
Mass cytometry of follicular lymphoma tumors reveals intrinsic 
heterogeneity in proteins including HLA-DR and a deficit in non-
malignant plasmablast and germinal center B cell populations

Cara Ellen Wogsland1, Allison Rae Greenplate1, Arne Kolstad2, June Helen Myklebust3,4, 
Jonathan Michael Irish1,5, and Kanutte Huse3,4

1Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 
Nashville, Tennessee, United States of America

2Department of Oncology, Oslo University Hospital, Oslo, Norway

3Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 
Oslo, Norway

4Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway

5Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of 
America

Abstract

Background—Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma that has a risk 

of transformation to more aggressive lymphoma. Relatively little is known about the non-

malignant B-cell and T-cell subset composition within the tumor microenvironment and whether 

altered phenotypes are associated with patterns of lymphoma B-cell heterogeneity.

Methods—Two mass cytometry (CyTOF) panels were designed to immunophenotype B and T 

cells in FL tumors. Populations of malignant B cells, non-malignant B cells, and T cells from each 

FL tumor were identified and their phenotypes compared to B and T cells from healthy human 

tonsillar tissue.

Results—Diversity in cellular phenotype between tumors was greater for the malignant B cells 

than for non-malignant B or T cells. The malignant B-cell population bore little phenotypic 

similarity to any healthy B-cell subset, and unexpectedly clustered closer to naïve B-cell 

populations than GC B-cell populations. Among the non-malignant B cells within FL tumors, a 

significant lack of GC and plasmablast B cells was observed relative to tonsil controls. In contrast, 

non-malignant T cells in FL tumors were present at levels similar to their cognate tonsillar T-cell 

subsets.

Conclusion—Mass cytometry revealed that diverse HLA-DR expression on FL cells within 

individual tumors contributed greatly to tumor heterogeneity. Both malignant and non-malignant B 
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cells in the tumor bore little phenotypic resemblance to healthy GC B cells despite the presence of 

T follicular helper cells in the tumor. These findings suggest that ongoing signaling interactions 

between malignant B cells and intra-tumor T cells shape the tumor microenvironment.
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Introduction

Follicular Lymphoma (FL) is a B-cell malignancy and the second most common non-

Hodgkin lymphoma. Although patient overall survival is now measured in decades, FL is 

considered incurable and multiple relapses are common (1). Even with the use of the life-

extending anti-CD20 drug Rituximab, FL has remained largely incurable and maintains a 

3% per-year transformation rate to the more aggressive diffuse large B cell lymphoma 

(DLBCL). FL is named for its follicle-like appearance and is thought to arise from mature 

germinal center (GC) B cells (2). Malignant FL B cells are characterized by light-chain 

restriction and the t(14;18) translocation that leads to overexpression of B cell CLL/

lymphoma 2 (BCL-2) (3). As the disease evolves, more mutations are acquired, leading to 

genetic heterogeneity in the tumor (4,5). The high rate of relapse and the identification of 

negative prognostic cells present at high levels within some FL tumors (6) has highlighted 

the need to understand the biology of FL tumor cell heterogeneity and interaction with the 

microenvironment.

Much of the past FL research has focused on genetics (1,2,5) and flow cytometric analysis 

with a limited number of markers measured per single cell (6,7). The introduction of mass 

cytometry and the associated field of computational high-dimensional analysis have paved 

the way for in-depth analysis of single cell phenotype (8,9). Here, malignant and non-

malignant tumor cells were characterized at the single cell protein level and compared to the 

lymphocytes from healthy tonsils. Non-malignant healthy donor tonsil is an accessible 

lymphoid tissue that contains mature B cells that are pre-, during-, and post-germinal center 

reaction (10) and that has been studied previously by mass cytometry (11-13). While 

differences exist in the phenotype and organization of the cells in human secondary 

lymphoid organs including spleen, lymph nodes, and tonsils (10,14,15), both tonsils and 

reactive lymph nodes are valuable comparison points for studies of tumor-involved lymph 

nodes and follicular lymphoma tumors. In this exploratory study, mass cytometry was used 

to study malignant B cells and non-malignant B and T cells in the tumor microenvironment 

with a focus on intra- and inter-tumor heterogeneity, and on changes in the composition of 

immune cells within tumors. Mass cytometry was selected due to the ability to characterize 

35 or more features of individual cells and the ability to reveal unexpected malignant and 

non-malignant cell subsets with unusual phenotypes (16-20).
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Materials and Methods

Tissue Sample Collection

FL samples were selected from the biobank at The Norwegian Radium Hospital, Oslo 

University Hospital. Tonsils were obtained from patients undergoing tonsillectomy at 

Agroklinikken, Asker, Norway. All samples were obtained with patient consent in 

accordance with the Declaration of Helsinki. The study was approved by the regional 

committee for research ethics, Oslo Norway, and the Vanderbilt institutional review board 

(IRB).

Mass cytometry

Cryopreserved single cells were thawed, pelleted, and rested in RPMI-1640 with 10% FBS 

for 45 minutes before staining. Viability was determined by trypan blue staining and manual 

cell counting. Samples with less than 50% viability were excluded from the study. At least 

one million live cells per sample were stained with surface antibodies (listed in Table S1) for 

30 minutes, then washed and fixed in 1.6% PFA for 5 minutes followed by cell membrane 

permeabilization with >90% cold methanol. Cells were stored in methanol at -80°C for up to 

two weeks. Samples were washed twice and stained with intracellular antibodies (listed in 

Table S1) for 30 minutes. Cells were then incubated in iridium cell tracker (Fluidigm) at the 

recommended concentration for 20 minutes. Stained and intercalated samples were collected 

on a CyTOF 1 (Fluidigm) at the Vanderbilt flow cytometry core.

Data analysis

The cloud based flow cytometry platform, Cytobank (21), was used for file storage and data 

analysis including biaxial data display and gating, viSNE (22), SPADE (23), histograms, 

heat maps, and statistics consistent with standard computational analysis workflow (24). The 

statistical language R with RStudio was used for hierarchical clustering (25,26).

A computational light-chain channel was added to the B-cell panel files post data collection. 

The channel was named “light_chain” and was created by selecting the value of either IgL or 

IgK, whichever was higher, for each cell event. This new light chain channel reported the 

light chain level for each B cell regardless of isotype and was used in computational analysis 

of phenotype.

The dimensionality reduction similarity mapping tool viSNE (22) was used to create two-

dimensional t-SNE visualizations of multidimensional cellular phenotypes (9,24,27). Cells 

that had similar phenotypes were placed close together on viSNE maps created based on 

analysis of 20 cellular measurements. T cells from all tonsil and tumor samples were 

analyzed together by viSNE using 20 markers from the T-cell panel (Fig. 1 and in depth in 

Fig. 2). A total of three B cell viSNE analyses were performed each using the same 20 B-

cell panel markers. All B cells were initially analyzed together (Fig. 1), and that map was 

used to gate for malignant and non-malignant B cells. In the two subsequent B cell viSNE 

analyses, the non-malignant B cells from FL samples and all tonsillar B cells were analyzed 

together in a “non-malignant B cell” viSNE (Fig. 3), and the malignant B cells were 

analyzed together in a “malignant B cell” viSNE (Fig. 4). SPADE was applied to the t-SNE 
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axes created by viSNE (Fig. 5) to cluster cells into cell subsets (16,24,28). Variance in 

marker expression between clusters was calculated for nodes containing at least 100 cells 

using transformed median values (arcsinh scale, cofactor of 15, as in (6)).

Results

FL malignant B cells were phenotypically distinct from tonsillar B cells

Eight FL lymph node tumor samples were phenotyped by mass cytometry. Each sample was 

stained with two different panels, one focused on T-cell makers and one on B-cell markers. 

Three non-malignant healthy donor tonsils were stained with the same panels to serve as 

healthy controls (Fig. 1). After initial gating to identify singlet T cells or B cells 

(Supplementary Fig. 1A), viSNE analyses were performed. CD45+ CD3+ CD19- cells from 

the 11 T-cell panel files were analyzed together in the “T cells” viSNE, (Fig 1A; tSNEs_T 

cells). The panel was designed to identify and characterize T-cell subsets, and included for 

viSNE analysis the following 20 markers: CCR6, CCR5, CD4, CD8, CCR4, CD43, ICOS, 

TCRγδ, CD45RA, CXCR3, CCR7, CD69, CD44, CD27, CTLA4, CD25, CXCR5, CD57, 

PD1, CXCR4. These markers were not used to gate for T cells.

CD45+ CD19+ and/or CD20+ CD3- B cells were analyzed together in a similar fashion for 

the “all B cells” viSNE analysis (Fig. 1A; tSNEs_all B cells). The panel was designed to 

identify and characterize B cell subsets, and included for viSNE analysis the following 20 

markers: CCR6, IgD, CD20, CCR4, CD43, CD36, CD62L, CD86, CD33, CD22, CD79B, 

CD40, CD44, CD27, CD38, CD3, CXCR5, HLA-DR, CXCR4, light_chain. The tonsillar B 

cells mapped almost entirely to the periphery of the all B cells viSNE map, leaving a large 

space in the center of the map where the majority of B cells from the eight FL tumors fell 

(Fig. 1, Supplementary Fig. 2). The central area on the viSNE map where the tonsillar B 

cells were primarily absent was gated as malignant B cells (Fig. 1B,C). The viSNE map was 

made without the use of IgLambda (IgL) and IgKappa (IgK) to guide the separation of 

malignant cells; instead, a computational light-chain channel was used to indicate positivity 

of total light chain. IgL and IgK expression were used afterward to confirm the isotype 

exclusion of the malignant B cells for each tumor sample (Supplementary Fig. 3). The area 

outside the malignant gate, the non-malignant B-cell area, for tonsil and FL tumors showed a 

mixture of light-chain isotypes, as expected (Fig. 1C). Two IgL lymphomas (FL5 and FL7) 

were clearly identifiable on the viSNE map as IgK- and IgL+ (bottom, Fig. 1C). The 

intensities of IgL and IgK showed that the malignant area contained light-chain-restricted 

cells whereas the non-malignant area contained a mix of IgK and IgL cells, similar to the 

tonsillar B cells (Fig. 1C). A key finding here is the fact that light-chain-restricted cells fell 

into the malignant area regardless of light-chain isotype. The FL samples contained cells that 

mapped in the non-malignant area, but to varying degrees. These cells were interpreted as 

non-malignant B cells present within the tumors.

T-cell distribution trended toward an activated state

Key T-cell markers and the T cells viSNE map (Fig. 2A) were used to subset the T-cell panel 

samples into five populations (Fig. 2B). For comparison, traditional biaxial gating were 

performed in parallel (Supplementary Fig. 4A,B). The eight FL tumors and the three tonsils 
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had a high degree of overlap in the T cell viSNE map (Fig. 1D-E), suggesting a similar 

phenotype of tumor-associated T cells and healthy tonsillar T cells. There were no 

significant differences between T-cell subset distributions in FL tumors and tonsils (Fig. 2C, 

Supplementary Fig. 5A). T cells from most samples were distributed throughout the viSNE 

map with the exception of FL14 (Fig. 2D-E). FL14 had a restricted distribution and 

contained predominantly CD8+ T cells.

Although there were no significant differences between tonsillar T cell and FL tumor T cell-

subset proportions, FL tumors tended to have fewer CD45RA+ or more CD45RA- T cells, 

suggesting fewer naïve cells were present (Fig. 2C). FL tumors also displayed a skewing 

towards CD8+ T cells (Supplementary Fig. 6).

Diminished GC and plasmablast populations among non-malignant B cells in FL tumors

Non-malignant tumor-infiltrating B cells were next investigated by analyzing them in a new 

viSNE together with the tonsillar B cells (tSNEs_non-mal. B) using the same markers as the 

initial B cell viSNE (Fig. 3). In Figure 1, B cells positioned outside the malignant gate were 

considered non-malignant due to their overlapping with tonsillar B cells in the viSNE map 

and the mixture of IgK and IgL expressing cells. Three of the FL tumors contained less than 

10% non-malignant B cells and were excluded from this analysis (Supplementary Fig. 2). 

Key B-cell markers were used to draw expert gates on the non-mal. B viSNE map to divide 

the B cells into four mature B-cell subsets; naïve, memory, germinal center (GC), and 

plasmablasts (Fig. 3A-B, Supplementary Fig. 4C,D). The FL tumor non-malignant B cells 

and the tonsillar B cells showed a high degree of overlap in the B cell viSNE map (Fig. 3D-

E), suggesting a similar phenotype of non-malignant B cells and healthy tonsillar B cells. 

There were significant differences in B cell-subset distributions between tonsil and FL tumor 

for GC B cells and plasmablasts (Fig. 3C, Supplementary Fig. 5B) with average percentages 

of 15% and 2.8% for GC B cells and 2% and 0.2% for plasmablasts, respectively.

FL malignant B cells were not germinal-center like in phenotype

The (non-malignant) tonsillar B-cell populations for each tonsil (4 populations from 3 

tonsils) from Figure 3 were compared to the malignant B-cell population from each FL 

tumor sample using median intensity of the same 20 markers used in the B cells viSNE 

analyses. The populations were hierarchically clustered by median marker intensities, 

thereby creating a dendrogram that showed how phenotypically similar the populations 

were. The malignant B cells primarily clustered together, but had a phenotype more similar 

to naïve and memory B cells than GC and plasmablasts (Fig. 4A). There was no single 

marker that separated out the malignant B cells (Fig. 4B). Malignant B cells had higher 

levels of CD79B and IgM than tonsillar B-cell subsets suggesting strong dependence of 

BCR signaling. However, in contrast to naive B cells, all malignant B cells were IgD-. The 

malignant B cells also showed downregulation of the co-receptor CD40.

Mass cytometry characterized high variability of intra-tumor phenotypic heterogeneity in 
malignant B cells

The malignant B cells from FL samples were analyzed in a separate viSNE analysis 

(tSNEs_mal. B cells). In contrast to the non-malignant B cells and T cells, malignant B cell 
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viSNE maps varied between the samples with cells occupying different areas of the map 

(Fig. 5A). To quantify this variation, unsupervised clustering using SPADE was utilized to 

make 10 unbiased clusters of cells for each of the viSNE maps (T cells, malignant B, and 

non-malignant B; Fig. 5B). Cell distribution between the nodes could then be studied within 

a sample and across samples (Fig. 5C). There were some variation in the distribution 

throughout SPADE nodes for all the three cell types, but with greater variability for the 

malignant B cells than the non-malignant B and T cells (Fig. 5C). For the malignant B cells, 

some FL samples were dominated by a few SPADE nodes (FL5, FL7, and FL14) whereas 

others spread out in the viSNE map (FL3, FL4, FL12). The markers that varied the most 

within tumors were HLA-DR, light_chain, and CD38 (Fig. 5D-E). These results 

demonstrated variable phenotypic heterogeneity among the malignant B cells within a single 

tumor.

Discussion

Minimally biased, automated computational analysis using viSNE accurately separated 

malignant B cells from non-malignant B cells without using BCL-2 expression or light-

chain restriction when distinguishing these cell subsets. Light-chain isotype was found to be 

restricted within the computationally defined malignant cell area, as expected for FL 

(29-32). Thus, automated computational analysis was effective at identifying malignant and 

non-malignant cells despite the significant heterogeneity of lymphoma tumors. viSNE also 

successfully separated populations of non-malignant B cells and T cells.

Multiple viSNE analyses were performed with and without the combined light-chain 

channel and the malignant cells plotted separately from the tonsillar B cells with both 

strategies. This result suggested that markers other than light-chain restriction distinguish FL 

malignant B cells from healthy B cells. CD79B, the signaling subunit of the B-cell receptor, 

was expressed at higher levels in malignant B cells than in all non-malignant B-cell 

populations. Similarly, malignant B cells typically displayed high per-cell expression of Ig 

light chain and IgM. This high level of BCR protein expression on the lymphoma B cells is 

consistent with a continued dependence on BCR signaling in FL (6). Activation of BCR 

signaling by auto-antigen might be one of the initial driving forces in FL, and several auto-

antigens have been identified (33-35). Furthermore, high BCR expression, potentially 

followed by BCR-induced activation, aligns with the observed skewing of the non-malignant 

B-cell populations and suggests that the malignant B cells outcompete the non-malignant B 

cells that are most dependent on support from the microenvironment for survival and 

selection, such as GC B cells and plasmablasts (36). Together with the survival advantage 

provided by overexpression of anti-apoptotic BCL-2, this may explain the deficit in non-

malignant GC and plasma B cell populations observed here in FL tumors.

FL is traditionally considered to be a germinal center malignancy. FL malignant B cells 

contain evidence of SHM in their immunoglobulin genes (37), and exhibit a GC-like gene 

expression pattern (38,39). However, key signaling receptors differed between GC and 

malignant B cells and the protein expression pattern of malignant B cells was not GC-like. 

Critically, higher per-cell expression of BCR subunits CD79B, light-chain, and heavy-chain 

provided a clear distinction between malignant B cells and GC B cells, which expressed less 
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surface BCR subunit proteins than naïve healthy B cells and malignant B cells. The 

malignant B cells were lower than GC B cells for other markers, including CD20 and CD38, 

as shown previously (7). However, malignant B cells did not phenotypically match naïve B 

cells or any other subset of non-malignant B cells. For example, both malignant B cells and 

healthy tonsillar GC B cells expressed lower levels of CD44 than naïve B cells. Thus, the 

expression profile of signaling receptors on malignant B cells distinguished them from all 

subsets of non-malignant B cells, including GC B cells.

This mass cytometry study extends knowledge of intra- and intertumor heterogeneity that 

has been observed in prior studies of follicular lymphoma cell genetics, phenotypes, and 

functional capabilities. Prior studies of clonal evolution in FL have revealed genetic 

heterogeneity (4,5,40). Single cell analysis of BCR signaling and patterns of protein 

expression with fluorescence flow cytometry revealed a lymphoma negative prognostic 

(LNP) cells that exists at diagnosis in patients with poor overall survival (6). Here, we 

observed similar patterns of CD20 expression as in these prior studies and identified 

additional proteins that are highly variable among lymphoma cells from the same tumor. In 

particular, mass cytometry revealed HLA-DR expression as one of the most variable features 

of FL. Green et al. have previously found CREBBP to be commonly mutated in FL, a 

mutation that is associated with decreased antigen presentation and expression of HLA-DR 

on FL B cells (40). Furthermore, this intratumor as well as intertumor variation in HLA-DR 

is significant as HLA-DR expression has been previously reported in other cancers to be 

associated with a positive response to anti-PD1 checkpoint inhibitor therapy (41).

In conclusion, the use of mass cytometry to obtain deep profiling of cell subsets enabled 

identification of biologically important features, such as tumor heterogeneity and loss of 

non-malignant B-cell subsets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High dimensional phenotyping of lymphoma B cells, non-malignant B cells, and tumor-
infiltrating T cells
A) FL tumor samples and tonsils from healthy donors were studied by mass cytometry. Each 

sample was split in two and analyzed by two antibody panels, one focused on B cells and the 

other on T cells, to identify three main populations of cells in follicular lymphoma (FL) 

tumor samples (malignant B cells, non-malignant B cells, and T cells) as shown in the 

cartoon. CD3+ T cells (bottom left) and CD19+ B cells (bottom right) from tonsils and FL 

samples were analyzed together in a viSNE based on 20 markers from the T-cell panel and 

20 markers from the B-cell panel, respectively. B-C) Malignant B cells were gated in an area 

of the viSNE map where tonsillar B cells were mostly absent (B) and the cells were light-

chain restricted (C). Top row shows all tonsil samples combined, bottom row shows all FL 

samples combined.
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Figure 2. The abundance and phenotypes of tumor infiltrating T-cell subsets are comparable to 
those of healthy tonsillar T cells
A) Expression of measured proteins is shown as a heat plot on t-SNE axes (tSNEs_T cells). 

Markers shown were used to make the expert-gated populations shown in (B). Populations 

are denoted by black lines. B) T-cell populations were gated in viSNE based on markers 

shown in A. C) Distribution of T-cell subsets across samples. Figure shows all healthy donor 

(HD) tonsil samples (D) and all FL samples (E) overlaid with individual cell-density plots 

beneath.
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Figure 3. Disruption of germinal center and plasmablast populations is observed in tumor-
infiltrating non-malignant B cells
Non-malignant B cells, identified in Figure 1, were analyzed in a new viSNE (tSNEs_non-

mal. B). FL samples with 90% or more malignant cells were excluded from the analysis. A) 

Expression of measured proteins is shown as a heat plot on t-SNE axes. B) Markers shown 

in (A) were used to gate established B-cell populations. C) Distribution of B-cell subsets 

across samples. Figure shows all healthy donor (HD) tonsil samples (D) and all FL samples 

(E) overlaid and with color coded individual cell density plots beneath.

Wogsland et al. Page 13

Cytometry B Clin Cytom. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Hierarchical clustering grouped most malignant B-cell populations and revealed 
malignant B cells are more phenotypically similar to naive and memory B cells than to GC B 
cells
A) Dendrogram shows hierarchical clustering of healthy tonsillar B cell subsets and FL 

malignant B cells (as gated in Figure 3 and Figure 1 respectively) based on median marker 

expression. B) Average median marker expression of healthy tonsillar B cell subsets and FL 

malignant B cells. Markers are ordered by FL marker median mass intensity (MMI) from 

top to bottom.
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Figure 5. Intratumor heterogeneity differed between the FL samples and HLA-DR was the most 
variable marker across samples
Malignant B cells, gated in Figure 1, were analyzed in a new viSNE. Individual density plots 

are shown. B) SPADE analysis with 10 nodes were analyzed on the viSNE of T cells (top), 

non-malignant B cells (middle), and malignant B cells (bottom). Figure shows each 

numbered node as a separate color on a viSNE map of aggregated files. C) Histograms 

display number of events in each SPADE node. D) Heat map of median marker expression 

for each SPADE node with more than 100 cells for the FL samples. Below each heat map, 

the variance in each marker between the SPADE nodes are displayed as bar graphs. E) 

Expression of measured proteins is shown as a heat plot on t-SNE axes (malignant B cells 

viSNE) for some of the markers with high variance across several samples. Gates represent 

SPADE nodes.
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