shows multiple 

discrete “overshoots”, corresponding to the nucleation of new plectoneme domains. (c) 

Number of plectoneme domains vs catenation. The appearance of new plectoneme domains 

coincides with the steps in the extension or overshoots in the torque. (d) The size of the 

straight-phase helical region 〈Lb〉 (left y-axis, solid gray curves) and the size of the 

plectoneme phase 〈Lp + mΓ〉 (right y-axis, dashed black curves) versus catenation, where 

steps are associated with the formation of finite-length braid end loops. The successive 

nucleation events are smoothed out by thermal fluctuations in braids made up of long DNA 

molecules (≳ 4 kb).
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FIG. 6. 
(a) Comparison of numerical evaluation (points) of s (Eq. A.3) with the proposed empirical 

solution (Eq. A.4) (solid lines) with ζ = 1, c1 = 0.042 and c = 0.312, as a function of w for 

various values of a = 1, 3, 6 and 9. (b) s versus a for w = 2, 5, 7 and 10 showing that the 

empirical function is a good fit to the numerical solution. (c) Plot of the total electrostatic 

potential  per unit braid length A (Eq. A.5) with (dashed lines) and without (solid lines) the 

self interaction component (the second term in Eq. A.5 containing the self interaction can be 

set to zero by putting c1 = 0) versus braid radius (R) over a range of braiding angles δ = 15°, 

30° and 45° (Table I). We used ζ = 2700 (corresponding to 100 mM Na+, Table I), c2 = 

0.312 and c1 was chosen to be either 0 (only neighbor interaction plot, solid lines) or 0.042 

(neighbor and self interaction plot, dashed line). (d) Comparison of the self and the neighbor 

components of the total electrostatic potential as a function of braiding angle δ for braid 

radii R = 2, 3 and 4 nm. The self-energy contribution is non-negligible in braids with radii ≳ 
3 nm, which is the case ≲ 2 pN at 100 mM salt (Figure 7a).
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FIG. 7. 
Radial fluctuations in braid with L = 2 µm, d = 800nm and Ca= 12. (a) Probability 

distribution of braid radii (Eq. B.4), plotted for applied forces of 1 pN (dot-dashed line), 2 

pN (solid line) and 3 pN (dashed line). Note the broadening of the distribution at lower 

forces indicating higher fluctuations. R = 1 nm corresponds to the excluded volume radius of 

the DNA molecules, included while calculating the average radius via free energy 

minimization but not explicitly taken into account in plotting Eq. B.4. (b) Variation of the 

standard deviation of the radial distribution σR (black open squares) and the average value of 

the radius 〈R〉 (shaded filled circles) with the external tension (f) on the braid. The dashed 

lines correspond to best-fit equations: σR = σ0(βAf)−0.35 and 〈R〉 = R0(βAf)−0.13, where σ0 

= 2.4 nm and R0 = 5.2 nm. The exact power laws depend on the catenation in the braid, 

however, both the average value and the fluctuations in braid radius always decrease with 

increasing force.

Brahmachari and Marko Page 32

Phys Rev E. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 8. 
(a) Extension versus catenation for braids with L = 3.6 µm, d = 0.42L, and f = 2 pN external 

force under a range of salt concentrations. Note that the buckling transition point is delayed 

on increasing the salt concentration till 0.5 M, after which the transition occurs at a lower 

catenation. (b) Number of plectoneme domains versus catenation for various salt 

concentrations. The multiple-domain character of the plectoneme phase also shows a non-

monotonic trend: multiple domains are favored at very high salt concentrations > 500 mM. 

However, at such high salts we are in an extreme limit of the Debye-Hückel theory.
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FIG. 9. 
Effect of the intertether distance. (a) Comparison of the free energy versus ε (Eq. D.1) for 

braids with various choices of the two intertether distances d1 and d2, but keeping the 

arithmetic mean of the two distances the same. The end-region where the two DNAs are 

closer to each other is smaller in size (i.e., has less DNA in it), and vice-versa. (b) Free 

energy versus ε for braids at various catenations (Ca=5, 12 and 20) with identical intertether 

distances d = 0.3L. The stiffness of the free energy decreases for lower catenation values 

indicating higher fluctuations in the relative sizes of the two end regions. The free energy 

curves have been shifted in the y-axis in order to overlay them.
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