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SUMMARY

Gene expression burdens cells by consuming resources and energy. While numerous studies have 

investigated regulation of expression level, little is known about gene design elements that govern 

expression costs. Here, we ask how cells minimize production costs while maintaining a given 

protein expression level and whether there are gene architectures that optimize this process. We 

measured fitness of ~14,000 E. coli strains, each expressing a reporter gene with a unique 5′ 
architecture. By comparing cost-effective and ineffective architectures, we found that cost per 

protein molecule could be minimized by lowering transcription levels, regulating translation 

speeds, and utilizing amino acids that are cheap to synthesize and that are less hydrophobic. We 

then examined natural E. coli genes and found that highly expressed genes have evolved more 

forcefully to minimize costs associated with their expression. Our study thus elucidates gene 

design elements that improve the economy of protein expression in natural and heterologous 

systems.

In Brief

While numerous studies have investigated regulation of expression level, Frumkin et al. study gene 

design elements that govern expression costs and allow cells to minimize such costs while 

maintaining a given protein expression level.
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INTRODUCTION

In nature, cells must express different genes in a regulated manner. On one hand, genes must 

be expressed at levels that maximize their benefit, and on the other, cells need to minimize 

the genes’ production costs (Dekel and Alon, 2005; Wagner, 2005). Costs of expression 

originate from spending cellular resources, such as building blocks (amino acids and 

nucleotides), from allocation of cellular machineries (RNA polymerase and ribosome), and 

from energy and reducing power consumption (Bienick et al., 2014; Glick, 1995; Ibarra et 

al., 2002; Rang et al., 2003). Even after their production, proteins might still impose costs 

when degraded or by exerting toxicity, e.g., due to aggregation (Geiler-Samerotte et al., 

2011). Understanding what molecular processes determine expression cost, its relation to 

cellular growth and gene regulation, and how costs evolutionarily shape the genome are key 

aspects of cell biology that remain largely elusive. While numerous studies investigated 

molecular mechanisms and gene sequence architectures that regulate expression level 

(Gingold and Pilpel, 2011; Kudla et al., 2009; Qian et al., 2012; Sharp et al., 1986; 

Subramaniam et al., 2013), very little is known about design elements that govern expression 

costs.

Different works have studied expression costs in unicellular organisms by imposing the 

expression of an unneeded protein (Bentley et al., 1990; Dekel and Alon, 2005; Dong et al., 

1995; Kafri et al., 2016; Rang et al., 2003; Scott et al., 2010). The production of such 

unneeded proteins diverts resources from synthesis of the cell’s own proteins, thus 

decreasing cellular fitness (Emilsson and Kurland, 1990; Marr, 1991; Vind et al., 1993). 

Central to these studies is the characterization of the correlation between the imposed 

expression levels of the unneeded proteins to the cost. Yet, ultimately natural selection 

dictates the expression level of natural genes according to the required concentration of each 

protein. Thus, a fundamental question, which has not been addressed before, is how cells can 

achieve a specific expression level of a gene while minimizing its expression costs.
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Addressing this question is challenging because changes in sequence could affect both 

expression level and expression costs. To disentangle expression level and expression costs 

and reveal mechanisms that affect cost per protein molecule, we utilized a synthetic reporter 

library of ~14,000 different sequence variants, each fused upstream to a GFP gene 

(Goodman et al., 2013). We then combined competition assays and deep sequencing to 

measure the fitness of all variants in parallel. This procedure allowed us to elucidate gene 

architectures that minimize expression cost at a given protein expression level. We show that 

various molecular mechanisms, such as protein/mRNA ratios, ribosome early elongation 

pauses, amino acid synthesis costs, and peptide hydrophobicity, determine the cost per 

protein molecule. We then generated a model that predicts the cost effectiveness of gene 

architectures and applied it to natural E. coli genes. We found that highly expressed genes 

have evolved more forcefully to be encoded by cost-minimizing mechanisms. Our 

observations indicate that natural selection has shaped genes’ architectures to reduce cost of 

gene expression.

RESULTS

5′ Gene Architecture Affects Cost of Gene Expression

Our question is whether different gene sequence elements can minimize cost of expression 

per protein molecule and hence increase cellular fitness. To focus on sequence features at the 

5′ region of a gene, we utilized a previously published synthetic gene library (Goodman et 

al., 2013) composed from ~14,000 different variants expressing a GFP gene. Each variant 

holds a unique variable 5′ gene architecture that includes a promoter, a ribosome binding 

site (RBS), and an 11-amino-acid-long N terminus fusion (Figure 1A; Experimental 

Procedures).

To reveal the expression cost of each variant, we measured relative fitness of all variants in 

parallel in a competition assay in six independent repeats. We then deep sequenced the 

variable region of the pool of variants and calculated relative fitness of each variant (Figure 

1B; see Experimental Procedures).

We regressed fitness values against GFP expression levels and observed a negative, linear 

correlation (Figure 1C, Pearson correlation, r = −0.79, p < 10−200; Figure S1A). The linear 

decline in fitness with expression is in agreement with previous studies (Kafri et al., 2016; 

Scott et al., 2010). The regression line, which outlines the relations between fitness and 

expression, allowed us to estimate the expected fitness for each library variant according to 

its GFP expression level. Variants whose fitness does not deviate consistently across repeats 

from this regression line are deduced not to utilize mechanisms that enhance or reduce the 

production cost per protein molecule.

Yet, many variants did deviate from the linear regression line, demonstrating fitness that is 

higher or lower than expected given their GFP expression levels. We hypothesized that 

variants that repeatedly deviated from the expected fitness might utilize gene architectures 

that either reduce or increase the cost of GFP production per protein molecule. Hence, we 

calculated each variant’s “fitness residual,” which we defined as the difference between the 

actual fitness that we measured for the variant and the fitness expected for it according to its 
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GFP expression level and the linear regression (Figure 1C). A positive fitness residual means 

that a given variant showed higher fitness than expected given its GFP expression level, 

suggesting that it can produce this GFP level with lower costs. A negative fitness residual 

means that the variant showed lower fitness than expected given its GFP expression level.

We then classified each variant as either positive or negative according to its fitness residual 

sign (Figure 1C, blue and red dots; see Experimental Procedures). Since the observed fitness 

residual is sensitive to biological noise (i.e., drift during competition) and experimental 

errors (i.e., sampling errors), we only classified variants as positive or negative if their 

fitness residual sign was identical in at least five out of the six repeats of the experiments in 

each of the two final sampling points of the competition (see Experimental Procedures and 

Supplemental Experimental Procedures). This approach resulted in 975 positive and 815 

negative variants (significantly higher than expected by chance even at very high levels of 

measurement errors; Supplemental Experimental Procedures). Classification into either 

positive or negative fitness residual groups allowed us to eliminate the effect of GFP 

expression level on fitness as these two groups demonstrate the same expression distribution 

(Figure 1C, inset).

We also noticed a set of 80 library variants, which we termed “underachievers,” whose 

fitness residual scores were repeatedly at the bottom 5% of the entire library (Figure 1C, 

purple dots; see Experimental Procedures). We hypothesized that these underachiever 

variants show extremely low fitness residuals because they produce GFP even more 

wastefully, and we expected them to show stronger usage of low-efficiency gene 

architectures compared to the negative fitness residual group. There appeared to be no 

“overachievers” in these data.

Production of More Proteins per mRNA Molecule Is an Economic Means to Minimize 
Expression Costs

We first hypothesized that reaching the same GFP level with lower levels of mRNA of the 

GFP gene could be beneficial. While positive and negative fitness residual variants come 

from the same distribution of GFP expression levels (Figure 1C, inset), we compared their 

GFP mRNA levels and found positive variants to have lower levels compared to negative 

variants (Figure 2A; Wilcoxon rank-sum, p = 1.6 × 10−9, effect size = 58.26%; see 

Experimental Procedures). This difference was independent of GFP level: binning the data 

according to GFP levels, we observed the reduced levels of mRNA for positive variants in all 

expression bins (Figure S1B).

The observation that positive variants have equal GFP protein levels but lower GFP mRNA 

levels indicates that they are able to produce more GFP proteins per mRNA molecule. We 

postulated that high translation initiation rate could be a mechanism for maintaining the 

same GFP levels despite low mRNA levels in positive variants. We calculated initiation rates 

for all library variants using the “Ribosome Binding Site Calculator” (Salis, 2011) and 

observed that indeed positive variants had higher initiation rates (Figure 2B; effect size = 

61.9%, Wilcoxon rank-sum, p = 3.7 × 10−18). This observation holds true when examining 

mRNA level versus translation initiation rate at the individual variant level (Figure S2A). 

Indeed, when examining translation efficiency per variant (using measured protein levels 
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divided by mRNA levels), positive variants demonstrated higher translation efficiencies than 

negative fitness residual variants (Figure 2C; effect size = 55.67%, Wilcoxon rank-sum, p = 

3.4 × 10−5). Moreover, we found that underachiever variants demonstrated even higher 

mRNA levels and lower translation efficiencies compared to the negative variants (Figures 

2A and 2C; effect size = 68.04% and 63.06%, Wilcoxon rank-sum, p = 9.6 × 10−8 and 1.1 × 

10−4, respectively). Thus, by increasing translation efficiency, cells reduce transcription 

costs and hence also cost per protein.

Slower Translation Speed at Early Elongation of Coding Region, Achieved by Diverse 
Means, Reduces Expression Costs

We next aimed to elucidate other cellular mechanisms that directly regulate the translation 

machinery and that might reduce expression costs. We first examined codon decoding 

speeds by the ribosome. Codon adaptation of transcripts to the cellular tRNA pool has been 

shown to be a regulatory mechanism for translation elongation (Goodarzi et al., 2016; Higgs 

and Ran, 2008; Kudla et al., 2009; Plotkin and Kudla, 2011; Shah and Gilchrist, 2011; 

Weinberg et al., 2016; Yona et al., 2013). Specifically, the prevalence of slowly translated 

codons at the 5′ of open reading frames (ORFs) has been suggested to support the efficiency 

of gene translation (Tuller et al., 2010a). This “ramp model” proposes that delaying 

ribosomes at the beginning of the elongation phase decreases downstream ribosomal pauses 

and collisions, which can therefore reduce ribosome jamming, and perhaps also ribosomal 

abortion events.

Although contradicting evidence were reported for the existence and relevance of this 

mechanism to expression level (Charneski and Hurst, 2014; Dana and Tuller, 2014; Heyer 

and Moore, 2016; Ingolia et al., 2009; Shah et al., 2013; Tuller and Zur, 2015), the main 

prediction of the model—that 5′ ramping reduces cost of expression at a given expression 

level—has not been tested so far. Here, we had the first opportunity to test this hypothesis as 

only the 5′ variable region of the GFP varied in the library, while all other parameters 

remained constant. Thus, we asked whether slow 5′ translation speed is associated with 

positive fitness residual. We used “mean of the typical decoding rates” (MTDR) (Dana and 

Tuller, 2014), a measure of codon decoding time derived empirically from ribosome 

profiling data in E. coli (see Experimental Procedures), to calculate translation speed for 

each library variant. We reasoned that if translational ramp is beneficial, then low MTDR 

scores, i.e., low ribosome speeds, should be more prevalent among the positive fitness 

residual variants. Indeed, our results showed that positive variants demonstrate significantly 

lower translation speeds at the N-terminal fusion (Figure 3A; effect size = 59.55%, 

Wilcoxon rank-sum, p = 3 × 10−12) and further for the underachievers (effect size = 64.79%, 

Wilcoxon rank-sum, p = 1.2 × 10−5).

Though in the original ramp model ribosome attenuation was proposed to be obtained by 

codons that correspond to rare tRNAs, additional mechanisms that can slow down the 

ribosome at early elongation regions could serve in ramping. These mechanisms include, in 

particular, tight mRNA secondary structure (Goodman et al., 2013; Tholstrup et al., 2012; 

Tuller et al., 2010b; Wen et al., 2008) and high affinity to the anti-Shine Dalgarno (aSD) 
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motif of the ribosome (Li et al., 2012). We thus examined each of these factors separately 

and asked whether they are associated with positive or negative fitness residual.

When we computed folding energies for segments of mRNA nucleotides on a sliding 

window along the variable region of each variant, we found that positive fitness residual 

variants demonstrated tighter secondary structures compared to negative variants along 

many different window positions (Figure 3B; Figure S2B for different window sizes). 

Strikingly, the maximum difference in folding energy is observed when the window’s start 

position is at the beginning of the translated region of the ORF, excluding the upstream 5′ 
UTR (Figure 3C; effect size = 65.03%, Wilcoxon rank-sum, p = 5.4 × 10−28). Hence, these 

results, together with previous ones, reveal the dual role of mRNA folding: on one hand, 

loose mRNA structure at the RBS is associated with high expression level (Goodman et al., 

2013), and on the other hand, utilization of a strong secondary structure at the 5′ end of the 

ORF can reduce per-protein costs.

It was previously suggested that elongating ribosomes in E. coli dwell longer on sequences 

that have high affinity to the aSD motif in the ribosome (Li et al., 2012). However, this 

observation has been recently questioned (Mohammad et al., 2016). We next examined the 

effects of Shine Dalgarno-mediated ribosomal pauses on fitness residuals. We calculated 

affinities to the aSD along the sequence of each variant, derived a ribosome speed estimation 

based on these affinities (see Experimental Procedures) and found that positive fitness 

residual variants are characterized by low ribosome speed early in the ORF (Figure 3D; 

effect size = 63.82%, Wilcoxon rank-sum test, p = 6.3 × 10−24).

We thus provide the first experimental evidence for a set of three gene architecture factors—

codon decoding time, mRNA structure, and affinity to the anti-Shine Dalgarno motif—that 

could each implement 5′ ramping by slowing down ribosomes and, by that, allow cells to 

reduce the cost of gene expression at a given expression level.

Another means of reducing translation speed that was recently demonstrated (so far in yeast) 

is the incorporation of positively charged amino acids (Charneski and Hurst, 2013) or 

proline residues (Artieri and Fraser, 2014) in newly synthesized peptides. Yet, we did not 

detect any difference in frequency of such amino acids between the positive and negative 

fitness residual groups.

Amino Acid Synthesis Cost and Hydrophobicity Affect Cost of Gene Expression

So far we have examined features that are based on the nucleotide sequence and how it 

associates with fitness residual. Next, we aimed to explore the possibility that the amino acid 

composition of the N terminus fusion to the GFP associates with cellular fitness.

Amino acids differ by the metabolic costs associated with their biosynthesis—predominantly 

energy and reducing power determinants invested in their metabolic production (Akashi and 

Gojobori, 2002). We thus hypothesized that usage of energetically expensive amino acids 

may cause a heavier burden at a given expression level. Indeed, lower cost of the N terminus 

fusions were found to associate with positive fitness residual variants (Figure 4A; effect size 

= 72.74%, Wilcoxon rank-sum, p = 7.4 × 10−62). Here, as well, underachiever variants show 
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more expensive amino acid usage compared to the negative group (Figure 4A; effect size = 

72.75%, Wilcoxon rank-sum, p = 1.7 × 10−11).

We further examined the relation between fitness residual and amino acid energetic cost by 

calculating the frequency ratio of each individual amino acid between the positive and 

negative fitness residual groups (see Experimental Procedures). Remarkably, this frequency 

ratio was found to negatively correlate with the metabolic cost of each amino acid (Figure 

4B; Pearson correlation, r = −0.54, p = 0.01). These observations suggest that expensive-to-

synthesize amino acids burden cells during their costly production due to a potential 

feedback that increases their synthesis in response to consumption.

In addition to direct metabolic cost, the incorporation of amino acids that appear in low 

cellular concentrations could reduce fitness indirectly as it might disturb the synthesis of 

other native proteins. We used ribosome profiling data (Li et al., 2012) to calculate amino 

acid demands and utilized previously measured cellular concentrations as amino acid 

supplies (Bennett et al., 2009) (see Experimental Procedures). Indeed, we found that amino 

acids with low demand-to-supply ratios are more prevalent in positive variants (Figure 4C; 

Pearson correlation, r = −0.82, p = 10−4). This observation implies that utilization of amino 

acids that are less available to the cell (either due to high demand or low supply) increase 

expression cost and are associated with negative fitness residual variants. Since metabolic 

cost of amino acids and their cellular supplies are correlated (Figure 4D; Pearson 

correlation, r = −0.72, p = 1.8 × 10−3), we could not evaluate which mechanism—cost or 

availability—contributes more to fitness residual.

We next reasoned that an additional factor by which a protein could affect fitness is its 

toxicity, e.g., due to aggregation. As aggregation is driven by hydrophobic interactions, we 

turned to a conventional measure of amino acid hydrophobicity (Kyte and Doolittle, 1982) to 

examine whether it is predictive of fitness residuals. We found that positive fitness residual 

variants tended to have significantly less hydrophobic amino acids fused to the GFP (Figure 

4E; effect size = 69.11%, Wilcoxon rank-sum, p = 3.2 × 10−44). Underachievers showed an 

even more pronounced effect (Figure 4E; effect size = 81.67%, Wilcoxon rank-sum, p = 7.7 

× 10−21). This negative effect of hydrophobic residues in cytosolic proteins could indeed be 

derived from post-synthesis costs, but it could also reflect an equally interesting possibility: 

that aggregation-prone peptides reduce the functional level of the GFP (and similarly the 

fraction of the active form of native proteins). According to this possibility, aggregation is 

wasteful and must be compensated by further costly production to reach the required 

expression level of the protein.

We further found that the higher the GFP expression, the more beneficial it should be to 

utilize cheap or hydrophilic amino acids (Figure S2C).

All Sequence Parameters Contribute Independently to Fitness

We have revealed, so far, a set of mechanisms that affect expression costs and therefore 

cellular fitness. Although these mechanisms are different in their nature, it is possible that 

variants that score highly on one of these parameters tend to score highly on others. For 

example, anti-Shine Dalgarno affinity could correlate with the energy of the secondary 
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structure of the mRNA, as both parameters are influenced by Guanine content. To check this 

possibility, we computed the correlation among the variants in the library between each pair 

of sequence parameters: codon decoding speed, mRNA secondary structure, anti-Shine 

Dalgarno affinity, hydrophobicity, and amino acid energy cost. Reassuringly, no strong 

correlation was found between any two parameters (Figure 5). Nonetheless, for feature pairs 

that did demonstrate non-negligible correlations (Pearson correlation, r > 0.1), we asked 

whether the signal of one feature is still observed while controlling for variation in the other. 

We found that each factor contributed directly to the signal, even upon controlling for other 

factors as potential confounders (see Figure S3).

Expression Costs Can be Minimized Even at Specified Amino Acid Sequences

Since maintaining a protein’s function usually requires keeping its specific amino acid 

sequence, we next asked whether the mechanisms that we found here can reduce expression 

costs for a specified peptide sequence by using alternative nucleotide sequences. We defined 

“Δfitness-residual” as the difference between a variant’s fitness residual and the average 

fitness residual of all library variants who share with that variant the same amino acid 

sequence. Then, we compared the various architectural features between variants with 

above-average Δfitness-residual to variants with below-average Δfitness-residual (see 

Experimental Procedures).

Figures 6A–6E depict, for each of the analyzed features, the difference in feature value 

between variants with above- or below-average Δfitness-residual. Interestingly, for each 

feature, the above- and below-average sub-groups had significantly different feature scores, 

reflecting the same trends as observed in all earlier analyses. For example, mRNA levels 

tend to be higher in the below-average sub-group in most of the 137 N terminus fusions (t 

test, p values for GFP mRNA levels = 6.2 × 10−3, initiation rates = 7 × 10−9, codon decoding 

speeds = 4.3 × 10−2, mRNA folding = 3.5 × 10−16, and aSD velocity = 7.6 × 10−7). The 

conclusion from this analysis is that although amino acid features affect fitness residuals, the 

other features provide sufficient degrees of freedom to minimize costs even at a specified 

amino acid sequence.

A Regression Model Calculates Relative Contribution of Each Feature and Predicts Fitness 
Residual Scores

So far, we have examined fitness residual as a binary classification, namely categorizing 

variants with either positive or negative fitness residual. Complementing this binary analysis, 

in Figure S4A, we show that each feature correlates significantly with actual fitness residual 

values. We next aimed to predict actual fitness residual values of the library variants from 

their gene architecture features using a multiple linear regression model. We trained the 

model on a randomly chosen subset of 70% of the library variants, cross validated it on all 

other variants by comparing their predicted and observed fitness residual, and found a good 

correlation (see Experimental Procedures; Figure 7A; r = 0.53, p < 10−200).

When the regression was performed on a scrambled library, which randomly links feature 

values and variants, the correlation between observed and predicted fitness residual was 

practically eliminated (Figure S4B; r = 0.02). We performed 105 such randomizations, and 
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all of them demonstrated such extremely weak correlations. This negative control 

demonstrates that we obtained a genuine means to predict fitness residual values based on 

computable gene architecture parameters. We concluded that a gene architecture that utilizes 

more of the features that we discovered and that, to a greater extent, typically gives rise to 

higher fitness residuals as expression costs are further minimized.

Additionally, this regression model allowed us to calculate the relative contribution of each 

feature by comparing the coefficients assigned by the regression model (Figure 7B). This 

analysis revealed that the features contributing to fitness residual the most are 

hydrophobicity and metabolic cost of the N terminus fusion, while codon decoding speed 

contributes the least. To avoid over-fitting of our model on the library data, we performed 

feature selection using the Lasso algorithm (see Experimental Procedures). This validation 

resulted in the exclusion of only codon decoding speed from the model, suggesting that its 

contribution to fitness residual is indeed lower compared to other features.

Highly Expressed Natural Bacterial Genes Have Evolved Gene Architectures that Minimize 
Their Production Costs

With these findings from the synthetic library, we next asked whether the mechanisms that 

we revealed as cost reducing were also utilized by natural selection to optimize E. coli’s 

native genes. We thus calculated each E. coli gene’s score with respect to the relevant 

features and used the regression model to predict its fitness residual score (see Experimental 

Procedures and Table S4, related to Figure 7). Since a higher expression level results in 

higher expression cost, we next hypothesized that E. coli genes with higher expression levels 

are more likely to be endowed with cost-reducing architectures. Indeed, we found a 

significant correlation between predicted fitness residual of E. coli genes and their protein 

expression levels (Figure 7C; r = 0.25, p = 2 × 10−53), demonstrating a stronger selection for 

optimizing the 5′ gene architecture for highly expressed genes. We obtained similar results 

when predicting fitness residuals for all genes in the Gram positive B. subtilis, pointing to 

the generality of the model (Figure 7E; r = 0.33, p = 10−93; see Experimental Procedures and 

Table S4, related to Figure 7).

Interestingly, the range of fitness residuals predicted by our model for the E. coli and B. 
subtilis genes was significantly larger than the range predicted by a mock regression model 

that was trained on randomly scrambled data of the synthetic library (see Experimental 

Procedures; Figures 7D and 7F; p < 10−5). This observation suggests that the model that we 

trained on the library data is able to expose the expression-cost optimality of natural 5′ gene 

architectures.

DISCUSSION

In this study, we found architectures and motifs that govern expression costs and reveal their 

function even beyond a direct effect on the process of expression. We show that regulating 

initiation and mRNA levels affects expression cost, as increasing the number of proteins that 

are produced per mRNA is associated with a positive fitness residual. This architecture could 

be beneficial because it reduces energy and resource consumption that are devoted to mRNA 

production. If cost reducing, why do genomes not further utilize the strategy of low 
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transcription and mRNA abundance, combined with high translation initiation? One 

potential reason is that too low of mRNA levels might lead to increased expression noise 

(Taniguchi et al., 2010) or increased response time to an environmental signal (Gasch and 

Werner-Washburne, 2002). It is thus expected that natural genes would show a tradeoff 

between cost-reducing architectures and designs that satisfy other requirements, such as 

controlled noise and short response times.

The “translational ramp” theory predicted an effect of ribosome speed at early elongation on 

expression cost at a given expression level (Tuller et al., 2010a). The theory was never tested 

as such, since fitness reduction upon expression of an unneeded protein was not 

systematically measured for different gene sequences at various expression levels. We 

demonstrate here that slow translation speed at the 5′ end is beneficial in terms of reduced 

expression cost and increased cellular growth rate. We show that in addition to codon 

decoding times, there are at least two additional ramping means that are likely beneficial: 

occurrence of Shine-Dalgarno-like sequences and strong secondary structures.

Recent works showed that 5′ mRNA secondary structure governs expression level of 

transcripts in bacteria (Goodman et al., 2013; Kudla et al., 2009; Shah et al., 2013). Here, we 

observed that tight mRNA structures are enriched in positive variants. Consequently, it 

seems that mRNA structure plays a more complex role than previously thought. On one 

hand, 5′ mRNA structure, specifically upstream of the AUG start codon, regulates 

expression levels as it governs initiation rates (Goodman et al., 2013; Salis, 2011). On the 

other hand, tight structures at the beginning of the ORF, which were previously observed in 

E. coli genes (Tuller et al., 2011), are shown here to be beneficial in minimizing expression 

cost.

We revealed that the amino acid composition of a gene can also affect expression cost at a 

given expression level by showing that hydrophobic amino acids reduce fitness residual, 

perhaps due to their increased tendency to form toxic aggregates in the cytoplasm. In 

agreement with this, it was shown that mis-folded proteins impose growth reduction to yeast 

cells in a dosage-dependent manner (Geiler-Samerotte et al., 2011). It is interesting to 

postulate that hydrophobic residues that promote aggregation can reduce the portion of 

properly folded, functional protein. Such futile protein synthesis might need to be 

compensated for by further costly production in order to reach the needed functional level of 

a certain protein.

We further demonstrate that there are sufficient degrees of freedom for a gene to evolve a 

cost-reducing architecture, even when its amino acid sequence is constant. Hence, our study 

suggests design elements that could be utilized both for better heterologous gene expression 

and by natural selection for the optimization of natural genes.

As such, our observations are also relevant to biotechnology and synthetic biology. Many 

times in such non-natural systems, there is a need to express a foreign gene, whose 

expression could deprive resources from the hosting cell. Our results allow the design of an 

optimized nucleotide sequence version for heterologous expression that minimizes the cost 
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of production and, by that, reduces the burden on the cell while not compromising 

expression level.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for full description.

Library Architecture

The synthetic library was provided to us by Goodman et al. (2013) and is fully described 

there. In short, each variant in the library harbors a unique 5′ gene architecture that is 

composed of a promoter, a ribosome binding site, and an N′ terminus amino acid fusion of 

11 amino acids followed by a super-folder GFP (sfGFP) gene. The library as a whole 

includes two promoters with either high or low transcription rates; three synthetic RBSs with 

strong, medium, or low translation initiation rates, as well as 137 different genomic RBSs 

that were defined as the 20 bp upstream to the ORF of 137 E. coli genes; and, finally, 137 

coding sequences (CDSs) consisting of the first 11 amino acids from the same genes. Each 

CDS appears in the library in 13 different nucleotide sequences representing alternative 

synonymous forms. All combinations amounted in 14,234 distinct library variants.

Competition Assay

Competition experiment was carried out by serial dilution. The library was grown on 1.2 mL 

of Lysogeny broth (LB) and 50 μg/mL kanamycin at 30°C, the exact same conditions that 

were used in Goodman et al. (2013) to measure GFP expression level. We grew six parallel, 

independent lineages, and each was diluted daily by a factor of 1:120 into fresh media 

(resulting in ~6.9 generations per dilution). This procedure was repeated for 12 days, and 

samples were taken from each lineage every 4 days (~27 generations), mixed with glycerol, 

and kept at −80°C.

Fitness and Fitness Residual Estimations

Fitness effect is derived from the following equation:

where f is the variant frequency, t is the generation number, and s is the fitness effect.

To extract fitness effect, we took two independent approaches. First, we took the logarithm 

of the ratio between the frequency of a variant at a certain time point and its frequency at 

time zero. We then divided this value by the number of generations. This calculation was 

performed for both generation ~84 and generation ~56. See Supplemental Experimental 

Procedures for description of fitness calculation based on maximum likelihood. The two 

fitness-estimation methods were highly correlated (Figures S5A and S5B; r = 0.99, p < 

10−200) and resulted in the same conclusions throughout our analyses.
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We then defined “fitness residual” of a variant as the difference between the observed fitness 

by FitSeq and the fitness predicted by a linear model given the variant’s GFP expression 

level (see Supplemental Experimental Procedures for further details).

Model for Estimating Translation Velocity Based on Anti-Shine Dalgarno Affinity

The Shine-Dalgarno affinity was calculated identically to Li et al. (2012). In short, for each 

position, we calculated the affinity of 8–11 bp upstream of that position (the distance 

between the ribosome A site and the aSD site) to the anti-Shine Dalgarno motif. The free 

energy of interaction between the aSD motif and the mRNA sequence (ΔG) was calculated 

for all possible 10-mer sequences for that position using the RNA annealing function from 

the ViennaRNA package algorithm (Lorenz et al., 2011), and the highest affinity (lowest 

energy) score was used. We calculated the affinity for all positions for which the annealing 

with the aSD motif resides in the 11 amino acid fusion (positions 19–33) and then 

transformed all affinities of a given variable sequence to estimated ribosomal velocity, as 

follows.

We converted the ΔG estimates into the equilibrium constant of the interaction, K, which 

represents the equilibrium between association (kf) and dissociation (kb). The elongation 

velocity (v) as the ribosome moves from current site n to the n + 1 site is given by the 

harmonic mean of the dissociation reaction of site n and the association reaction of site n 
+ 1:

Equation 1

Equation 2

We further assume that the association reaction rate is not dependent on the sequence, 

therefore, for every n, kfn = kf, and that differences in affinity thus only reflect differences in 

dissociation constant displayed by various sequences. We then get a term for the ribosomal 

velocity at a specific position by the anti-Shine Dalgarno affinity:

Equation 3

To calculate the average ribosomal velocity across the entire N terminus fusion sequence of 

each library variant, we calculated the harmonic mean of the velocity values for all 

positions. See Supplemental Experimental Procedures for full description.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Microorganisms can minimize expression cost with diverse molecular means

• Some design elements can produce more unneeded proteins but maintain high 

fitness

• Such elements optimize use of production machineries and utilize cheap 

materials

• Natural highly expressed genes evolved more forcefully to lower expression 

costs
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Figure 1. 5′ Gene Architectures Affect Cost of Gene Expression at a Given Expression Level
(A) We utilized a synthetic library of ~14,000 E. coli strains, each expressing a GFP 

construct with a unique 5′ architecture that includes a promoter, ribosome binding site 

(RBS), and an 11-amino-acid-fused peptide. There were two different promoter types, four 

RBSs, and 137 amino acid fusions that were each synonymously re-coded to 13 different 

versions (see Goodman et al., 2013 for full details).

(B) FitSeq methodology to measure relative fitness of strains in a pooled synthetic library. 

First, the library was grown six independent times for ~84 generations, and samples were 

taken at generations 0, ~28, ~56, and ~84. Then, unique 5′ gene architectures were 

simultaneously amplified and sent for deep sequencing, which allowed to follow the 

frequency of each variant in the population over the course of the experiment. Finally, a 

relative fitness score was assigned for each variant based on its frequency dynamics.

(C) GFP expression level (as measured by Goodman et al., 2013; x axis) versus fitness effect 

(based on results of repetition C; y axis) of each variant in the library (Pearson correlation, r 

= −0.79, p < 10−200). Fitness effect comes from the burden of expressing unneeded proteins 

on cellular growth and is calculated by analyzing the frequency dynamics of each variant 
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(see Experimental Procedures). We defined fitness residual as the difference between a 

variant’s observed and expected fitness. The expected fitness is calculated from the 

regression line between GFP expression and fitness (black line). Some variants consistently 

demonstrated positive (blue dots, n = 975) or negative (red dots, n = 815) fitness residual 

sign. Other variants showed extremely low fitness residual, and we termed those variants as 

“underachievers” (purple dots, n = 80). The group size of positive, negative, and 

underachiever variants are significantly much higher than expected by chance (Supplemental 

Information). These results suggest that certain 5′ gene architectures can increase or reduce 

the cost of gene expression. See also Figure S1A. Inset: positive (blue violin plot) and 

negative (red violin plot) fitness residual variants come from the same distribution of GFP 

expression level (Wilcoxon rank-sum, p = 0.46). Black line represents the median value. 

Thus, the effect of GFP levels on fitness was successfully factored out, thus allowing us to 

elucidate other molecular mechanisms that tune expression cost at given expression levels.

(D) Fitness and fitness residuals demonstrate different distributions. While most variants 

showed negative fitness values, fitness residual is more similar to a normal distribution, 

though with a negative tail.
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Figure 2. Higher Ratio of GFP Protein/mRNA Minimizes Cost of Gene Expression
(A) Although coming from the same distribution of GFP levels, positive variants (blue violin 

plot) demonstrate lower mRNA levels of the GFP gene compared to negative variants (red 

violin plot) (effect size = 58.26%, Wilcoxon rank-sum, p = 1.6 × 10−9). Consistently, 

underachiever variants (purple violin plot) show higher mRNA levels compared to negative 

variants (effect size = 68.04%, Wilcoxon rank-sum, p = 9.6 × 10−8). Black line represents 

the median value.

(B) Positive variants show higher translation initiation rates compared to negative variants 

(effect size = 61.9%, Wilcoxon rank-sum, p = 3.7 × 10−18).

(C) Positive variants demonstrate higher translation efficiencies (protein/mRNA) compared 

to negative variants (effect size = 55.67%, Wilcoxon rank-sum, p = 3.4 × 10−5). 

Consistently, underachiever variants (purple violin plot) further show lower translation 

efficiencies compared to negative variants (effect size = 63.06%, Wilcoxon rank-sum, p = 

1.1 × 10−4).

Statistically significant differences (p < 0.05) are marked with an asterisk. See also Figures 

S1B and S2A.
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Figure 3. Slow Translation Speed at Early Elongation, Achieved by Diverse Molecular Means, 
Reduces Expression Cost
(A, C, and D) Positive variants show lower values of codon decoding speed (A), stronger 

mRNA structures (C), and lower speeds due to higher anti-Shine Dalgarno affinities (D) 

compared to negative variants (effect size = 59.55%, 65.03%, and 63.82%, Wilcoxon rank-

sum, p = 3 × 10−12, 5.4 × 10−28, and 6.3 × 10−24, respectively). Statistically significant 

differences (p < 0.05) are marked with an asterisk. See also Figure S1B.

(B) Mean folding energy of mRNA secondary structure according to window’s start position 

for positive (blue curve) and negative (red curve) variants; error bars represent SEM. Dashed 

lines mark different positions along the variable region upstream to the GFP. Black vertical 

line marks the beginning of window with the largest observed difference, which is found at 

nucleotide positions +4 of the ORF, just after the first AUG codon. The distributions at this 

window position are seen in (C). See also Figure S2B.
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Figure 4. Usage of Expensive-to-Synthetize, Lowly Available, and Hydrophobic Amino Acids 
Decreases Fitness Residual
(A) N terminus amino acid fusions of negative variants are more expensive to synthesize 

compared to positive variants (effect size = 72.74%, Wilcoxon rank-sum, p = 7.4 × 10−62). 

Underachievers utilize even more expensive amino acids (effect size= 72.75%, Wilcoxon 

rank-sum, p = 1.7 × 10−11). See also Figures S1B andS2C.

(B) The frequency ratio of amino acids between positive and negative variants is negatively 

correlated with the energetic cost of amino acids (Pearson correlation, r = −0.54, p = 0.01). 

Each amino acid is marked according to its one-letter code.

(C) The frequency ratio of amino acids between positive and negative variants is negatively 

correlated with the demand/supply ratio of amino acids (Pearson correlation, r = −0.82, p = 

10−4). Demand comes from occupancy of ribosomes on each transcript (see Experimental 

Procedures), and supply is the cellular concentration of each amino acid (Bennett et al., 

2009).

(D) Amino acid availability and energetic cost are correlated (Pearson correlation, r = −0.72, 

p = 1.8 × 10−3).

(E) N terminus amino acid fusions of negative variants are more hydrophobic than positive 

variants (effect size = 69.11%, Wilcoxon rank-sum, p = 3.2 × 10−44). N terminus fusion of 

underachievers are even more hydrophobic (effect size = 81.67%, Wilcoxon rank-sum, p = 

7.7 × 10−21). See also Figures S1B and S2C.
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Figure 5. Each Feature Affects Fitness Residual Independently
Correlation plots of each feature pair show lack of correlation in most cases and only weak 

correlations in other cases. For feature pairs with Pearson correlation of r > 0.1, we 

compared the difference in one feature while controlling for the second and vice versa. See 

also Figure S3. Black lines are the regression curves between each feature pair. Number at 

upper-left corner is the Pearson correlation.
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Figure 6. Variant with Same N Terminus Amino Acid Fusion Demonstrate a Range of Fitness 
Residuals
(A–E) Each dot represents one of the 137 N terminus fusions in the library. The x axis and 

the y axis represent the mean value of a feature for the variants with either below-average or 

above-average Δfitness-residual, respectively. The vertical and horizontal error bars 

represent standard errors for each of the axes. A statistical difference for deviance from the 

X = Y line was observed for all features, suggesting that even at a given amino acid 

sequence, these mechanisms affect fitness residual and can minimize expression costs (t test, 

p values: A, mRNA levels, 6.2 × 10−3; B, initiation rates, 7 × 10−9; C, codon decoding 

speeds, 4.3 × 10−2; D, mRNA folding, 3.5 × 10−16; and E, aSD velocity, 7.6 × 10−7). d is 

Cohen’s d that calculates the effect size.
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Figure 7. A Model that Predicts Fitness Residual Accurately Reveals that Fitness Residual of 
Natural Bacterial Genes Is Correlated with Their Expression Level
(A) A linear regression model based on all eight features predicts fitness residual accurately 

in a cross-validation test (Pearson correlation, r = 0.53, p < 10−200). See also Figure S4.

(B) The weighted coefficients of each feature in the regression model demonstrating the 

relative contribution of each feature to fitness residual (p value for regression coefficient of 

mRNA level = 3.5 × 10−11, initiation rate = 2.5 × 10−12, TEGFP protein/mRNA = 2.7 × 10−9, 

codon decoding speed = 8.7 × 10−3, mRNA folding energy = 1.5 × 10−50, aSD velocity = 8.7 

× 10−3, hydrophobicity < 10−200, and amino acid synthesis cost = 5.4 × 10−80). The sign of 

the contribution of each coefficient shows whether a feature is associated positively or 
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negatively with fitness residuals. Error bars represent standard error of the coefficient 

estimation.

(C) Predicted fitness residuals of E. coli genes according to the regression model are 

correlated with their expression levels (Pearson correlation, r = 0.25, p = 2 × 10−53), 

suggesting that natural selection shapes 5′ gene architectures in order to minimize costs of 

gene expression.

(D) Distribution of fitness residual scores for E. coli genes as predicted by regression model 

that was trained on either experimental or mock data. The experimentally based model 

predicts a significant, higher range of fitness residuals (p < 10−5), suggesting that the 

mechanisms that we elucidate with the synthetic library also apply on natural genes.

(E) Predicted fitness residuals of B. subtilis genes according to the regression model are 

correlated with their expression levels (Pearson correlation, r = 0.33, p = 10−93), suggesting 

that our model also applies for other bacteria species.

(F) Same as (D), only for B. subtilis genes.
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