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Abstract

Household contact studies, a mainstay of tuberculosis transmission research, often assume that 

tuberculosis-infected household contacts of an index case were infected within the household. 

However, strain genotyping has provided evidence against this assumption. Understanding the 

household versus community infection dynamic is essential for designing interventions. The 

misattribution of infection sources can also bias household transmission predictor estimates. We 

present a household-community transmission model that estimates the probability of community 

infection, i.e. the probability that a household contact of an index case was actually infected from 

a source outside the home, and simultaneously estimates transmission predictors. We show 

through simulation that our method accurately predicts the probability of community infection in 

several scenarios, and that not accounting for community-acquired infection in household contact 

studies can bias risk factor estimates. Applying the model to data from Vitória, Brazil, produced 

household risk factor estimates similar to two other standard methods for age and sex. However, 

our model gave different estimates for sleeping proximity to index case and disease severity score. 

These results show that estimating both the probability of community infection and household 

transmission predictors is feasible, and that standard tuberculosis transmission models likely 

underestimate the risk for two important transmission predictors.
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Introduction

Background

Tuberculosis (TB) remains a significant global health challenge. In 2014, 1.5 million people 

died from the disease [1], and the World Health Organization (WHO) recently ranked TB 

above HIV as the world's most deadly infectious disease [2]. It is thought that fully one-third 

of the world population is infected with latent TB. The rise of multidrug-resistant TB strains 

(MDR-TB), mass migration and industrialization, imperfect diagnostic methods, the 

pressure of the HIV epidemic, and TB's long latency period have complicated efforts at TB 

elimination. (Latent, non-infectious TB can persist for decades before progressing to active 

disease, at which point an individual is symptomatic and infectious.) Treatment can be 

onerous, and choosing the appropriate treatment is not always straightforward, particularly 

in the case of latent TB infection [3].

TB spreads by droplet nuclei coughed by an infectious case. However, unlike influenza or 

measles, infection usually requires some duration of exposure. Studies dating back many 

years have established that transmission is more likely in close quarters [4]. Consequently, 

household transmission has been a focus of TB epidemiologic research for some time. The 

common protocol in household contact studies for TB is to follow household contacts of an 

index case with active disease and periodically test contacts for tuberculin skin test (TST) 

conversion, which indicates latent TB infection: a baseline TST reading that is positive 

indicates existing infection, while a conversion at some point during the study period 

indicates a new infection. However, standard methods for estimating of the risk of TB 

transmission drawn from households are inherently unreliable. Genetic strain analysis of TB 

strains is only feasible in the case of active pulmonary disease, which is unlikely to be 

observed in secondary cases in a household contact study due to the disease's long latency 

period. Strain analysis such as restriction fragment length polymorphism (RFLP) or 

spoligotyping of secondary cases with active disease has shown that anywhere from 10% to 

70% of cases are strain-discordant with the index case [5-9]. This ambiguity in the source of 

the disease transmission complicates reliable estimation of risk factors for household-based 

transmission. However, little work has been done to address this issue; TB transmission 

models generally assume that all observed transmission is occurring only in the household 

[10-11]. The paucity of TB transmission models that adequately account for community-

acquired infection has limited the effectiveness of strategies for interrupting disease 

transmission, which have often not been as effective as anticipated [12]. Understanding 

exactly how much TB transmission is occurring outside of immediate familial contact 

networks is essential information for public health institutions working to identify areas of 

highest risk and prioritize resources in an effort to disrupt transmission.

History of Transmission Models

Disease transmission models have a long history: the simple chain binomial models put 

forward by Lowell Reed, W.H. Frost, and M. Greenwood date to the 1920s [13-14], and the 

rudiments of these models were described even earlier by En'ko in the late 19th century [15]. 

Some models, for example the Chain Binomial model, describe the probability of escaping 
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infection at the individual level, but with little extendibility for heterogeneous risk profiling 

and control of confounding.

In the 1980s, disease dynamics were given scrutiny outside the Reed-Frost-Greenwood 

paradigm. In 1982, Longini and Koopman described an approximate recursive maximum 

likelihood method to estimate the probability of household and community influenza 

infection in the absence of infection onset times [16]. In 1991, Addy et al. generalized the 

work of Longini and Koopman to allow more sources of heterogeneity in risk of 

transmission into their model [17]. In 2011, Brooks-Pollock et al. described an adaptation of 

the final-size model of Longini and Koopman for TB transmission using Markov chain 

Monte Carlo (MCMC) techniques. The Brooks-Pollock method has the benefit of being able 

to incorporate prior information into final estimates, but like the original frequentist method 

there are limits on the modeling of heterogeneity among both households and individuals.

In 2004 and 2009, Cauchemez et al. described two models, both for influenza, that estimate 

parameters such as duration of infectious period, serial interval—the time between 

successive infections in a disease transmission chain, and instantaneous risk of infection 

[18-19]. These models do account for possible community-acquired infection, but require 

calculation of the serial interval, which relies on daily measurements on study participants. 

These data are simply not available for TB, a disease characterized by a long asymptomatic 

period and unobserved transmission.

All the aforementioned methods are limited in terms of modeling individual-level covariates: 

the only additional variables analyzed in the Longini/Koopman models are household size 

and a binary age classification (child or adult). The most recent Cauchemez paper includes 

an “infectivity” variable for an index case, and for age of the household contact, but the 

control of bias from multiple confounding variables is not explored.

Our Contribution

We show through simulation that traditional methods for quantifying risk factors of 

household transmission in tuberculosis follow-up studies fall far short of the desired 

precision, and do not estimate the probability of acquiring infection in the community given 

proximity to a household contact with active disease—a crucially important public health 

metric. To address these problems, we propose an extension to a Bayesian generalized linear 

mixed effects model. This extension is intended to estimate the probability of a household 

contact of an index TB case becoming infected from a source outside the home (i.e. “the 

community”), and to decrease bias of risk factor estimates of household TB transmission by 

accounting for the risk of infection from the community among household contacts of a TB 

case. We demonstrate our method on simulated data, and on data from a recent household 

contact study in Vitória, Brazil, and compare our results with those of other commonly used 

models.
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Methods

Unified Probability Model

Our proposed model extends existing hierarchical generalized linear model methods by 

introducing model elements that profile the probability of acquiring disease outside of the 

household, while also accounting for multiple household- and individual-level covariates. 

We forgo epidemic chain modeling and the complex serologic and surveillance apparatuses 

necessary for tracking household chains of infection. Instead, we use the standard cross-

sectional beginning-and-end of study period method commonly used for TB household 

studies, which involves testing household contacts for latent TB at enrollment and then later 

during follow-up to see if a new infection has occurred. Our method captures the dynamics 

of household infection, discards the task of tracking transmission chains, and allows for the 

inclusion of covariates and potential confounders in the model. We refer to this model as the 

Unified Probability Model (UPM).

Household Infection

Denote probability of household infection for household contact j in household i as pij
H, and 

let

where Xij is the vector tracking person- and household-level variables, β is a vector of 

coefficients, and bi is a random effect to account for the fact that observations are not 

independent, identically distributed, i.e. persons sharing the same household are more likely 

to be alike than members from different households. We assume that the random effect is 

Gaussian, bi ∼ N(μb, σ2
b).

Community Infection

Denote the probability of community infection as

which implies that

The implicit assumption in the model is that the risk of community infection is identical for 

all persons: i.e. pij
C = pC for all i, j, which means that individual characteristics are 

immaterial to community risk of infection, and that exposure to community risk is constant 

and homogeneous. This assumption is an obvious simplification, but has precedent in other 

household transmission models (ibid. Cauchemez, 2004).
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Combining Sources Of Risk

Define the probability that person j in household i is infected as

where pij
H is the probability of infection from a household source, pC is the probability of 

infection from a community source, and Yij is an indicator of infection. This transformation 

keeps the probability of being infected at all between 0 and 1, and if viewed from the 

vantage of escaping infection from independent risks rather than acquiring infection, is 1 

minus the probability of escape from both sources of infection.

Model Estimation

For household i define set Ui as all persons uninfected, and set Ii as the set of all those 

infected. Denote the set of parameters to be estimates as

where index M is the number of households. The likelihood for the ith household is

The complete likelihood is then the product of the household cluster likelihoods. Typically 

in a mixed effects model the integral is approximated by numerical integration techniques 

such as Gaussian Quadrature. However, in the proposed model there is an additional 

parameter in the household likelihood term, α, which models community transmission. This 

added structure induces a weak non-identifiability in that the partial derivative of the log-

likelihood with respect to α contains discontinuities, and complicating the standard 

frequentist likelihood methods for parameter estimation. Furthermore, given the substantial 

history of TB research, it is both helpful and reasonable to incorporate prior information 

about risk factors into the model. With these considerations in mind, we opt for a Bayesian 

implementation of the model. This formulation requires a specification of prior distributions 
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on each parameter for estimation of posterior distributions. We address these decisions on 

prior specification in turn for the simulated data and actual data below.

Simulating Data

The goal of this model is to estimate the probability of community-acquired infection while 

also estimating household- and person-level risk factors of household infection among 

contacts of an infectious TB case. To that end, we set a given level of pC (0.10, 0.15, 0.40, 

and 0.60). For example, for pC = 0.15, 850 of 1000 people will have a risk of infection 

dependent on household and individual covariates, and 150 will be infected regardless of 

their individual risk of household infection.

Using the statistical software program R [20], for each pC specification, we created 2000 

datasets, each of N = 1000 simulated household contacts. Each simulated person has five 

variables that form their risk of household infection. All simulated individual predictors 

except variable 4 which is binary, are normally distributed. Variable 5 is constant at the 

household level, and can be thought of as perhaps an index case characteristic such as 

disease severity score, or a household characteristic, such as number of windows in the 

home. Here we detail simulation result for pC = 0.15. Further material on simulated 

variables, model formulation, results for all pC specifications can be found in section 1 of the 

supplementary appendix; analysis of MCMC diagnostics to ensure adequate posterior 

distribution estimation can be found in section 2.

Simulated household size ranged from 2 to 12, which is consistent with the size of 

households in the observed household contact data from Brazil (median=5, max=14) and 

other TB household contact studies. Each person's probability of household infection is a 

logit-transformed linear combination of individual predictors with an additional modeled 

hierarchical effect specific to each household. The family-specific risk term incorporated 

into the linear component of household risk for all simulated data is a Gaussian random 

variable centered at 0.

To model the frequentist mixed effects model we used standard maximum likelihood 

estimation with the R package lme4 [21]. For the Bayesian mixed effects logistic model and 

the UPM, as the posterior distribution of parameters is not conjugate to the complex prior 

structure, we implemented MCMC estimation methods using the R package upmfit, which 

calls the JAGS software package, a program for Gibbs sampling, to generate posterior 

distributions for each variable [22-23]. For each modeled variable we generated three 

MCMC chains, each begun at unique, random starting values. For each model scenario we 

generated 100 thousand posterior samples, discarded the first 20 thousand, and took only 

every 200th sample for a final posterior sample size for each variable of 1200. We used 

standard diagnostic measures (analysis of trace, density, and autocorrelation plots, Gelman- 

Rubin statistics) to ensure adequate chain convergence; these analyses are presented in the 

supplementary appendix, section 2.

We assigned relatively non-informative prior distributions to all linear component variables. 

All prior betas are Gaussian with mean 0, variance 10. This variance, when transformed onto 
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the logit scale, gives substantial prior variability in the odds ratios (OR) associated with each 

variable.

A major advantage of using a Bayesian framework for model estimation is the ability to 

inform posterior estimates by prior information. We generated posterior parameter estimates 

under several plausible scenarios: investigators may have reliable and accurate information 

on the burden of disease in the community; they may have inaccurate or incomplete 

information on the disease burden; or they may not feel confident asserting a claim on the 

probability that a person is infected outside the home when that person lives with an active 

TB case. The probability of community infection pC was given a prior distribution reflecting 

these three possible scenarios. If the prior probability distribution is correctly informative 

then the prior probability mean is centered at the true value with some variability about that 

value—the interquartile range (IQR) is within 10 percent of the true value; if it is wrongly 

informative then the prior probability mean is centered at a value closer to the other end of 

the unit interval than to the true value, again with some variability; if the prior distribution is 

designated uninformative, then the distribution is essentially uniform on the unit interval.

All simulated data were run 2000 times on three models: a frequentist mixed effects logistic 

model, a Bayesian mixed effects logistic model, and the UPM. The first two models, along 

with generalized estimating equation (GEE) models—not analyzed here—are standard 

practice for accounting for household clustering effects in follow-up studies, and do not 

account for the possibility of community-acquired infection.

Household Contact Study in Vitória, Brazil

We used data from the US-Brazil Research Collaboration on Strain Variation in 

Tuberculosis, a U.S. National Institutes of Health (NIH) initiative undertaken through the 

International Collaboration in Infectious Diseases Research (ICIDR) program. The study 

was designed to investigate, among other aims, the extent of TB transmission in household 

contacts exposed to an index case with acid-fast bacilli (AFB) smear-positive pulmonary TB, 

and was conducted at the Núcleo de Doenças Infecciosas (NDI) in Vitória, Brazil. 

Investigators enrolled 160 index cases and 838 household contacts, and recorded 

demographic, household, and index case disease characteristics. Index TB cases were 

screened and enrolled within 2 weeks after first presenting to their local TB clinic. 

Household contacts of index cases were evaluated with TST for latent tuberculosis infection 

(LTBI) at screening and again after 8 weeks if the first result was negative. Of 838 secondary 

contacts, 585 (70%) were found to be TST positive at baseline or to have TST conversion at 

8-12 weeks. The study protocol and population have been described elsewhere [24-25].

We include in our models the variables: age of household contact, sex of household contact, 

an indicator as to whether the contact and the index case sleep in the same room, and a 

three-level disease severity score based on chest X-ray for the index case of each household; 

this last variable is identical for all persons residing in the same household. These four 

variables are thought to be potentially predictive of disease transmission. They were found to 

be statistically significant predictors in another study of household TB transmission for this 

population (Jones-López ibid.), and in a similar study currently under review for publication. 

The measured outcome variable is TST positivity at either the baseline or second reading.
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We ran the same three models used in the simulation study on the observed Brazil data: the 

UPM, the Bayesian mixed effects logistic model, and the frequentist mixed effects logistic 

model. For the UPM and Bayesian mixed effects logistic model, each variable has three 

MCMC chains generated using non-informative priors. Diagnostic measures such as the 

Gelman-Rubin scale reduction statistic were monitored to ensure adequate chain 

convergence. The frequentist mixed effects model is estimated by maximum likelihood 

techniques using the R statistical software package.

Results

Simulation Study

We ran the simulated data through all three models under consideration: the standard-

practice Bayesian and frequentist mixed effects logistic regression models and the UPM 

under three prior pC scenarios (uninformative, correctly informative, incorrectly 

informative), and here present results for true pC = 0.15. Results for simulations where pC = 

0.00, 0.40, and 0.60 are presented in appendix section 1. When referring to the Bayesian 

mixed effects logistic model and the UPM, the term CI will refer to the Bayesian analog to 

the confidence interval, the credible interval, while for the frequentist model, it refers to the 

commonly understood confidence interval. All stated CIs are 95% confidence/credible 

intervals.

Figure 1, in the case of the UPM and Bayesian mixed effects logistic model, shows boxplots 

of posterior median estimates for each parameter for each model under consideration. For 

the frequentist mixed effects model, the boxplots show maximum likelihood parameter 

estimates.

The plots of Figure 1 show the UPM performance for three possible prior probability 

distributions on parameter pC. The UPM-un model has a prior probability for pC that is 

uniform on the unit interval, the UPM-correct model has a prior probability distribution on 

pC that is centered at 0.15 (the true value for this set of simulations) with an IQR between 

0.10 and 0.20, and the UPM-wrong model has a prior probability distribution on pC that is 

centered at 0.50 with an IQR between 0.40 and 0.60.

For each scenario of prior for pC, the UPM model, even with a weak prior probability 

specification or an incorrect prior specification, accurately estimates the probability of 

community infection. Furthermore, the spread of posterior median values for the 2000 

simulations is within a plausible range. There are no estimates that are substantially 

different, such as a posterior estimate of 0.60 when the true value is pC = 0.15, even in the 

case of an incorrect prior probability specification.

The median and 95th percentiles of 2000 posterior median estimates for community 

infection risk pC for the three prior probabilities—uninformative, correct, and incorrect—are 

all very close to the true value: 0.17 (0.12, 0.21); 0.16 (0.12, 0.20); and 0.18 (0.15, 0.22), 

respectively.
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As shown in Figure 1 and Figure 2, the inclusion in the UPM of the pC term adds variability 

to posterior estimates of beta parameters when compared to the Bayesian mixed effects 

logistic and frequentist mixed effects logistic models. This is the tradeoff of estimating the 

community infection parameter. The median of posterior medians for 2000 simulations for 

the UPM is always closer to the true value than for the other two competing models, 

however the spread of the 2000 estimates is larger with the UPM.

Figure 3 shows for each model the percent of CIs for 2000 simulations that contain the true 

parameter. The reduction in coverage seen for the two alternative models—the Bayesian 

mixed effects logistic and frequentist mixed effects logistic—reflects both bias and 

variability in the estimates: the estimates from the UPM for all prior specifications have 

slightly less bias but greater variability in the spread of posterior median values than the 

standard Bayesian and frequentist models.

Figure 4 shows the mean squared error (MSE) of each parameter estimate against the known 

true parameter value. The UMP has slightly higher MSE than the competing models for 

some parameters, which may reflect the tendency for MSE to penalize more for outliers due 

to the squaring of values, and may not necessarily be representative of an actual increase in 

bias, although it demonstrates a higher variability.

Application To Brazilian Household Contact Study

Figure 5 shows the posterior density of three MCMC chains for the probability of 

community infection. All chains converge well to a central value of 0.19. The UPM estimate 

of the probability of community-acquired infection is 0.19, with a 95% CI of (0.05, 0.34). 

We estimate that almost one-fifth of household contacts of an active TB case will acquire 

disease from a source other than their cohabiting TB case in this population.

Figure 6 shows the posterior median point estimates for the Bayesian mixed effects logistic 

model and the UPM and their 95% CIs along with the frequentist mixed effects logistic 

model point estimates and 95% CIs. The UPM estimates differ from the Bayesian and 

frequentist models in the impact of sleeping in the same room as an index case and the 

extent of index case disease. Estimates of the impact of age and sex are similar across the 

three models.

Table 1 shows that UPM estimates for the four variables used in each model. There is little 

difference in estimates of risk of infection for males versus females and for 5-year age 

difference, accounting for the other predictors in the model. The UPM estimates a higher 

risk than the competing models for the Extent of Disease variable and for the indicator of 

sharing a sleeping space with the index case, controlling for the other variables in the model. 

Only the latter two variables have a statistically significant OR estimate, with the 95% CI for 

the odds ratio not containing 1.

Discussion

In this paper we present a new model to estimate community-acquired infection using data 

from index cases and their household contacts in Vitoria, Brazil. Through simulation we 
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show that our model can accurately estimate the probability of community infection for a 

household contact in a home with an AFB smear-positive pulmonary TB case. This model is 

the first to estimate both the probability of community-acquired infection, and individual-

level risk factors of infection while controlling for confounding and accounting for 

household clustering effects.

We found that models commonly used to measure the impact of risk factors on transmission 

of TB in households experience bias in parameter estimation, which, as shown in section 1 

of the supplementary appendix, increases as the probability of community-acquired infection 

increases. The limitation of traditional generalized linear models in this setting is not 

surprising, as one can imagine that the “signal” of household risk is being interrupted by the 

“noise” of infection from a community source that occurs regardless of household risk factor 

levels. Other transmission models have tried to estimate either individual risk factors of 

infection, or to quantify the level of disease in the community by calculating secondary 

attack rates. However, we have shown that these aims can be unified and the relevant 

parameters can be accurately estimated from follow-up data collected from contacts of a TB 

index case.

When we applied our model to data from a household contact study in Brazil, we found that 

the probability of infection from a non-household source, given an infectious TB case in the 

home, is 0.19. We found similarity between the three models under consideration with 

respect to two risk factors for transmission: age and sex. However, consistent with our 

simulation results, we found that the two standard models used in household contact studies 

potentially underestimate the effect of two variables: sleeping proximity and index case 

disease extent.

A limitation of our approach is that the probability of community infection is assumed to be 

constant, and is not informed by factors that could also lead to within-household 

transmission. This assumption is obviously a simplification of reality, but it is a common 

assumption that has been used often in epidemic disease modeling. We intend to extend our 

model framework in the future to include predictors that can plausibly affect the risk of 

community-acquired infection, for instance age and sex. It may also be of interest to 

compare the risk of community-acquired TB infection across different populations and 

across population subgroups (for example age strata) of a given population to characterize 

the geographic and heterogeneous intra-community distribution of TB risk.

An important focus of TB research is on understanding factors associated with transmission. 

The household, workplace, school, and even public transit are all important locations where 

TB can spread, and so it is paramount that public health practitioners and policymakers have 

a comprehensive understanding of where transmission is occurring, and reliable estimates of 

risk factors that contribute to TB transmission. Our novel approach to understanding 

transmission provides estimates of the impact of community transmission pressure and of 

predictors of household TB transmission. The model is robust to the prior probability 

distribution of the probability of community infection, and even for overt prior 

misspecification the model accurately estimates both community infection risk, and 

individual- and household-level risk factors.
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Understanding the probability of community-acquired infection is crucial to public health 

planning: if community probability of infection is high enough, prophylactic treatment of 

household contacts may not be strategically useful, and resources for interventions to 

interrupt transmission should go elsewhere. Conversely, if the probability of community-

acquired infection is low, then prophylaxis for contact of a TB case may be entirely effective 

at combatting transmission. In particular, knowing the community probability of infection 

parameter for a population will allow public health planners to more effectively allocate 

resources for contact investigations focusing on community spaces such as workplace, 

classroom, and social venues [26].

This modeling framework will help public health programs make better decisions about 

where to target interventions, and it will help epidemiologists better understand the 

dynamics of a disease whose transmission is varied, complex, and largely hidden from 

standard investigative methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Estimates of 2000 simulations for pC = 0. Dotted lines are true parameter values.
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Fig 2. 
Estimates of 2000 simulations for pC = 0.10. Dotted lines are true parameter values.
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Fig 3. 
Estimates of 2000 simulations for pC = 0.15. Dotted lines are true parameter Values.
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Fig 4. 
Estimates of 2000 simulations for pC = 0.40. Dotted lines are true parameter values.
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Fig 5. 
Estimates of 2000 simulations for pC = 0.60. Dotted lines are true parameter values.
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Fig 6. 
Average credible/confidence interval length of 2000 simulations for each model under 

consideration for pC = 0.0.
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Table 1

Median odds ratio estimates and point estimates for two Bayesian models and one frequentist mixed effects 

logistic model with 95% CIs in parentheses.

Odds ratio (95% CI)

Unified Probability Model Bayesian ME Logistic Frequentist ME Logistic

Age (by 5 year increments) 1.08 (0.99, 1.18) 1.10 (1.03, 1.15) 1.10 (1.02, 1.14)

Sex (male is reference category) 1.01 (0.56, 1.75) 1.04 (0.68, 1.58) 1.05 (0.70, 1.57)

Sleep in Same Room as Index Case 5.48 (2.43, 19.61) 3.46 (1.96, 6.12) 3.34 (1.91, 5.82)

Extent of Disease 2.81 (1.05, 8.22) 2.11 (1.13, 4.33) 2.13 (1.14, 3.97)
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