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Abstract

Many veterans of the 1990–1991 Gulf War contracted Gulf War Illness, a multi-symptom disease 

that primarily affects the nervous system. Here we treated cultures of human or rat neurons with 

diisopropylfluorophosphate (DFP), an analog of sarin, one of the organophosphate toxicants to 

which the military veterans were exposed. All observed cellular defects produced by DFP were 

exacerbated by pretreatment with corticosterone or cortisol, which, in the rat and human neurons 

respectively, serves in our experiments to mimic the physical stress endured by soldiers during the 

war. To best mimic the disease, DFP was used below the level needed to inhibit 

acetylcholinesterase. We observed a diminution in the ratio of acetylated to total tubulin that was 

correctable by treatment with tubacin, a drug that inhibits HDAC6, the tubulin deacetylase. The 

reduction in microtubule acetylation was coupled with deficits in microtubule dynamics, which 

were correctable by HDAC6 inhibition. Deficits in mitochondrial transport and dopamine release 

were also improved by tubacin. Thus, various negative effects of the toxicant/stress exposures 

were at least partially correctable by restoring microtubule acetylation to a more normal status. 

Such an approach may have therapeutic benefit for individuals suffering from GWI or other 

neurological disorders linked to organophosphate exposure.

Abstract

5Correspondence to: Peter W. Baas, Ph.D., Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, 
pbaas@drexelmed.edu.
2Co-first authors

HHS Public Access
Author manuscript
Traffic. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Traffic. 2017 July ; 18(7): 433–441. doi:10.1111/tra.12489.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

organophosphate; stress; microtubule; neuron; axon; Gulf War Illness; acetylation; tubacin

Introduction

Gulf War Illness (GWI) is a chronic, multi-symptom disorder that afflicts 25–32% of the 

nearly 700,000 United States veterans who served in the 1990–1991 Gulf War1. Veterans 

with GWI struggle with unabated central nervous system (CNS) deficits including chronic 

headaches, memory and concentration problems, sleep difficulty, fatigue and mood 

alterations2–4. Epidemiological and intelligence data indicate that at least 100,000 GW 

veterans were likely exposed to the organophosphate (OP) nerve agents sarin and cyclosarin, 

which were released as fallout from demolitions of the ammunition depot at Khamisiyah, 

Iraq in March 19915–7. While acute symptoms of OP toxicity have been characterized, only 

recently have the neurological consequences of exposure to low levels of OPs been 

studied8,9.

Understanding the impact on the CNS of low level OP exposure is important because OP 

pesticides represent the largest group of insecticides, and their use is widespread around the 

world, with >5 billion pounds of pesticides applied to crops, homes, schools, parks and 

forests10. In addition, the threat of OP nerve agent use in terrorism and war remains a 

concern. Growing evidence indicates a link between OP pesticide exposure and the 

development of Parkinson’s and Alzheimer’s diseases and amyotrophic lateral 

sclerosis11–15, necessitating a deeper investigation into the underlying mechanisms.

OP nerve agents are known to cause acute life-threatening acetylcholinesterase inhibition. 

Current thinking is that GWI is not due to acetylcholinesterase inhibition but rather due to 

sub-threshold effects of OPs that produce a non-self-correcting state of neurodegeneration. 

Neuroinflammation, axonal transport deficits, microtubule impairments and dopaminergic 

changes have all been observed in animal (rodent) and cell culture models of GWI at OP 
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levels below those needed to inhibit acetylcholinesterase16–18. Additional animal studies 

have shown that the effects of OP exposures are exacerbated when coupled with physical 

restraint or chemically-induced stressors designed to mimic the physical stress of the 

battlefield19.

We are interested in microtubule deficits that occur in the nervous system of veterans 

suffering from GWI, with the goal of developing microtubule-based therapies. OPs can 

affect a variety of proteins and pathways in cells, for example by covalently binding to 

tyrosine and lysine residues. The impacts on microtubules and microtubule-related proteins 

are likely to be many, including effects on molecular motor proteins and microtubule 

stability and dynamics, as well as the binding to microtubules of microtubule-associated 

proteins such as tau20–24. In light of the complexity, the question becomes whether particular 

microtubule-related deficits can be identified that when corrected result in marked 

improvement of GWI symptoms.

Here, we pre-treated cultured neurons with the stress hormone corticosterone (CORT) in the 

case of rat neurons, and cortisol in the case of human-derived neurons, and then exposed 

them to diisopropyl fluorophosphate (DFP), an OP compound used by researchers as a sarin-

surrogate25. We then assessed various microtubule-related parameters such as microtubule 

dynamics and mitochondrial transport, using live-cell imaging, to ascertain potential deficits. 

We included in our studies analyses of dopamine release, which is a complex process that 

involves microtubules but many other factors as well26. Upon ascertaining that the toxin 

regimens resulted in diminished microtubule acetylation, we sought to determine whether a 

drug that increases microtubule acetylation could restore to normal observed deficits in 

microtubule dynamics and mitochondrial transport, as well as dopamine release. 

Improvement in dopamine release was taken as an indicator that this approach has the 

potential to effectively treat complex symptoms of GWI.

Results

Pretreatment with CORT or cortisol intensifies DFP-induced aberrations in microtubule 
acetylation in human and rat neurons

Human neural stem cells were differentiated into neurons and allowed to mature and form 

networks in vitro for one month. These human neurons, or rat fetal cortical neurons grown 

for 8–14 days in culture, were exposed to DFP at concentrations of 20 or 200 nM with or 

without pretreatment with 2 µM cortisol (for the human neurons) or CORT (for the rat 

neurons), and changes in tubulin acetylation were assessed (Fig. 1A). Human neuronal 

phenotype was confirmed by positive staining for βIII-tubulin, a neuron specific tubulin 

isotype, and Tbr1, a transcription factor specific to glutamatergic forebrain neurons (Fig. 

1B). Immunostaining and Western blot analyses both revealed a reduction in the ratio of 

acetylated to total tubulin after DFP exposure (Fig. 1C and D and S1A and B, respectively). 

With the rat neurons, as described in Fig. 1A, the ratio was reduced after 20 and 200 nM 

DFP treatment, fortifying the finding from human neurons. Pretreatment with CORT or 

cortisone exacerbated the effect (Fig. 1E [top], 1F [left], 1G).
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We sought to restore the acetylation status of the microtubules by inhibiting the tubulin de-

acetylating enzyme, HDAC6. Treatment with 1 µM tubacin significantly improved the ratio 

of acetylated to total tubulin after treatment with 20 nM DFP alone, but did not significantly 

restore the effects of 200 nM DFP alone or any CORT pretreatment groups. Treatment with 

10 µM tubacin yielded significant improvements in the 20 and 200 nM DFP groups with and 

without CORT pretreatment (Fig. 1E [bottom], F [right], and G).

Exposure to DFP alters microtubule dynamics in a manner exacerbated by CORT and 
correctable by tubacin

To explore microtubule dynamics, neurons were treated as before, but on DIV 9, GFP-EB3, 

a microtubule end-binding protein that affiliates with the growing tips of microtubules, was 

ectopically expressed and microtubule growth assessed 24 h after DFP exposure. The 

excursion of GFP-EB3 at the plus end of the microtubule appears as a ‘comet’ because of 

the gradual dissociation of EB3 molecules from the microtubules27. When neurons were 

treated with DFP alone, microtubule comet number was decreased at 20 nM (Fig. 2B, C), 

but the rate of comet movement was not affected (Fig. 2D; Movie S1). CORT pretreatment 

enhanced the effect of DFP, causing a reduction in comet number at 2 and 20 nM DFP, and 

yielding a reduction in comet rate at 20 nM DFP. Tubacin restored comet number to control 

levels but not rate (Fig. 2D).

Toxicant/stress exposure disrupts mitochondrial transport in tubacin-correctable manner

Mitochondria are the primary site of energy production and have been suggested to be the 

target of non-cholinergic toxicity of OPs28. Past studies have indicated a link between 

exposure to higher concentrations of OP and oxidative stress and transport deficits after OP 

exposure29–31. Consistent with previous work, when neurons were treated with the DFP, 

transport of mitochondria was impaired and mitochondrial length increased, suggesting an 

increase in mitochondrial fusion. Mitochondria were stained with a live-cell mitochondrial 

dye called Mitotracker and live neurons were imaged (Fig. 3A). An increase in stalled 

mitochondria was observed when neurons were treated with DFP, and the contribution to 

this effect was greater when cells were pretreated with CORT compared to DFP alone (Fig. 

3B, kymographs; Fig. 3C, stacked bar graph; movie S2). When treated with 10 µM tubacin, 

mitochondrial transport events were recovered (Fig. 3D).

Dopamine release is altered after DFP exposure in a manner exacerbated by CORT 
pretreatment

Dopamine and neurotransmission alterations have been reported after exposure to GW 

toxins1,4, which we hypothesize in part are due to changes in microtubules, which serve as 

tracks for synaptic vesicle transport. We cultured fetal ventral mesencephalic cells 

(dopamine precursor cells) and allowed them to grow for 7 days before submitting them to 

the treatment regimen (Fig. 4A). At DIV 9, cultures were heterogeneous, with 27±2% of 

control cells staining positive for tyrosine hydroxylase, a dopaminergic marker, and no 

significant difference across treatments (Fig. 4B; S2A). Supernatant was collected from 

cultures that were exposed to DFP with or without CORT pretreatment, and subsequently 

treated with tubacin at 1 µM and 10 µM, or with vehicle. Supernatant was analyzed for 

dopamine content using HPLC (Fig. 4C). Exposure to 2 nM and 20 nM DFP alone resulted 
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in a significant reduction in extracellular dopamine (38±5% and 40±4%, respectively), and 

this reduction was even greater following CORT pretreatment (46±5% and 55±4%, Fig. 4D). 

Treatment with 10 µM but not 1 µM tubacin was able to fully restore dopamine release after 

DFP alone, and partially restore release when cells were exposed to DFP after CORT 

pretreatment (Fig. 4D). Tubacin did not significantly alter extracellular dopamine across 

control cells (Fig. S2B).

Discussion

The present studies are the first to use cultured rodent and human-derived neurons to 

demonstrate that hormonal changes resulting from chemically-induced stressors can 

exacerbate the negative consequences of OP exposure on microtubule and microtubule-

related events in the axon. We used both human and rat neurons as a cross-validation 

because rat neurons are more amenable to established microtubule-related analyses, while 

human neurons are a better path toward therapy, given that some features of human 

neurodegeneration are not reflected in rodents32,33. In the future, an even more refined 

option would be to use induced pluripotent cell lines from the GW veterans themselves, 

given that genetic and possibly epigenetic factors potentially relevant to disease 

susceptibility would be preserved34. For now, the results on the human cells confirm that, as 

with the rat neurons, DFP causes a decrease in tubulin acetylation. The work on rat neurons 

indicates that pharmacologic restoration of tubulin acetylation, lowered by DFP±CORT, 

rescues various cellular events impaired by DFP±CORT.

While microtubule acetylation generally correlates with microtubule stability, the correlation 

depends upon the levels and activity of the enzyme(s) that acetylates tubulin after it becomes 

incorporated into the microtubule, as well as the enzyme(s) that deacetylates the tubulin after 

it is released from the microtubule during bouts of disassembly35–37. The live imaging of 

microtubule dynamics shows DFP/CORT reduces the number of assembly excursions, which 

is not easily explained by diminished microtubule stability. Tubacin corrected for the deficit 

in microtubule dynamics, presumably because various proteins, such as microtubule-

severing proteins, interact differently with the microtubule, depending on its acetylation 

status35. The finding that a higher tubacin concentration is needed to correct the acetylation 

deficit produced by higher DFP concentration suggests that the DFP/CORT may affect the 

levels or activity of the relevant enzymes. For example, if DFP/CORT increases HDAC6 

levels or activity, a higher concentration of tubacin would be needed to inhibit the available 

enzyme.

OPs used at sub-threshold levels undoubtedly affect a variety of proteins and pathways, 

some of which are obviously microtubule-related and others of which are not as direct or 

obvious in their relationship to microtubules. In terms of therapy for sufferers of GWI, the 

question is whether restoring microtubule acetylation to a more normal status will translate 

into improvements in cognition and sleep, and help alleviate headaches and other symptoms 

of the disease. Deficits in mitochondria transport could explain some GWI symptoms, such 

as fatigue, and hence HDAC6 inhibitors might be helpful in treating those symptoms. We are 

especially encouraged by our dopamine release results, which suggest that a complex 
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process directly related to neurotransmission, and one that could potentially go awry at many 

different levels, can be corrected by this treatment.

Reports exist in the literature of other neurodegenerative diseases that involve microtubule 

deacetylation, with symptoms improved in animal models by HDAC6 inhibitors38–41. In that 

regard, efforts are already underway to develop therapeutics that can be translated to human 

patients. Our next step is to test the effectiveness of such an approach on an animal model 

for GWI. From there, translation to human patients using new generations of HDAC6 

inhibitors will be our goal.

In conclusion, the results presented here provide new mechanistic clues to the cellular basis 

of GWI, and point to a therapeutic strategy that may reverse neuronal decline in sufferers.

Materials and Methods

Cell Culture

Rat Cortical Neurons—Primary cortical neurons were prepared as previously 

described42. Briefly, the pregnant Sprague-Dawley rat was euthanized on E18 in accordance 

with Public Health Services Policy on Humane Care and Use of Laboratory Animals, and 

fetuses were removed. The cortices from both hemispheres of each fetal rat brain were 

excised, dissociated, and plated at a concentration of 500,000 cells per well in 6-well plates 

(for Western blots) or 35,000 cells per well in glass-bottomed dishes (for live-cell imaging).

Rat Ventral Mesencephalon Neurons—The ventral mesencephalon was isolated from 

fetuses removed from a Sprague-Dawley rat on E14. Cells were isolated and dissociated 

according to a previously published protocol43.

Human neural stem cells—Human IPSC-derived neural stem cells (ax0018), 

differentiation media, expansion media, and maintenance media were purchased from Axol 

and cultures were established and differentiated into neurons according to the Axol Human 
IPSC-Derived Neural Stem Cell Protocol v5.0.

Treatment Preparation and Application

CORT or cortisol (Sigma), dissolved in ethanol to make a 2 mM stock solution, was diluted 

in culture media to make working concentrations. DFP (Sigma), dissolved in isopropanol to 

make a 100 µM stock solution, was diluted in culture media to make working 

concentrations. Experimental design is shown in Fig. 1A. Cells were assayed at DIV 9 (no 

tubacin) or DIV 10 (24h tubacin). The two lower concentrations of DFP used in this study 

are sub-threshold (below the level need to inhibit acetylcholinesterase), while the 200 nM 

concentration may partially inhibit acetylcholinesterase.

Live-cell Imaging

Assaying Microtubule-based Transport of Mitochondria—Mitotracker 

CMH2TMRos Orange was added directly into the media of primary cortical neuron cultures 

and incubated at 37C for 25 minutes. After incubation, dishes were washed twice with 

serum-free media, and Fluorobrite DMEM imaging medium was added immediately before 
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imaging. Dishes were imaged using a Zeiss AxioObserver Z1 inverted microscope equipped 

with a 1.4 NA 63X oil objective and an AxioCam mRm CCD camera. Images were captured 

every 1 second for 2.5 minutes at a fixed exposure time across conditions. Transport was 

analyzed using the MultiKymograph and DifferenceTracker plugins for (FIJI) ImageJ.

Assessing Changes in Microtubule Dynamics—Rat cortical neurons were plated at a 

density of 35,000 cells per well, allowed to grow for 8 days, and transfected to express GFP-

tagged EB3 using Lipofectamine 2000 (ThermoFisher) according to the published product 

protocol. Cells were imaged using a Zeiss AxioObserver Z1 inverted scope equipped with a 

1.46 NA 100X oil objective and a Zeiss Axiocam 506 mono CCD camera. Images were 

captured every 1 second for a total of 2.5 minutes at a fixed exposure time across conditions. 

Movies were analyzed using the MultiKymograph plugin for FIJI (ImageJ).

Determination of Released Dopamine

after OP Exposure Extracellular dopamine was quantified by electrochemical detection high 

performance liquid chromatography (HPLC-ECD). Reagents, chemicals, standard 

preparation, and mobile phase were prepared as previously published44.

Protein Level Analysis

Whole cell lysate collection—Lysis buffer was prepared according to the Santa Cruz 

RIPA buffer lysis system (Santa Cruz; Cat. # sc-24948A) instructions with added 

phosphatase inhibitor. The media from culture wells were aspirated on DIV 10, and 200 µL 

of lysis buffer was added. Cells were detached using a cell scraper for 1 minute per well, and 

the lysis solution containing the cells was transferred to Eppendorf tubes. Lysate was 

incubated on ice for 45 minutes, sonicated, and centrifuged at 10,000 RPM for 10 minutes at 

4°C. Supernatant was aliquoted and stored at −80 °C until use.

Protein Quantification and Western Blotting—Protein content of each sample was 

quantified using the Thermo Scientific Pierce BCA Protein Assay Kit (ThermoFisher 

Scientific; Cat. # 23227). Western blotting was performed using standard methods, 

developed using the Bio-Rad Chemidoc MP Imaging System, and quantified using the Bio-

Rad Image Lab software. Antibody information is provided in figure legends.

Tubacin Treatment

Tubacin (Cayman Chemical; Cat. # 537049-40-4) was used at a concentration of 1 or 10 µM, 

as established previously45. Tubacin was added into culture media immediately after the 24 

h DFP treatment and incubated with cells for 24 h. Cells were then either lysed for Western 

blotting or imaged to assess mitochondrial transport or microtubule dynamics. Supernatant 

was collected after 24 h-post tubacin.

Experimental Design and Data Analysis

Western blots and dopamine experiments were repeated four times to ensure reproducibility 

and power. Live-cell imaging experiments were performed using tissue from three different 

animals with at least 15 cells across 4 dishes per animal. Data were analyzed by blinded 

raters and statistical significance was assessed by student t-test, ANOVA followed by post-
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hoc Bonferroni test, or the Kruskal-Wallis non-parametric ANOVA. All statistical analyses 

were performed using the IBM SPSS program.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pretreatment with CORT or cortisol intensifies DFP-induced aberrations in 
microtubule acetylation status in human and rat neurons
A. Schematic summary of experimental design. B. Validation of neuronal differentiation by 

immunostaining. βIII-tubulin (Biolegend Cat. #801202), which is specific to neurons and is 

significantly upregulated in mature neurons, is colored red. Tbr1, a transcription factor 

which serves as a marker for forebrain cortical glutamatergic neurons, is colored green, and 

DAPI, which stains nuclei, is blue. Scale bar represents 50 µm.

C. Co-immunostaining of acetylated-tubulin (green; Sigma Cat. #T6793) and βIII-tubulin. 

The white checkered box represents the ROI to be analyzed with arrows pointing to the 
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respective signal intensity values. Scale bar represents 15 µm. D. Bar graph depicting results 

from acetylated:total tubulin protein analysis of human neurons subjected to various 

conditions. E. Western blot acetylated-tubulin and βIII-tubulin bands from rat cortical 

neurons that after 24h with or without 10 µM tubacin treatment. F. Key identifying the 

conditions for each well. (for easier identification, empty lanes seen were loaded with 

sample buffer alone) G. Bar graph depicting results from Western blot analysis. Protein 

levels were normalized to cofilin (Abcam cat. # 42824) load control. Blots were cropped * - 

p<0.05; ** - p<0.01; N.S. – no significance found
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Figure 2. Exposure to DFP alters microtubule dynamics in a manner exacerbated by CORT and 
correctable by tubacin
A. Still frames from live-cell imaging movie of EB3 comets in rat cortical neurons that 

received vehicle with no DFP. B. Scatter plot of the observed polymerization events per axon 

(20 µm region of interest). C. Horizontal bar graph depicting the average number of comets 

per 100 µm across treatments with or without tubacin treatment. D. Horizontal bar graph 

depicting the average rate of observed comets across treatment groups with or without 

tubacin Page 10 treatment. * - p<0.05; ** - p<0.01; *** - p<0.001
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Figure 3. Toxicant/stress exposure disrupts mitochondrial transport in tubacin-correctable 
manner
A. Image of rat cortical neurons stained with Mitotracker Orange (Inset: magnified image of 

axon; ThermoFisher Scientific Cat. #M751). B. Representative kymographs depicting 

distance traveled over time for vehicle control (left) and ethanol + 20 nM DFP (right). Cells 

were imaged for a total of 2.5 minutes at 1 frame per second. C. 100% stacked bar graph 

showing the distribution of transport event types across conditions. D. Dot plot depicting the 

average number of transport events across conditions with or without tubacin treatment. * - 

p<0.05; ** - p<0.01.
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Figure 4. Dopamine release is altered after DFP exposure in a manner exacerbated by CORT 
pretreatment
A. Chart outlining design of dopamine release experiments. B. Left: Bar graph showing TH 

positive cells across DFP treatments. Right: Co-immunostain of fetal ventral mesencephalon 

neurons. Inverted dark cells are neurons stained for βIII-Tubulin, and blue cells represent 

neurons that are positive for tyrosine hydroxylase (EMD Millipore cat. #AB152). C. Bar 

graph showing dopamine release as a percent of vehicle control. Values were normalized to 

total TH positive neuron count. D. Dot plot of each sample (4 duplicates per condition, 

represented by different shape and color dots [see plot legend]) in the presence or absence of 
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tubacin at 1 and 10 µM concentrations. Top brackets show no significant difference between 

EtOH controls. Bottom bracket shows no significant improvement in EtOH DFP or CORT 

DFP groups after treatment with 1 µM tubacin, and treatment with 10 µM tubacin yielded 

significant improvement in all groups when compared to control. * - p<0.05; ** - p<0.01; 

*** - p<0.001; N.S. – no significance found. Scale bar represents 15 µm.
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