FIOOOResearch F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

'.) Check for updates

SOFTWARE TOOL ARTICLE
vair: Reproducible genome interval analysis in R[version 1;

referees: 2 approved]

Kent A. Riemondy', Ryan M. Sheridan2, Austin Gillen', Yinni Yu2,
Christopher G. Bennett3, Jay R. Hesselberth 1.2

TRNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, 80045, USA

2Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
3ComAnalyzelT LLC, Fort Collins, CO, 80525, USA

First published: 29 Jun 2017, 6:1025 (doi: 10.12688/f1000research.11997.1) Open Peer Review
Latest published: 29 Jun 2017, 6:1025 (doi: 10.12688/f1000research.11997.1)

Referee Status: +" +'
Abstract

New tools for reproducible exploratory data analysis of large datasets are

important to address the rising size and complexity of genomic data. We Invited Referees

developed the valr R package to enable flexible and efficient genomic interval 1 2
analysis. valr leverages new tools available in the "tidyverse”, including dplyr.
Benchmarks of valr show it performs similar to BEDtools and can be used for version 1 vy W
interactive analyses and incorporated into existing analysis pipelines. published report report
29 Jun 2017
1 Robert A. Amezquita, Yale University,
R This article is included in the RPackage gateway. USA

o Ryan K. Dale, National Institutes of Health,
USA

Discuss this article

Comments (0)

Page 1 of 15

https://f1000research.com/articles/6-1025/v1
https://orcid.org/0000-0002-6299-179X
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage
https://f1000research.com/articles/6-1025/v1
http://dx.doi.org/10.12688/f1000research.11997.1
http://dx.doi.org/10.12688/f1000research.11997.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.11997.1&domain=pdf&date_stamp=2017-06-29

FIOOOResearch F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

Corresponding author: Jay R. Hesselberth (jay.hesselberth@gmail.com)

Author roles: Riemondy KA: Conceptualization, Software, Writing — Review & Editing; Sheridan RM: Conceptualization, Software, Writing —
Review & Editing; Gillen A: Software; Yu Y: Software, Writing — Review & Editing; Bennett CG: Software, Writing — Review & Editing;
Hesselberth JR: Software, Writing — Original Draft Preparation

Competing interests: No competing interests were disclosed.

How to cite this article: Riemondy KA, Sheridan RM, Gillen A et al. valr: Reproducible genome interval analysis in R [version 1; referees: 2
approved] F1000Research 2017, 6:1025 (doi: 10.12688/f1000research.11997.1)

Copyright: © 2017 Riemondy KA et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was supported by the RNA Bioscience Initiative (funded by a Transformational Research Award from the University
of Colorado School of Medicine), a grant from the National Institutes of Health (R35 GM119550 to J.H.), the Colorado Office of Economic
Development and International Trade (CTGGI 2016- 2096), the BioFrontiers Computing Core at the BioFrontiers Institute, University of Colorado at
Boulder and the Intramural Research Program of the National Library of Medicine.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 29 Jun 2017, 6:1025 (doi: 10.12688/f1000research.11997.1)

Page 2 of 15

http://dx.doi.org/10.12688/f1000research.11997.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.11997.1

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

Introduction

A routine bioinformatic task is the analysis of the relationships between sets of genomic intervals, including the
identification of DNA variants within protein coding regions, annotation of regions enriched for nucleic acid
binding proteins, and computation of read density within a set of exons. Command-line tools for interval analysis
such as BEDtools' and BEDOPS” enable analyses of genome-wide datasets and are key components of analysis
pipelines. Analyses with these tools commonly combine processing intervals on the command-line with visualization
and statistical analysis in R. However, the need to master both the command-line and R hinders exploratory data
analysis, and the development of reproducible research workflows built in the RMarkdown framework.

Existing R packages developed for interval analysis include IRanges’, bedr”, and GenometriCorr’. IRanges
is a Bioconductor package that provides interval classes and methods to perform interval arithmetic, and is used by
many Bioconductor packages. bedr is a CRAN-distributed package that provides wrapper R functions to call the
BEDtools, BEDOPS, and tabix command-line utilities, providing out-of-memory support for interval analysis.
Finally, GenometriCorr provides a set of statistical tests to determine the relationships between interval sets
using IRanges data structures. These packages provide functionality for processing and statistical inference of
interval data, however they require a detailed understanding of S4 classes (IRanges) or the installation of external
command-line dependencies (bedr). Additionally, these packages do not easily integrate with the recent advances
provided by the popular tidyverse suite of data processing and visualization tools (e.g. dplyr, purrr, broom
and ggplot2)’. We therefore sought to develop a flexible R package for genomic interval arithmetic built to
incorporate new R programming, visualization, and interactivity features.

Methods

Implementation

valr is an R package that makes extensive use of dplyr, a flexible and high-performance framework for data
manipulation in R’. Additionally, compute intensive functions in valr are written in C++ using Rcpp to enable fluid
interactive analysis of large datasets®. Interval intersections and related operations use an interval tree algorithm to
efficiently search for overlapping intervals’. BED files are imported and handled in R as data frame objects,
requiring minimal pre or post-processing to integrate with additional R packages or command-line tools.

Operation
valr is distributed as part of the CRAN R package repository and is compatible with Mac OS X, Windows, and
major Linux operating systems. Package dependencies and system requirements are documented in the valr CRAN
repository.

Use cases
To demonstrate the functionality and utility of valr, we present a basic tutorial for using valr and additional
common use cases for genomic interval analysis.

Basic usage

Input data. valr provides a set of functions to read BED, BEDgraph, and VCF formats into R as convenient
tibble (tbl) data frame objects. All tbls have chrom, start, and end columns, and tbls from multi-column
formats have additional pre-determined column names. Standards methods for importing data (e.g. read.table,
readr::read_tsv) are also supported provided the constructed dataframes contain the requisite column
names (chrom, start, end). Additionally, valr supports connections to remote databases to access the UCSC
and Ensembl databases via the do_ucsc and db_ensembl functions.

library(valr)

function to retrieve path to example data
bed filepath <- valr example ("3fields.bed.gz")
read bed(bed filepath)

#> # A tibble: 10 x 3

#> chrom start end
#> <chr> <int> <int>
#> 1 chrl 11873 14409
#> 2 chrl 14361 19759
#> 3 chrl 14406 29370
#> 4 chrl 34610 36081
#> 5 chrl 69090 70008
#> 6 chrl 134772 140566

Page 3 of 15

https://cran.r-project.org/web/packages/valr/index.html
https://cran.r-project.org/web/packages/valr/index.html

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

#> 7 chrl 321083 321115
#> 8 chrl 321145 321207
#> 9 chrl 322036 326938
#> 10 chrl 327545 328439
#using URL

read bed("https://github.com/rnabioco/valr/raw/master/inst/extdata/3flelds.bed.gz")
#> # A tibble: 10 x 3

#> chrom start end
#> <chr> <int> <int>
#> 1 chrl 11873 14409
#> 2 chrl 14361 19759
#> 3 chrl 14406 29370
#> 4 chrl 34610 36081
#> 5 chrl 69090 70008
#> 6 chrl 134772 140566
#> 7 chrl 321083 321115
#> 8 chrl 321145 321207
#> 9 chrl 322036 326938
#> 10 chrl 327545 328439

Example of combining valr tools. The functions in valr have similar names to their BEDtools counterparts, and
so will be familiar to users of the BEDtools suite. Also, similar to pybedtools'’, a python wrapper for BEDtools,
valr has a terse syntax. For example, shown below is a demonstration of how to find all intergenic SNPs within
1 kilobase of genes using valr. The BED files used in the following examples are described in the Data Availability
section.

library(dplyr)

snps <- read bed(valr example ("hgl9.snpsl47.chr22.bed.gz"), n filelds = 6)
genes <- read bed(valr example ("genes.hgl9.chr22.bed.gz"), n fields = 6)

find snps in intergenic regions

intergenic <- bed subtract (snps, genes)

distance from intergenic snps to nearest gene
nearby <- bed closest (intergenic, genes)

nearby %$>%
select (starts with("name"), .overlap, .dist) %>%
filter (abs (.dist) < 1000)

#> # A tibble: 285 x 4

#> name.x name.y .overlap .dist
#> <chr> <chr> <int> <int>
#> 1 rs2261631 P704P 0 =267
#> 2 rs570770556 POTEH 0 -912
#> 3 rs538163832 POTEH 0 -952
#> 4 rs9606135 TPTEP1 0 -421
#> 5 rs11912392 ANKRD62P1-PARP4P3 0 104
#> 6 rs8136454 BC038197 0 355
#> 7 rs5992556 XKR3 0 =455
#> 8 rsl114101676 GAB4 0 473
#> 9 rs62236167 CECR7 0 261
#> 10 rs5747023 CECR1 0 -386
#> # ... with 275 more rows

Visual documentation. By conducting interval arithmetic entirely in R, valr is also an effective teaching tool for
introducing interval analysis to early-stage analysts without requiring familiarity with both command-line tools and
R. To aid in demonstrating the interval operations available in valr, we developed the bed glyph () tool which
produces plots demonstrating the input and output of operations in valr in a manner similar to those found in the
BEDtools documentation. Shown below is the code required to produce glyphs displaying the results of intersecting
x and y intervals with bed _intersect (), and the result of merging x intervals with bed merge () (Figure 1).

Page 4 of 15

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

bed_intersect(x, y) 5 bed_merge(x)

x

] X

>

El =]

3 ?

= 2

25 50 75 100 125 0 25 5 75 100 125

Figure 1.Visualizing interval operations in valr with bed_glyph().

x <- tibble::tribble (
“chrom, “start, “end,
"chrl", 25, 50,
"chrl"™, 100, 125

y <- tibble::tribble(
“chrom, “start, “end,
"chrl"™, 30, 75

bed glyph (bed intersect(x, y))

And this glyph illustrates bed merge ():

x <- tibble::tribble (
“chrom, “start, “end,

"chri™, 1, 50,
"chri", 10, 75,
"chrl", 100, 120

bed glyph (bed merge (x))

Grouping data. The group_ by function in dplyr can be used to execute functions on subsets of single and multiple
data_ frames. Functions in valr leverage grouping to enable a variety of comparisons. For example, intervals
can be grouped by strand to perform comparisons among intervals on the same strand.

x <- tibble::tribble (
~chrom, “start, “end, “strand,

"chrl", 1, 100, "+,
"chrl”, 50, 150, "y,
"chr2", 100, 200, "-"

Page 5 of 15

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

y <- tibble::tribble (
“chrom, “start, “end, “strand,

"chrl", 50, 125, "+",
"chrl™, 50, 150, "-",
"chr2", 50, 150, "+"

intersect tbls by strand
x <- group by(x, strand)
y <- group by (y, strand)

bed intersect(x, vy)
#> # A tibble: 2 x 8

#> chrom start.x end.x strand.x start.y end.y strand.y .overlap
#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <int>
#> 1 chrl 1 100 + 50 125 + 50
#> 2 chrl 50 150 + 50 125 + 75

Comparisons between intervals on opposite strands are done using the flip strands () function:

x <- group by (x, strand)

y <- flip strands(y)
y <- group by (y, strand)

bed intersect(x, y)
#> # A tibble: 3 x 8

#> chrom start.x end.x strand.x start.y end.y strand.y .overlap
#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <int>
#> 1 chr2 100 200 - 50 150 - 50
#> 2 chrl 1 100 + 50 150 + 50
#> 3 chrl 50 150 + 50 150 + 100

Both single set (e.g. bed merge ()) and multi set operations will respect groupings in the input intervals.
Column specification. Columns in BEDtools are referred to by position:

calculate the mean of column 6 for intervals in 'b' that overlap with 'a'
bedtools map -a a.bed -b b.bed -c 6 -0 mean

In valr, columns are referred to by name and can be used in multiple name/value expressions for summaries.

calculate the mean and variance for a 'value' column
bed map(a, b, .mean = mean(value), .var = var (value))

report concatenated and max values for merged intervals
bed merge (a, .concat = concat(value), .max = max(value))

API. The major functions available in valr are shown in Table 1.

Page 6 of 15

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

Table 1. An overview of major functions available in valr.

Function Name Purpose

Reading Data

read_bed Read BED files
read_bedgraph Read bedGraph files
read_narrowpeak Read narrowPeak files
read_broadpeak Read broadPeak files

Interval Transformation

bed_slop Expand interval coordinates
bed_shift Shift interval coordinates
bed_flank Create flanking intervals
bed_merge Merge overlapping intervals
bed_cluster Identify (but not merge) overlapping intervals
bed_complement Create intervals not covered by a query

Interval Comparison

bed_intersect Report intersecting intervals from x and y tbls
bed_map Apply functions to selected columns for overlapping intervals
bed_subtract Remove intervals based on overlaps
bed_window Find overlapping intervals within a window
bed_closest Find the closest intervals independent of overlaps

Randomizing intervals
bed_random Generate random intervals from an input genome
bed_shuffle Shuffle the coordinates of input intervals

Interval statistics

bed_fisher, bed_ Calculate significance of overlaps between two sets of
projection intervals
bed_reldist Quantify relative distances between sets of intervals
bed_absdist Quantify absolute distances between sets of intervals
bed_jaccard Quantify extent of overlap between two sets of intervals
Utilities

bed_glyph Visualize the actions of valr functions
bound_intervals Constrain intervals to a genome reference
bed_makewindows Subdivide intervals
bed12_to_exons Convert BED12 to BED6 format
interval_spacing Calculate spacing between intervals
db_ucsc, db_ensembl Access remote databases

Summarizing interval coverage across genomic features
This demonstration illustrates how to use valr tools to perform a “meta-analysis” of signals relative to genomic
features. Here we analyze the distribution of histone marks surrounding transcription start sites, using H3K4Me3
Chip-Seq data from the ENCODE project.

First we load packages and relevant data.

bedfile <- valr example ("genes.hgl9.chr22.bed.gz")
genomefile <- valr example("hgl9.chrom.sizes.gz")

bgfile

<- valr example("hela.h3k4.chip.bg.gz")

Page 7 of 15

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

genes <- read bed(bedfile, n fields = 6)
genome <- read genome (genomefile)
y <- read bedgraph (bgfile)

Then, we generate 1 bp intervals to represent transcription start sites (TSSs). We focus on + strand genes, but — genes
are easily accommodated by filtering them and using bed makewindows () with reversed window numbers.

generate 1 bp TSS intervals, "+" strand only
tss <- genes %>%

filter (strand == "+") %>%

mutate (end = start + 1)

1000 bp up and downstream
region size <- 1000

50 bp windows

win size <- 50

add slop to the TSS, break into windows and add a group
x <- tss $>%

bed slop(genome, both = region size) %>%

bed makewindows (genome, win size)

X

#> # A tibble: 13,530 x 7

#> chrom start end name score strand .win id
#> <chr> <int> <int> <chr> <chr> <chr> <int>
#> 1 chr22 16161065 16161115 LINC0O0516 3 + 1
#> 2 chr22 16161115 16161165 LINC0O0516 3 + 2
#> 3 chr22 16161165 16161215 LINC00516 3 + 3
#> 4 chr22 16161215 16161265 LINC00516 3 + 4
#> 5 chr22 16161265 16161315 LINC00516 3 + 5
#> 6 chr22 16161315 16161365 LINC0O0516 3 + 6
#> 7 chr22 16161365 16161415 LINC0O0516 3 + 7
#> 8 chr22 16161415 16161465 LINCO0516 3 + 8
#> 9 chr22 16161465 16161515 LINCO0516 3 + 9
#> 10 chr22 16161515 16161565 LINC00516 3 + 10

#> # ... with 13,520 more rows

Now we use the .win id group with bed map () to calculate a sum by mapping y signals onto the intervals in x.
These data are regrouped by .win id and a summary with mean and sd values is calculated.

map signals to TSS regions and calculate summary statistics.
res <- bed map(x, y, win sum = sum(value, na.rm = TRUE)) %>%
group by (.win id) %>%
summarize (win mean = mean(win sum, na.rm = TRUE),
win sd = sd(win_sum, na.rm = TRUE))

res

#> # A tibble: 41 x 3

#> .win id win mean win sd
#> <int> <dbl> <dbl>
#> 1 1 100.8974 85.83423
#> 2 2 110.6829 81.13521
#> 3 3 122.9070 99.09635
#> 4 4 116.2800 96.30098
#> 5 5 116.3500 102.33773
#> 6 6 124.9048 95.08887
#> 7 7 122.9437 94.39792
#> 8 8 127.5946 91.47407
#> 9 9 130.2051 95.71309
#> 10 10 130.1220 88.82809
#> # ... with 31 more rows

Finally, these summary statistics are used to construct a plot that illustrates histone density surrounding TSSs
(Figure 2).
Page 8 of 15

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

300

Signal

1004 ¢ .

0

~1000-750 ~500 -250 0 250 500 750 1000
Position (bp from TSS)

Figure 2. Meta-analysis of signals relative to genomic features with valr. (A) Summarized coverage of human
H3K4Me3 Chip-Seq coverage across positive strand transcription start sites on chromosome 22. Data presented +/- SD.

library (ggplot2)

x labels <- seqg(-region size, region size, by = win size * 5)
x breaks <- seq(l, 41, by = 5)

sd limits <- aes(ymax = win mean + win sd, ymin = win mean - win sd)
p <- ggplot(res, aes(x = .win id, y = win mean)) +
geom point(size = 0.25) + geom pointrange(sd limits, size = 0.1) +
scale x continuous(labels = x labels, breaks = x breaks) +

xlab ("Position (bp from TSS)") + ylab("Signal") +
theme classic ()

Interval statistics
Estimates of significance for interval overlaps can be obtained by combining bed shuffle (), bed random () and
the sample functions from dplyr with interval statistics in valr.

Here, we examine the extent of overlap of repeat classes (repeatmasker track obtained from the UCSC genome
browser) with exons in the human genome (hg19 build, on chr22 only, for simplicity) using the jaccard similarity
index. bed jaccard() implements the jaccard test to examine the similarity between two sets of genomic
intervals. Using bed shuffle () and replicate() we generate a data_ frame containing 100 sets of
randomly selected intervals then calculate the jaccard index for each set against the repeat intervals to generate a
null-distribution of jaccard scores. Finally, an empirical p-value is calculated from the null-distribution.

library (tidyverse)

repeats <- read bed(valr example ("hgl9.rmsk.chr22.bed.gz"), n flelds = 6)
genome <- read genome (valr example ("hgl9.chrom.sizes.gz"))

genes <- read bedl2(valr example ("hgl9.refGene.chr22.bed.gz"))

convert bedl2 to bed with exons

exons <- bedlZ to exons(genes)

function to repeat interval shuffling
shuffle intervals <- function(n, .data, genome) {
replicate (n, bed shuffle(.data, genome), simplify = FALSE) %>%
bind rows(.id = "rep") %>%
group by (rep) $%>% nest()

Page 9 of 15

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

nreps <- 100
shuffled <- shuffle intervals(n = nreps, repeats, genome) %>%
mutate (jaccard = data %>%
map (bed jaccard, repeats) %>%
map_dbl ("jaccard"))

shuffled

#> # A tibble: 100 x 3

#> rep data jaccard
#> <chr> <list> <dbl>
#> 1 1 <tibble [10,000 x 6]> 0.0003388967
#> 2 2 <tibble [10,000 x 61> 0.0004965988
#> 3 3 <tibble [10,000 x 61> 0.0002974843
#> 4 4 <tibble [10,000 x 6]> 0.0006899870
#> 5 5 <tibble [10,000 x 6]> 0.0004678412
#> 6 6 <tibble [10,000 x 6]> 0.0001726937
#> 7 7 <tibble [10,000 x 6]> 0.0004694941
#> 8 8 <tibble [10,000 x 6]> 0.0004660410
#> 9 9 <tibble [10,000 x 6]> 0.0006846643
#> 10 10 <tibble [10,000 x 6]> 0.0002143829
#> # ... with 90 more rows

obs <- bed jaccard(repeats, exons)

obs

#> # A tibble: 1 x 4

#> len 1 len u jaccard n

#> <dbl> <dbl> <dbl> <dbl>

#> 1 112123 4132109 0.02789139 805

pvalue <- sum(shuffled$Sjaccard >= obs$jaccard) + 1 /(nreps + 1)
pvalue
#> [1] 0.00990099

Benchmarking against bedtools

In order to ensure that valr performs fast enough to enable interactive analysis, key functionality is implemented in
C++. To test the speed of major valr functions we generated two data_ frames containing 1 million randomly
selected 1 kilobase intervals derived from the human genome (hg19). Most of the major valr functions complete
execution in less than 1 second, demonstrating that valr can process large interval datasets efficiently (Figure 3A).

We also benchmarked major valr functions against corresponding commands in BEDtools. valr operates on
data_frames already loaded into RAM, whereas BEDtools performs file-reading, processing, and writing. To
compare valr against BEDtools we generated two BED files containing 1 million randomly selected 1 kilobase
intervals derived from the human genome (hgl19). For valr functions, we timed reading the table into R (e.g. with
read bed ()) and performing the respective function. For BEDtools commands we timed executing the command
with the output written to /dev/null. valr functions performed similarly or faster than BEDtools commands,
with the exception of bed map and bed_fisher (Figure 3B).

Reproducible reports and interactive visualizations

Command-line tools like BEDtools and bedops can be incorporated into reproducible workflows (e.g., with
snakemake''), but it is cumbersome to transition from command-line tools to exploratory analysis and plotting
software. RMarkdown documents are plain text files, amenable to version control, which provide an interface to
generate feature rich PDF and HTML reports that combine text, executable code, and figures in a single document.
valr can be used in RMarkdown documents to provide rapid documentation of exploratory data analyses and
generate reproducible work-flows for data processing. Moreover, new features in RStudio, such as notebook
viewing, and multiple language support enable similar functionality to another popular notebook platform jupyter
notebooks.

Page 10 of 15

https://bitbucket.org/snakemake/snakemake/wiki/Home

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

1,000,000 random x/y intervals,
A 10 repeitions B = BEDTools & valr
bed_map(x, y, .n = n() all} map .+ CE
bed_fisher(x, y, genome) ﬂ subtract il —.
bed_makewindows(x, genome, win_size = 100) ﬂ] fisher 1 —
bed_closest(x, y) | intersect {1 I
bed_shuffle(x, genome, seed = seed_x) ﬂ} jaccard {I- -
bed_jaccard(x, y) |} — EDf
bed_random(genome, n = n, seed = seed_x) {} =
flank
bed_flank(x, genome, both = 1000) ﬂ} L=
reldist = '
bed_subtract(x, y) |
. shuffle ﬂi
bed_intersect(x, y) m e
bed_complement(x, genome) m complement F
i
bed_reldist(x, y){ | cluster]
4']]
bed_slop(x, genome, both = 1000) H slop 1
bed_cluster(x) | merge - 'S
bed_merge(x) | random Iﬂ}
1 2 3 1 2 3 4
execution time (seconds) execution time (seconds)

Figure 3. Performance of valr functions. (A) Timings were calculated by performing 10 repetitions of indicated functions
on data frames preloaded in R containing 1 million random 1 kilobase x/y intervals generated using bed random ().
(B) Timings for executing functions in BEDtools v2.25.0 or equivalent functions in valr using the same interval sets
as in (A) written to files. All BEDtools function outputs were writtento /dev/null/, and were timed using GNU time.
Timings for valr functions in (B) include times for reading files using read bed () functions and were timed using the
microbenchmark package.

Additionally, valr seamlessly integrates into R shiny'” applications allowing for complex interactive visualizations
relating to genomic interval analyses. We have developed a shiny application (available on Gitub) that explores
ChiP-Seq signal density surrounding transcription start sites and demonstrates the ease of implementing valr to
power dynamic visualizations.

Summary

valr provides a flexible framework for interval arithmetic in R/Rstudio. valr functions are written with a simple
and terse syntax that promotes flexible interactive analysis. Additionally by providing an easy-to-use interface
for interval arithmetic in R, valr is also a useful teaching tool to introduce the analyses necessary to investigate
correlations between genomic intervals, without requiring familiarity with the command-line. We envision that valr
will help researchers quickly and reproducibly analyze genome interval datasets.

Data and software availability

The valr package includes external datasets stored in the inst/extdata/ directory that were used in this manuscript.
These datasets were obtained from the ENCODE Project'” or the UCSC genome browser'*. BED files were generated
by converting the UCSC tables into BED format. BED and BEDgraph data was only kept from chromosome 22, and
was subsampled to produce file sizes suitable for submission to the CRAN repository. The original raw data is available
from the following sources:

hela.h3k4.chip.bg.gz SRA record: SRR227441, ENCODE identifier: ENCSRO0O0OAOF

hg19.refGene.chr22.bed.gz ftp://hgdownload.soe.ucsc.edu/goldenPath/hgl9/database/
refGene.txt.gz

hg19.rmsk.chr22.bed.gz ftp://hgdownload.soe.ucsc.edu/goldenPath/hgl9/database/rmsk.
txt.gz

hg19.chrom.sizes.gz ftp://hgdownload.soe.ucsc.edu/goldenPath/hgl9/database/
chromInfo.txt.gz

genes.hg19.chr22.bed.gz ftp://hgdownload.soe.ucsc.edu/goldenPath/hgl9/database/ref-
Gene.txt.gz

hg19.snps147.chr22.bed.gz ftp://hgdownload.soe.ucsc.edu/goldenPath/hgl9/database/
snpld7.txt.gz

Page 11 of 15

https://github.com/rnabioco/valrdata
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/snp147.txt.gz
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/snp147.txt.gz

F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

valr can be installed via CRAN using install.packages ("valr").

valr is maintained at http://github.com/rnabioco/valr.

Latest valr source code is available at http://github.com/rnabioco/valr.

The Ilatest stable version of source code is at: https://github.com/rnabioco/valr/archive/

v0.3.0.tar.gz

Archived source code at the time of publication: http://doi.org/10.5281/zenodo.815403"

License: MIT license.

Competing interests
No competing interests were disclosed.

Grant information

This work was supported by the RNA Bioscience Initiative (funded by a Transformational Research Award from the
University of Colorado School of Medicine), a grant from the National Institutes of Health (R35 GM119550 to J.H.),
the Colorado Office of Economic Development and International Trade (CTGGI 2016-2096), the BioFrontiers Com-
puting Core at the BioFrontiers Institute, University of Colorado at Boulder and the Intramural Research Program of

the National Library of Medicine.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Acknowledgments

This work was in part completed during an NIH sponsored Hackathon hosted by the Biofrontiers Department at the

University of Colorado at Boulder.

References

1. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics. 2010; 26(6): 841-842.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Neph S, Kuehn MS, Reynolds AP, et al.: BEDOPS: high-
performance genomic feature operations. Bioinformatics. 2012;
28(14): 1919-1920.

PubMed Abstract | Publisher Full Text | Free Full Text

3. Lawrence M, Huber W, Pages H, et al.: Software for computing
and annotating genomic ranges. PLoS Comput Biol. 2013; 9(8):
e1003118.

PubMed Abstract | Publisher Full Text | Free Full Text

4. Haider S, Waggott D, Lalonde E, et al.: A bedr way of genomic
interval processing. Source Code Biol Med. 2016; 11: 14.
PubMed Abstract | Publisher Full Text | Free Full Text

5. Favorov A, Mularoni L, Cope LM, et al.: Exploring massive, genome
scale datasets with the GenometriCorr package. PLoS Comput
Biol. 2012; 8(5): €1002529.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Wickham H: tidyverse: Easily Install and Load ’Tidyverse’
Packages. R package version 1.1.1, 2017.
Reference Source

7. Wickham H, Francois R: dplyr: A Grammar of Data Manipulation.
R package version 0.5.0, 2016.
Reference Source

8. Eddelbuettel D, Francois R: Rcpp: Seamless R and C++ integration.

J Stat Softw. 2011; 40(8): 1-18.

Publisher Full Text

Cormen TH, Leiserson CE, Rivest RL, et al.: Introduction to
Algorithms. 2nd Ed. Cambridge (Massachusetts): MIT Press; 2001.
Reference Source

Dale RK, Pedersen BS, Quinlan AR: Pybedtools: a flexible Python
library for manipulating genomic datasets and annotations.
Bioinformatics. 2011; 27(24): 3423-3424.

PubMed Abstract | Publisher Full Text | Free Full Text

Koster J, Rahmann S: Snakemake--a scalable bioinformatics
workflow engine. Bioinformatics 2012; 28(19): 2520-2522.
PubMed Abstract | Publisher Full Text

Chang W, Cheng J, Allaire JJ, et al.: shiny: Web Application
Framework for R. R package version 1.0.3. 2017.

Reference Source

ENCODE Project Consortium: An integrated encyclopedia of DNA
elements in the human genome. Nature. 2012; 489(7414): 57-74.
PubMed Abstract | Publisher Full Text | Free Full Text

Rosenbloom KR, Armstrong J, Barber GP, et al.: The UCSC
Genome Browser database: 2015 update. Nucleic Acids Res. 2015;
43(Database issue): D670-D681.

PubMed Abstract | Publisher Full Text | Free Full Text

Hesselberth J, kriemo, sheridar, et al.: rnabioco/valr: Zenodo
release. Zenodo. 2017.

Data Source

Page 12 of 15

http://github.com/rnabioco/valr
http://github.com/rnabioco/valr
https://github.com/rnabioco/valr/archive/v0.3.0.tar.gz
https://github.com/rnabioco/valr/archive/v0.3.0.tar.gz
http://doi.org/10.5281/zenodo.815403
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pmc/articles/2832824
http://www.ncbi.nlm.nih.gov/pubmed/22576172
http://dx.doi.org/10.1093/bioinformatics/bts277
http://www.ncbi.nlm.nih.gov/pmc/articles/3389768
http://www.ncbi.nlm.nih.gov/pubmed/23950696
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://www.ncbi.nlm.nih.gov/pmc/articles/3738458
http://www.ncbi.nlm.nih.gov/pubmed/27999613
http://dx.doi.org/10.1186/s13029-016-0059-5
http://www.ncbi.nlm.nih.gov/pmc/articles/5157088
http://www.ncbi.nlm.nih.gov/pubmed/22693437
http://dx.doi.org/10.1371/journal.pcbi.1002529
http://www.ncbi.nlm.nih.gov/pmc/articles/3364938
https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf
https://CRAN.R-project.org/package=dplyr
http://dx.doi.org/10.18637/jss.v040.i08
http://is.ptithcm.edu.vn/~tdhuy/Programming/Introduction.to.Algorithms.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21949271
http://dx.doi.org/10.1093/bioinformatics/btr539
http://www.ncbi.nlm.nih.gov/pmc/articles/3232365
http://www.ncbi.nlm.nih.gov/pubmed/22908215
http://dx.doi.org/10.1093/bioinformatics/bts480
https://CRAN.R-project.org/package=shiny
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pmc/articles/3439153
http://www.ncbi.nlm.nih.gov/pubmed/25428374
http://dx.doi.org/10.1093/nar/gku1177
http://www.ncbi.nlm.nih.gov/pmc/articles/4383971
http://dx.doi.org/10.5281/zenodo.815403

FIOOOResearch F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

Open Peer Review

Current Referee Status: v v

Referee Report 10 July 2017

doi:10.5256/f1000research.12975.r24101

v

Ryan K. Dale
Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and
Kidney Diseases, National Institutes of Health, Bethesda, MD, USA

The authors describe a package for manipulating genomic interval data in R using principles from the
“tidyverse" for the data structures and API. This sets it apart from existing tools such as GenomicRanges
or bedr which have their own ways of storing and manipulating data. As a result, valr should be easier to
pick up and integrate with the rest of the R ecosystem, and the “tidyverse” in particular. lllustrative
examples give the reader a taste for the package while highlighting the novel features.

In general, this looks to be a very useful tool. The code quality is excellent and it is great to see so many
tests including the addition of regression tests as issues are identified.

My comments are very minor:
® Group-by code listing: comment "# intersect tbls by strand" should be "# group tbls by strand"
® Bioconductor might be a more appropriate repository than CRAN

® Description of in-memory usage: | see from the software documentation that BAM and VCF will be
supported in the future, and the documentation explicitly mentions that valr operates on data
in-memory. The section comparing with BEDTools briefly mentions the in-memory aspect, but it
would be helpful to be clearer about memory usage in the manuscript, especially as users
attempting to use large BAM files may run out of memory.

® This is just a suggestion for improvement: Over the years, numerous bugs from corner cases have
been found and handled in BEDTools. It would greatly increase confidence in the underlying
algorithms you have written if there is input/output parity between valr and BEDTools, at least for
the tools that overlap the two packages. For example | see some test cases that use input from the
BEDTools test suite (e.g., test_cluster.r), but don't check the output. It should be straightforward to
check the output against that provided by the BEDTools test suite. Correspondingly it would be
good for BEDTools to use valr input/expected output in its test suite.

Is the rationale for developing the new software tool clearly explained?
Yes

Page 13 of 15

http://dx.doi.org/10.5256/f1000research.12975.r24101

FIOOOResearch F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 10 July 2017

doi:10.5256/f1000research.12975.r23916

v

Robert A. Amezquita
Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA

Riemondy and colleagues have made a valuable tool, "valr’, available to the general public, one which
deserves much merit for bringing modern R idioms from the “tidyverse’ into the world of genomic
research. As a fellow bioinformatician who has struggled with the idiosyncrasies of the aforementioned
tools for interval manipulation in R, “valr' addresses many of the usability issues associated with these
legacy methods by fundamentally altering the user experience. Consequently, there are two main
advantages to adopting “valr’ for interval manipulation in R: ease of writing, and ease of reading, code.
Thus, this referee wholeheartedly endorses “valr’, and hopes to see more work that brings many of the
“tidyverse’ philosophies over to working with genomics in R.

Nonetheless, there is some room for improvement of the associated manuscript to better help explain the
philosophy and usage of “valr’, and its place amongst the many tools for the manipulation of genomic
intervals.

Firstly, in the introduction, it is mentioned that there exist "IRanges’ methods that utilize the S4
convention, whereas “valr’ utilizes a less formal schema where 3 columns, ‘chrom’, “start’, “end’, are
present in the "data_frame™ object. Indeed, it may be of use to expand upon such design choices that
were made, and what advantages/disadvantages are made in using this less formal schema, and any
other highly pertinent choices that affect user experience. In addition, one line mentions integration with
other “tidyverse’ tools, and should expand upon this with either one to a few specific examples or explain
this point in more detail. Additionally, it should also be pointed out how “valr’ builds upon these existing
toolkits, and either expands upon/adopts their conventions. One way might be to create a table comparing

Page 14 of 15

http://dx.doi.org/10.5256/f1000research.12975.r23916

FIOOOResearch F1000Research 2017, 6:1025 Last updated: 16 AUG 2017

functions between “valr'/bedtools/GenomicRanges might be helpful for a reader to see that the toolkit will
be easily adoptable. Indeed, its mentioned that the syntax is similar to bedtools in the use cases, and
might be good to mention in the introduction as well. Thus, an expanded introduction/additional section
explaining the uniqueness of “valr’ would help to better "sell* when one should use “valr' and why.

In performing benchmarking, it would be useful to include one or two leading R tools, such as
GenomicRanges, into the calculations, as this is likely how many R programmers currently perform
interval manipulations natively in R, and | suspect would likely show an impressive performance
improvement by relation.

‘valr’ presents an exciting new development in the R+Genomics realm, and this referee is hopeful that
this sort of development helps fuel further "tidyomics’ tools for R bound together by a cohesive
philosophy, great user experience, and pointed utility.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Referee Expertise: Computational immunology

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Page 15 of 15

