Skip to main content
. Author manuscript; available in PMC: 2017 Jul 11.
Published in final edited form as: J Mol Cell Cardiol. 2016 Apr 13;94:162–175. doi: 10.1016/j.yjmcc.2016.04.003

Table B.1.

List of parameters estimated/used for the myofilament model

Parameter Description Value Reference
Thick-thin filament activation parameters
Lthick Length of thick filament 1.67 μm Gordon et al.[27]
Lthin Length of thin filament 1.2 μm Rice et al.[26]
Lbare Length of bare region of thick filament 0.1 μm Rice et al.[26]
kon Association rate of Ca2+ with TrpC 100 μM Niederer et al.
koffL Dissociation rate of Ca2+ from low affinity TrpC 4218.5 sec−1 Fit to Janssen data[19]
koffH Dissociation rate of Ca2+ from high affinity TrpC 156.5 sec−1 Fit to Janssen data[19]
ζ Force sensitivity of Ca2+ unbinding rate 0.23 Fit to Janssen data[19]
β50 TrpReg value which the effect is half-maximal 0.5 Rice et al.[26]
nβ Hill-coefficient of the TrpReg effect 15 Rice et al.[26]
Qkon Temperature dependence of kon 1.5 Rice et al.[26]
Qkoff Temperature dependence of koff 1.3 Rice et al.[26]
Cross-bridge cycling parameters
knp Transition rate from N to P 329.2 sec−1 Fit to Janssen data[19]
kpn Transition rate from P to N 50 sec−1 Rice et al.[26]
ka Myosin-actin rate of attachment 294.1 sec−1 Tewari et al.[15]
kd Myosin-actin rate of detachment 88.9 sec−1 See footnote
k1 Transition rate from A1 T to A2 T 10.2 sec−1 Tewari et al.[15]
k−1 Transition rate from A2 T to A1 T 10.3 sec−1 Tewari et al.[15]
K2 Transition rate from A2 T to A3 T 88.6 sec−1 Tewari et al.[15]
k−2 Transition rate from A3 T to A2 T 20.9 sec−1 See footnote
k3 Transition rate from A3 to P 35.6 sec−1 Tewari et al.[15]
α1 Stretch sensing parameter for k1 and k−1 10 μm−1 Tewari et al.[15]
α2 Stretch sensing parameter for k2 and k−2 9 μm−1 Tewari et al.[15]
α3 Stretch sensing parameter for k3 59.3 μm−1 Tewari et al.[15]
s3 Strain at which k3 is minimum 9.9 nm Tewari et al.[15]
kstiff,1 Stiffness of frictional forces arising due to myosin-actin interaction 2827.1 kPa μm−1 Tewari et al.[15]
kstiff,2 Stiffness of forces arising due to cross-bridge powerstroke 51871 kPa μm−1 Tewari et al.[15]
QkNtoP Temperature dependence of kNtoP 1.6 Rice et al.[26]
QkPtoN Temperature dependence of kPtoN 1.6 Rice et al.[26]
QXB,1 Temperature dependence of ka, k1 3.82 Fit to data[19]
QXB,2 Temperature dependence of kd, k−1 2.39 Fit to data[19]
QXB,3 Temperature dependence of k2, k3 6.73 Fit to data[19]
QXB,4 Temperature dependence of kstiff,1 1.34 Tewari et al.[15]
QXB,5 Temperature dependence of kstiff,2 1.44 Tewari et al.[15]
Other parameters
λXB Factor scaling cross-bridge force 1.31 Fit to CVS data[25]; See Footnote
KSE Stiffness of series element 1000 kPa μm−1 See text
η Viscosity coefficient of cardiac muscle 1 kPa sec μm−1 Fixed

Scaled by a factor of 2.5 from original published value to make kd/ka same as mouse XB mouse [15]. Note, that experimental data with variable Pi was only available for mouse myocardial strips (see Tewari et al. [15]).

Scaled by a factor of 10 from original published value to make k−2 of same magnitude as k2. Note, no experimental data was available with variable ADP and model was relatively insensitive to this parameter (see Tewari et al. [15]).

Scaling factor used to consolidate differences between myofilament force generation in vivo and in vitro. It was used only while simulating the CVS model.