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Abstract

Many RNA-binding proteins have modular structures, being composed of multiple repeats of just a 

few basic domains that are arranged in a variety of ways to satisfy their diverse functional 

requirements. Recent studies have investigated how different modules cooperate in regulating the 

RNA binding specificity and the biological activity of these proteins. They have also investigated 

how multiple modules cooperate with enzymatic domains to regulate the catalytic activity of 

enzymes acting upon RNA. These studies have shown how multiple modules define, for many 

RNA-binding proteins, the fundamental structural unit that is responsible for their biological 

function.

Introduction

RNA is rarely at a loss for companions; as soon as RNA is transcribed, ribonucleoproteins 

(RNPs) form co-transcriptionally on the nascent transcript and participate in processing, 

nuclear export, transport and localization1. The dynamic association of these proteins with 

RNA defines the lifetime, cellular localization, processing and the rate at which a specific 

mRNA is translated.

The diversity of functions of RNA-binding proteins would suggest a correspondingly large 

diversity in the structures that are responsible for RNA recognition. However, most RNA-

binding proteins are built from relatively few RNA-binding modules (Table 1). The large 

structural diversity of substrates is accommodated instead by the presence of multiple copies 

of these RNA-binding domains presented in a variety of structural arrangements to expand 

the functional repertoire of these proteins (Figure 1)2. Modules of the same or different 

structural type combine to create versatile macromolecular binding surfaces to define the 

specificity of these proteins and combine with enzymatic domains to define the enzymes’ 

target and regulate catalytic activity (Figure 2). In order to understand the function of RNA-
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binding proteins, it is therefore important to know how these domains function together as 

RNA recognition units.

In this review, we begin illustrating general themes as to how modularity facilitates function. 

We then briefly summarize the principles of RNA recognition by individual RNA-binding 

domains as a necessary prologue to the subsequent discussion of how specific combinations 

of modules cooperate functionally and structurally. The reader is referred to several excellent 

reviews that discuss the molecular mechanisms used by individual domains to recognize 

specific RNAs in greater detail3–6. The focus of this review is on how RNA-binding modules 

are combined and arranged to facilitate a myriad of different interactions and regulatory 

events.

Modularity facilitates function

Many cellular processes, for example intracellular signaling and the extracellular matrix7–9, 

rely on proteins that are constructed through multiple repeats of a few basic modular units. 

The advantages to constructing a protein with a modular architecture arise from the resulting 

versatility. By existing in multiple copies (Figure 1), these modules endow a protein with the 

ability to bind RNA with increased specificity and affinity than would be possible with 

individual domains, which often bind short RNA stretches with relatively weak affinity. 

Thus, by constructing an interaction surface through multiple modules, high affinity and 

specificity for a particular target can be obtained by combining multiple weak interactions. 

These weak interactions make it easier to regulate formation of these complexes by 

disassembling them when needed. Furthermore, these multiple binding sites have the ability 

to evolve independently. The modular architecture is also ideally suited to construct proteins 

that match in their RNA specificity the relatively poorly conserved sequence features 

observed in splicing and 3′-end processing sites of eukaryotic mRNAs10–12.

The first effect of providing a protein with multiple domains is therefore that the protein 

itself can recognize a much longer stretch of nucleic acids than would be possible with a 

single domain (Figure 2A, left). This modularity also allows proteins to recognize sequences 

that are separated either by an intervening stretch of nucleotides (Figure 2A, centre) or that 

belong to different RNAs (Figure 2A, right).

The specificity of individual domains within a protein is obviously functionally important, 

but so is the way in which domains are arranged relative to each other. This is reflected in 

evolution: higher levels of conservation are often found between domains that occupy the 

same position in orthologous proteins, as opposed to domains within the same protein but in 

different position. For example, in both the splicing factor U2AF65 and in the poly(A) 

binding protein (PABP), RRM1 in yeast is more similar to RRM1 of the human protein 

compared to RRM3 or RRM4 of the yeast protein.

Much of the ability of these proteins to recognize RNA specifically is dependent upon the 

linker between the two domains. Long linkers are generally disordered and allow two 

domains to recognize a diverse set of targets, as seen in the centre and right panels of Figure 

2A, while short linkers predispose the domains to bind to a contiguous stretch of nucleic 
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acids (Figure 2A, left side). When this occurs, the linker domain generally becomes ordered, 

forming a short α-helix in response to RNA binding that positions the two domains relative 

to one another and sometimes contacts RNA directly13–16. In these situations, inter-domain 

sequences are as well conserved as the domains themselves17, or better, because the precise 

positioning of domains facilitates their function.

The modular architecture allows a protein to topologically arrange the generally flexible 

RNA for a particular function (Figure 2B). Conversely, the proteins themselves can be 

topologically organized to interact with a particular RNA structure (Figure 2C), for example 

by utilizing additional domains (yellow oval, Figure 2C) to organize the RNA-binding 

domains.

Finally, the combination of enzymatic and RNA binding domains provide ways to regulate 

catalytic activity. In Figure 2D, we outline a situation where the active site of an enzyme is 

occluded by the presence of an RNA binding domain. In the presence of the substrate RNA, 

the RNA binding domain binds its target, thereby releasing the enzyme from its inactive 

state.

RNA recognition by RNA-binding modules

RRM

The RNA recognition motif (RRM, also known as the RNA binding domain RBD or 

ribonucleoprotein motif RNP), is by far the most common and best characterized of the 

RNA-binding modules. In this review, we will refer to it as RRM, and use the term RNA 

binding domain for any domain that binds to RNA. The RRM is composed of 80–90 amino 

acids that form a four-stranded anti-parallel β-sheet with two helices packed against it, 

giving the domain the split αβ (βαββαβ) topology18 (Figure 3A). More than 9,000 RRMs 

have been identified that function in most, if not all, post-transcriptional gene expression 

processes; in humans, ~0.5–1% of genes contains an RRM, often in multiple copies within 

the same polypeptide19.

In the about 20 structures of RRM–RNA complexes, RNA recognition usually occurs on the 

surface of the β-sheet13–16, 18, 20–28. Binding is mediated in most cases by three conserved 

residues, an Arg/Lys that forms a salt bridge to the phosphodiester backbone, and two 

aromatic residues that make stacking interactions with the nucleobases. These amino acids 

reside in the two highly conserved motives, termed ribonucleoprotein motif 1 and 2 (RNP1 

and RNP2), that define the motif at the sequence level and are located in the two central β-

strands18. This conserved platform allows for recognition of two nucleotides in the center of 

the β-sheet, and two additional nucleotides on either side6. However, a single RRM can 

recognize anywhere from 4 to 8 nucleotides by using exposed loops and additional 

secondary structure elements that are not present in the canonical structure3, 6. This general 

mechanism of recognition is found in many RRMs, but not all22, 28; some of these domains 

even interact with proteins and not RNA29–35. Thus, some individual RRMs can bind to 

RNA with great specificity, but in many cases multiple domains are needed to define 

specificity because the number of nucleotides recognized by an individual RRM is generally 

too small to define a unique binding sequence3.
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KH

The hnRNP K homology domain (KH domain) is a domain that binds to both ssDNA and 

ssRNA36–42 and is ubiquitously found in eukaryotes, eubacteria and archaea43. The domain 

is composed of ~70 amino acids with a signature sequence of (I/L/V)-I-G-X-X-G-X-X-

(I/L/V) near the center of the domain that is functionally very important. Mutations within 

this region of the Fmr1 protein cause Fragile X mental retardation syndrome44. All KH 

domains form a three-stranded β-sheet packed against three α–helices, but can be separated 

in two subfamilies on the basis of their topology45 (type I: βααββα topology; type II: 

αββααβ topology). Four nucleotides are recognized for both classes in a cleft formed by the 

GXXG loop, the flanking helices, the β-strand that follows helix 2 (type I) or 3 (type II), and 

the variable loop between β2 and β3 in (type I) or between α2 and β2 in (type II; Figure 

3B). Quite unlike the RRM, this binding platform is free of aromatic amino acids; 

recognition is achieved instead by hydrogen bonding, electrostatic interactions and shape 

complementarity.

dsRBD

The double-stranded RNA-binding domain (dsRBD) is another small αβ domain of 70–90 

amino acids that is widely found in both bacteria and eukaryotes. However, it interacts with 

double-stranded (ds)RNA without making specific contacts with the nucleobases. The 

protein binds across two successive minor grooves and the intervening major groove on one 

face of the dsRNA helix (Figure 3C)46. Unlike the RRM or KH domains, the majority of 

intermolecular contacts are sequence independent and involve 2′-OH groups and the 

phosphate backbone46. The presence of multiple dsRBDs can impart specificity for certain 

structures because of their ability to recognize certain arrangements of RNA helices49, 51, 52. 

In addition, the specificity of at least some dsRBDs is mediated in part by an N-terminal 

helix that binds to irregular helical elements within A-form RNA such as stem-loops, base 

mismatches and bulges (Figure 3C)47–50.

Zinc Fingers

Zinc fingers are classical DNA-binding proteins that can also bind to RNA53, 54, as 

eloquently demonstrated by several recent structures55–57. They are typically classified 

based on the residues used to coordinate zinc: Cys2His2 (C2H2), CCCH, or CCHC and are 

generally present in multiple repeats within a protein. Thus, TFIIIA (where the motif was 

first identified) contains nine C2H2 zinc fingers: fingers 1–3, 5 and 7–9 interact with DNA, 

while fingers 4–6 interact with 5S RNA58, 59. C2H2 zinc fingers interact with DNA 

primarily by forming direct hydrogen bonds to Watson–Crick base pairs in the major groove, 

using residues within their recognition α-helix60, while TFIIIA binds RNA by making 

specific contacts to two RNA loops through the recognition helices of fingers 4 and 6. Thus, 

zinc fingers can use some of the same residues to recognize both nucleic acids, but the 

different DNA and RNA structures dictate a distinct structural arrangement of the zinc 

fingers on the nucleic acid template.

A second family of RNA-binding zinc fingers contains CCCH motivess61. Remarkably, in 

the structure of Tis11d bound to an AU-rich RNA element (ARE), sequence-specific RNA 

recognition occurs primarily through hydrogen bonding to the protein backbone (Figure 
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3D)57. Thus, the shape of the protein is the primary determinant of specificity by providing a 

rigid hydrogen-bonding template. This mode of recognition is reminiscent a third type of 

zinc fingers with a CCHC-zinc binding motif that is found in the nucleocapsid domain of the 

retroviral Gag proteins and in the HIV-1 nucleocapsid protein62–63.

S1 domain

S1 domains were first identified in ribosomal protein S1 (hence the name), but have since 

been found in other RNA-binding proteins, including several exonucleases64. The domain is 

composed of approximately 70 amino acids arranged in a 5-stranded antiparallel β-barrel 

capped by a short 310 helix65. The fold is similar to the oligonucleotide/oligosaccharide 

binding (OB) fold superfamily, which also contains the related RNA-binding Cold Shock 

Domain66. The S1 domain uses the common OB-fold binding surface to recognize nucleic 

acids through two β-strands surrounded by several loops67. Thus, RNA binding by the S1 

domain is somewhat reminiscent of RNA recognition by the RRM, where a two-stranded β-

sheet core contributes several conserved aromatic residues for stacking interactions with the 

nucleic acid bases, that are augmented by interactions provided by the surrounding loops 

and secondary structure elements65, 68.

PAZ and PIWI domains

RNA processing during RNAi and microRNA biogenesis generate species with unique 

structural and chemical features that must be recognized specifically but in a sequence-

independent manner. These functional requirements are fulfilled by a specialized set of 

domains encountered in proteins involved in processing microRNA (miRNA) and small 

interfering RNA (siRNA) precursors.

The 110-amino-acid PAZ domain contains a β–barrel domain that resembles an OB or S1 

fold juxtaposed to a small αβ domain that forms a clamp-like structure where RNA binds 

(Table 1)69–71. It selectively binds to the 2-nucleotide overhangs and probably serves as an 

anchor to position the miRNA for proper cleavage by Dicer72, 73. PAZ domains in Argonaute 

proteins facilitate cleavage of the target strand by the RISC complex responsible for 

degradation of the RNA targeted for silencing. The additional PIWI domain in Argonaute 

adopts instead an RNase H fold and anchors the unique 5′ end of the guide strand to 

position the target strand for degradation (Table 1)74–78.

Expanding conventional RNA-binding surfaces

The type of RNA that can be recognized by RNA-binding domains is increased not only by 

providing multiple domains within a protein (as discussed in the next section), but also by 

expanding a canonical RNA-binding surface through additional secondary structures or 

loops6, 50. In the reverse situation, a canonical recognition surface can be occluded by 

secondary structure elements, leading to the regulation of the RNA-binding activity. Thus, 

many proteins that are involved in spliceosome assembly have RNA-binding modules that 

differ from their canonical structure. For example, the SF1 protein that binds to the branch-

point sequence has an additional QUA2 domain that defines an enlarged KH domain by 

making extensive hydrophobic interactions with the KH domain itself. By increasing the 
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recognition surface, SF1 is able to bind to the seven single-stranded nucleotides that define 

the branch-point sequence42.

The structures of the first two quasi-RRMs from heterogeneous ribonucleoprotein (hnRNP) 

F demonstrate instead how an RRM can use a different surface for RNA recognition when 

the β-sheet surface is occluded79. This member of the hnRNP family is involved in the 

recognition of G-rich sequences (G-tracts) that are often found at recognition elements 

responsible for 5′ splice site recognition80–82. In the structure of the hnRNP F protein 

bound to the G-tract in Bcl-x pre-mRNA, each domain resembles a canonical RRM despite 

the absence of the RNP1 and RNP2 motifs normally used to bind RNA. Furthermore, the β-

sheet surface is occluded by the presence of a C-terminal α–helix packed against it. Thus, 

the first two qRRMs of hnRNP F recognize RNA through a novel surface composed of a 

small β-hairpin between α2 and β4 and the β1–α1 and β2–β3 loops79. Perhaps the 

requirement for binding through a different surface in this complex stems from the necessity 

to recognize G-quadruplex RNA while at the same time preventing nonspecific binding to 

single stranded RNAs normally recognized by RRM proteins.

An additional α–helix C-terminal to the canonical domain is common in RRMs. The La 

protein C-terminal domain, Cleavage Stimulation Factor 64 (CstF-64) and U1A, all have a 

helix at the C terminus of the domain (Figure 3A)12, 20, 83. Many other domains form such 

an helix when bound to RNA, for example Hrp1, HuD and Polyadenylate Binding 

Protein14, 16, 25. The C-terminal RRM of La does not interact with RNA at all and, in the 

U1A and CstF-64 structures, the helix moves away from the β–sheet to allow RNA 

recognition using the canonical site (Figure 3A), suggesting that these helices perform 

primarily a regulatory role.

Multiple domains specify RNA recognition

Tandem domains

Isolated RNA-binding domains generally have limited ability to interact with RNA in a 

sequence-specific manner because their recognition sequences are too short6. Thus, multiple 

domains (typically two) are tethered together on a single polypeptide to create a much larger 

binding interface that recognizes a longer sequence. Perhaps the most extreme example of 

this concept comes from the Pumilio (Puf) family of proteins. Each domain recognizes a 

single nucleotide on its own, but by combining multiple repeats, the protein can bind with 

high affinity and specificity to as many as eight nucleotides (Table 1, Figure 4A)84. In fact, 

the three amino acids that recognize a particular nucleotide provide a reasonably predictive 

recognition code that can be exploited to engineer proteins that recognize different RNA 

sequences from those specified by the wild-type proteins84,85.

Inter-domain arrangement

Multiple domains associate with each other in a variety of ways to generate extended RNA 

recognition interfaces. The recent structure of Hrp1 (Figure 4B) exemplifies the structural 

principles involved in RNA recognition by two RRMs in tandem. In the free protein, both 

domains function as independent, rigid structures separated by a short flexible linker. Upon 
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binding, both protein and RNA undergo significant changes in structure, with the linker 

forming a short helix and several inter-domain contacts creating a compact surface for 

recognition of adjacent stretches in the RNA16 (Figure 4B). The same is observed in Sxl, 

PABP, nucleolin and HuD proteins13–15, 25.

In contrast, when the zinc finger protein Tis11d binds to AU-rich RNA, there are few inter-

domain interactions. However, a pre-organized linker between the two zinc fingers orients 

the two domains for recognition of an eight-nucleotide RNA by the protein main chain with 

little side chain involvement57 (Figure 3D). In a third example, in the structure of NusA 

bound to RNA, the two KH domains make extensive inter-domain contacts with each other, 

burying 1270Å2 86. This association of the KH domains creates an extended RNA-binding 

surface that allows the two domains to recognize an 11-nucleotide RNA37 (Figure 4C). 

Thus, each of the KH domains of NusA specifically recognizes four nucleotides, as is 

canonical for KH domains; their separation by a three-nucleotide linker that also makes 

interactions with the protein generates the complete recognition sequence37. This binding 

interface is further extended by an S1 domain N-terminal to the first KH domain that makes 

extensive inter-domain contacts and, in doing so, may provide an additional surface for RNA 

recognition.

The zinc-finger domains of TFIIIA provide another example of how linkers between RNA-

recognition domains play a crucial role in substrate recognition. Quite remarkably, the linker 

in this case is a zinc-finger module! In the TFIIIA-5S RNA complex, fingers 4 and 6 interact 

extensively with the RNA, while finger 5 acts as a spacer that makes sequence-independent 

contacts involving the side-chains of its α-helix and the RNA backbone. Effectively, it 

serves as a bridge between loops E and A within 5S RNA, that are directly recognized by 

fingers 4 and 6, respectively56 (Figure 4F).

While the previous examples illustrate the importance of an ordered linker, the presence of a 

long flexible linker can be favored (Figure 2A) because it allows RNA-binding proteins to 

recognize sites that have a variable number of nucleotides between them, that are quite 

separated from each other on the same RNA or on different RNA molecules altogether. In 

these cases, ordering of the linker upon binding RNA is not likely to occur. A good 

illustration of this situation is provided by the two dsRBDs of the RNA-editing enzyme 

ADAR2, where the two domains do not interact and are separated by a flexible linker in the 

free or bound protein49 (Figure 4D). Since ADAR2 is required to edit multiple RNAs, 

interdomain flexibility allows each dsRBD to bind to its preferred site within RNAs of 

varying length and structure.

Yet another example of the potential advantages of connecting domains with flexible linkers 

can be found in complexes where conformational flexibility is required for function. In the 

FBP–FUSE complex, a 30-residue linker separates the KH3 and KH4 domains of FBP, so 

that they can move independently of each other even when the protein is bound to DNA39. 

This property is likely to be functionally important because FBP binds to and modulates the 

helicase activity of the general transcription factor TFIIH. Since this protein might function 

as a torque-generating machine, it is important for FBP to bind to the dynamic TFIIH 

molecule while maintaining its interaction with DNA.
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This theme is observed even in proteins containing RRM domains, a departure from the 

common and canonical arrangement described above for Hrp1 and other proteins13–16, 25. 

The structure of polypyrimidine tract binding (PTB) protein shows that RRMs 3 and 4 are 

connected by a long linker and interact with each other in a way that forces their respective 

RNA-binding surfaces to face in opposite direction28. This orientation is essentially the 

opposite of what is observed in many di-domain proteins, yet may be functionally critical in 

splicing regulation by causing the exon or branch-point sequence to loop out, preventing 

binding of spliceosomal components and repressing splicing (Figure 4E).

The linker length is important

The considerations of the previous paragraph indicate that one of the major determinants for 

the affinity and specificity of RNA-binding proteins containing multiple domains resides 

within the amino acids linking the domains. The length and rigidity of the linker can have 

dramatic effects on RNA affinity87 and may influence whether a protein binds a single RNA 

or multiple RNAs (Figure 2A, right). Using the assumption that the free energy of binding 

individual domains is additive, we would expect the affinity of a protein with multiple RNA 

binding domains to be the product of the affinity of the individual domains. However, 

because the linker remains flexible in hnRNP A1, the affinity of the two-domain protein is 

1000-fold less than the product of the affinities of the individual domains88. When the first 

RNA binding domain is bound, the second RNA binding domain sweeps a volume 

proportional to the length of the linker. Within this sphere, the effective concentration of the 

second domain is different than in the free solution, leading to altered affinity. A simple 

model was developed to calculate how the length of the linker affects affinity; using this 

model, long linkers (more than 50–60 residues) are predicted to have a negligible impact on 

affinity, because the two domains act independently of each other. As the linker gets shorter, 

the affinity for RNA increases between 10- and 1000-fold, when compared to the affinity of 

individual RRMs added together87.

This simple model assumes that the linker does not contact the RNA, but in many cases the 

linker becomes ordered upon binding RNA. In the example of nucleolin, the model would 

have predicted a 100-fold increase in affinity compared to that of the two individual 

nucleolin RRMs, but an increase of between 1000- and 100,000-fold was observed 

depending on the RNA sequence tested89. Part of the increase in affinity was attributable to 

the ordering of the linker into an α-helix to effectively shorten its length by half. When the 

prediction was repeated with this correction, predicted and measured affinities agreed to 

within 10 fold for some RNAs. However, because of direct interactions between the linker 

and target RNAs, even this calculation could not account for the 1000-fold difference 

between predicted and observed affinities for other RNAs 89.

Protein-protein interactions and RNA recognition

Homo- and hetero-dimerization of RNA-binding proteins

In addition to expanding the ways in which RNA can be recognized, multiple modules also 

allow RNA-binding proteins to interact simultaneously with other proteins and with RNA. 

The simplest example of this is dimerization. Two proteins involved in the viral response to 
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RNA silencing provide exquisite examples of how dimerization allows specific interactions 

to be established that would not be possible in the isolated proteins.

The p19 protein is required for tombusvirus virulence in plants, and can also provide this 

activity when expressed in both Drosophila and human cells90, 91. It functions by 

specifically binding to siRNAs and preventing its loading into the RISC complex92. Two 

structures of p19 proteins bound to 21-nucleotides siRNA demonstrate that the protein 

adopts an αβ topology and binds RNA as a homodimer. The RNA binding surface is formed 

by a continuous 8-stranded β-sheet formed by the two monomers. Each monomer measures 

the length of the siRNA by providing a Trp that forms stacking interactions with the bases at 

the 5′ and 3′ end of the siRNA; the position of the Trp is defined by the structure of the 

homodimer. Thus, dimerization of p19 allows this protein to measure the length of the 

siRNA with great precision by positioning the two critical Trp side chains92, 93.

Another potent viral suppressor of RNAi is the Flock House Virus B2 protein. Its structure is 

composed of three α-helices that dimerize to create a four-helix bundle that recognizes RNA 

along one face of an A-form helix94, 95. Structural and biochemical evidence demonstrated 

that this protein suppresses silencing in two ways: by binding to siRNAs and preventing 

loading into RISC, and by coating longer dsRNA precursors and protecting them from 

cleavage by Dicer. For both p19 and Flock House Virus B2, the conserved features of the 

siRNAs (their size and double helical character)92–95 are recognized because dimerization 

generates extended binding sites out of small protein domains and because it establishes the 

relative position of amino acids involved in RNA recognition.

These two examples illustrate the role of dimerization in RNA recognition, but there are 

other examples of RNA binding domains that function by dimerization or by forming 

protein-protein interactions. In the structure of the N-terminal RRM of U1A bound an RNA 

regulatory element within its own 3′-untranslated region (UTR), two separate RRMs interact 

through their C-terminal helices to form a homodimer after binding to the RNA. This 

cooperative binding event can only occur in the presence of RNA because the C-terminal 

helix is associated with the β-sheet surface of the RRM in the free protein. Interestingly, this 

dimerization also creates an interface that inhibits polyadenylation by direct interaction with 

poly(A) polymerase24. In the Nova-1 KH3 domain, changes in the rigidity of the protein are 

observed upon dimerization, and this stiffening of the entire protein may aid in nucleic acid 

recognition by reducing the entropic cost of binding to RNA. Furthermore, dimerization 

presents two recognition sites for RNA binding and thus can provide a cooperative 

interaction that strengthens the affinity of the protein for the RNA96.

The formation heterodimers through interactions between an RNA binding domain and 

another protein can increase the specificity of RNA interaction. For example, the binding of 

the spliceosomal U2B″ RRM to a stem-loop within U2 snRNA requires an interaction with 

the U2A′ protein23. In a different example, the CBP80 subunit of the cap-binding complex 

must interact with the RRM of CBP20 if this RRM is to bind with high affinity to the 7-

methylguanosine cap of mRNA22, 97. The recent structures of the archaeal and eukaryotic 

exosomes have revealed extensive protein-protein interactions between proteins containing 

both KH and S1 domains with the core of the protein complex98, 99. These interactions may 
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position the S1 domains of specific exosome subunits to recognize the RNAs targeted for 

exosomal degradation.

Protein-protein interactions define RNA specificity

RNA-binding domains from different proteins can cooperate to recognize an RNA through a 

combination of weak protein-RNA and protein-protein interactions. The recent dissection of 

a complex derived from the spliceosome demonstrates this principle and illustrates how even 

relatively small sequence and structural alterations in RNA-binding domains can modulate 

their RNA recognition properties indirectly by altering protein-protein interactions (Figure 

5).

During initial steps in spliceosome assembly, the splicing factor 1 (SF1) and U2 auxiliary 

factor (U2AF) proteins cooperatively bind to sequences at the 3′ splice site and upstream of 

it (Figure 5A). Recognition of RNA cis-acting elements by the two U2AF subunits, U2AF65 

and U2AF35, commits the pre-mRNA to the splicing reaction. Specifically, U2AF65 

recognizes the polypyrimidine tract within the pre-mRNA primarily through its two central 

canonical RRMs(Figure 5A, D); this interaction is strengthened by the interaction between a 

third non-canonical RRM in this protein and SF1 protein (Figure 5A, C), which is instead 

bound at the branch-point sequence through a KH domain (Figure 5A, B). Additional 

cooperativity in the assembly of this complex is provided by protein–protein interactions 

between a non-canonical RRM in U2AF35 (Figure 5A, E), bound at the 3′ splice site, and 

the N terminus of U2AF65.

Protein-protein interaction surfaces

As described in the previous paragraph, RRM domains can form protein-protein as well as 

protein-RNA interactions. The protein-protein interactions occur via non-canonical RRM 

domains within both U2AF65 and U2AF35 that have a much longer α1 helix compared to 

other RRMs; this helix is the primary mediator of the protein–protein interactions observed 

in this complex33, 35 (Figure 5C, E). Closer inspection of these U2AF structures reveals a 

few common themes that may indicate whether an RRM binds to protein or to RNA: poor 

conservation of the RNP motifs, an Arg-X-Phe motif in the last loop of the RRM, and 

conserved acidic residues in the α1 helix100. These features define a novel functional class, 

the U2AF-homology motifs (UHMs), that are capable of forming protein–protein 

interactions.

The UHM class does not exhaust all possible ways in which two RRMs can interact. The 

interactions of other RRMs with proteins (for example the Y14-Magoh structure from the 

exon-junction complex and the Upf2–Upf3 RNA surveillance complexes29, 31, 32, 34, 101, 102) 

occur on the surface of the β-sheet through residues that are involved in RNA binding in 

other RRMs. Until more structures of such protein-protein complexes become available, the 

sequence and structural features in such RRMs that allow them to bind to other proteins 

rather than RNA will remain unclear.

RNA-binding domains other than the RRM have the ability to participate in protein-protein 

interactions. As previously described, a number of the KH domains can dimerize, and 

dsRBD domains form protein-protein interactions that regulate the assembly of complexes 
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involved in RNA localization and the catalytic activity of enzymes acting upon double-

stranded RNA. One dsRBD example is illustrated by Staufen, a protein involved in RNA 

localization in early development and in neurons. Staufen proteins contain up to 5 dsRBDs; 

some domains are capable of binding dsRNA48, while other domains bind other proteins 

during embryogenesis103. Remarkably, surface-exposed amino acids involved in RNA 

recognition are conserved among Staufen dsRBDs that bind to dsRNA, but not in protein-

binding dsRBDs. For these domains it is the surface opposite to dsRNA in the canonical 

dsRBD-dsRNA structure that is conserved instead48. Thus, the ability of these proteins to 

bind to other proteins can be as important functionally as its RNA-binding activity.

Catalytic domains acting upon RNA

Positioning catalytic domains onto their substrate

Modularity allows RNA-binding domains to target a substrate, and to promote or repress the 

enzymatic activity of catalytic domains within the same polypeptide (Figure 2D). The way 

in which RNA-binding and enzymatic modules are positioned within a protein can define 

how a particular protein recognizes RNA. However, the enzymatic activity can also be 

enhanced or repressed through mutually exclusive or cooperative interactions between RNA-

binding domains, catalytic domains and RNA.

An elegant example of how domain positioning facilitates enzymatic function comes from 

the RNAi pathway. In the first step of the cascade leading to gene silencing, Drosha and 

Pasha process primary miRNAs to stem-loops of ~70 nucleotides; Dicer subsequently binds 

to these miRNA precursors by recognizing two 3′-terminal nucleotides overhangs generated 

by Drosha104. A minimal Dicer structure from Giardia (lacking the N-terminal helicase and 

the C-terminal dsRBD, Figure 1) demonstrates that Dicer likely functions as a molecular 

ruler that positions the catalytic RNase III domains ~25 nucleotides from where the 3′ 
overhanging nucleotides are recognized by its PAZ domain72, the approximate length of 

siRNAs.

Another particularly beautiful example of this principle is found in the recent structure of a 

complete archaeal Box H/ACA small nucleolar RNP (snoRNP)105. These particles are 

responsible for the catalytic conversion of uracil to pseudouridine in ribosomal and other 

RNAs106. In this structure, the site of pseudouridylation is juxtaposed to the catalytic center 

of the protein enzyme Cbf5/dyskerin by two protein clamps at either end of the RNA. The 

3′-terminal ‘clamp’ (the ACA sequence motif that defines this class of non-coding RNAs) is 

recognized by the PUA domain of Cbf5, while the second clamp (the apical loop of the non 

coding RNA) is recognized by a complex of Cbf5 with two other protein components of the 

particle.

Activating and repressing enzymes acting on dsRNA

The dsRNA-dependent protein kinase PKR (Figure 6A) and the RNA-editing enzyme 

ADAR2 (Figure 6B) provide examples of how RNA-binding domains can modulate 

enzymatic activity by interacting with both the substrate RNA and with the catalytic domain 

(Figure 2D). PKR is an interferon-induced kinase that plays a key role in controlling viral 
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infections and maintaining cellular homeostasis by becoming activated in response to 

double-stranded viral RNAs. In the active form, it phosphorylates the α subunit of 

eukaryotic initiation factor 2 (eIF-2), thereby inhibiting translation and suppressing viral 

spread107. ADARs act on dsRNA to catalyze the conversion of adenosine to inosine, which 

is then recognized as guanosine, affecting both the primary sequence and the structure of the 

edited RNA108.

Both proteins have two N-terminal dsRBDs that bind to dsRNA; in each case, the dsRBDs 

function both as an RNA-recognition unit and as an auto-inhibitor of the catalytic 

domain109, 110. In PKR, the second dsRBD masks the kinase domain by binding to it 

directly, thereby maintaining its inactive state (Figure 6A)109, 111, 112. In ADAR2, the 

proposed inhibitory element is the first dsRBD110 (Figure 6B). In both proteins, however, 

RNA binding causes enzyme activation by relieving the auto-inhibition caused by the 

interactions between the RNA-binding and catalytic domains (Figure 6A, B). Since both 

ADAR and PKR require RNA of sufficient length for activation, the two dsRBDs may be 

necessary for fully de-repressing the catalytic activity110. In PKR, the presence of a 

sufficiently long dsRNA (for example, viral RNAs such as HIV TAR) allows both dsRBDs 

to cooperatively bind to RNA113, 114, relieving the structural block and allowing the kinase 

domain to be activated through autophosphorylation and dimerization115–117. The initial 

event in this cascade is likely to be binding of the first dsRBD to dsRNA, because this 

domain has much higher affinity for RNA compared to the second domain114. Only in the 

presence of a sufficiently long dsRNA can the second dsRBD bind as well, thereby releasing 

the kinase from its inactive state.

Conclusions

Many RNA-binding proteins are composed of relatively few modules of conserved structure 

but often limited sequence specificity. By combining these motifs in a variety of structural 

arrangements, evolution has generated proteins that are capable of recognizing RNA with 

the affinity and selectivity required to find cognate RNAs in the cellular medium, while at 

the same time retaining the versatility required to regulate, assemble and disassemble RNA-

processing complexes. Structural biology has provided the molecular details concerning how 

individual domains recognize RNA, but many of these proteins require multiple copies of 

one of several common domains to function (Figure 1). It is therefore important to 

understand how multiple modules bind RNA, and how the modular nature of these proteins 

specifies their biological function. We have described here some of the structural principles 

of how multiple domains recognize an RNA(Figure 2), but there are still relatively few 

structures of proteins containing multiple RNA binding domains. Recent studies have also 

led to the observation that RNA binding modules can regulate the biological activity of 

enzymes acting upon RNAs in ways that go beyond the identification of the target RNA, but 

full understanding of these regulatory mechanisms will require detailed structural 

characterization that is not yet available. We expect that future structural analysis will 

expand upon the diverse ways in which combinations of RNA binding domains augment 

protein function.
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Glossary Terms

Ribonucleoprotein (RNP)
Complexes that contain both proteins and RNA. The ribonucleoprotein motif refers to the 

two conserved sequence elements found within the RNA Recognition Motif (within its two 

central β-strands) that participate in RNA recognition and identify the RRM domain at the 

sequence level.

Zinc finger
A class of DNA- and RNA-binding proteins characterized by a Cys- and His-rich domain 

that chelate a Zinc ion. Different classes of zinc-finger proteins contain different 

combination of metal binding amino acids; thus, C2H2 zinc finger contain two Cys and two 

His residues, while CCCH and CCHC zinc-binding motifs contain three Cys and a single 

His in a different topological arrangement.

AU-rich element (ARE)
Sequences rich in A and U nucleotides found in the 3′-untranslated regions of mRNAs that 

promote stability or degradation of their associated RNAs, thus providing a mechanism for 

the control of gene expression.

RISC complex
A protein complex responsible for degradation of RNA species targeted by small interfering 

RNAs. Argonaute protein is the catalytic component of RISC.

Exon junction complex
This is a multi-subunit protein complex that is deposited on the mRNA during the splicing 

reaction near the splice site. It remains bound to the RNA during subsequent gene expression 

events, and serves as a platform to recruit nuclear and cytoplasmic factors that influence 

mRNA localization, transport, stability and translation.

Orthology
Orthologous proteins are direct evolutionary counterparts that retain the same function in 

different organisms and that have arisen due to speciation events but not through the process 

of gene duplication (paralogy).
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Figure 1. Many RNA-binding proteins have a modular structure
Representative examples from some of the most common RNA-binding protein families, as 

illustrated here, demonstrate the variability in the number of copies (as many as 14 in 

vigilin) and arrangements that exist in RNA-binding proteins. This variability has direct 

functional implications. For example, Dicer and RNase III both contain an endonuclease 

catalytic domain followed by an RNA-binding dsRBD; thus, both proteins recognize double-

stranded RNA, but Dicer has evolved to interact specifically with RNA species produced 

through the RNA interference pathway through additional domains that recognize the unique 

structural features of these RNAs. Different domains are schematically represented in 

colored boxes, including the RRM (RNA Recognition Motif; green), by far the most 

common RNA-binding protein module; the KH (K-Homology) domain, blue, capable of 

binding both single stranded RNA and DNA; the dsRBD (double-stranded RNA-binding 

domain), a sequence-independent dsRNA binding module (red); RNA-binding zinc finger 

domains (light blue or pink). Enzymatic domains and less common functional modules are 

indicated in a variety of colors.
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Figure 2. RNA-binding modules are combined to perform multiple functional roles
RNA-binding domains function in a variety of ways. (a) They recognize RNA sequences 

with a specificity and affinity that would not be possible through a single domain or if 

multiple domains did not cooperate. Multiple domains combine to recognize a longer RNA 

sequence (left), sequences separated by many nucleotides (centre), or RNAs belonging to 

different molecules altogether (right). (b) RNA-binding domains can organize mRNAs 

topologically by interacting simultaneously with multiple RNA sequences or (c) they can 

function as spacers to properly position other modules for recognition. (d) They can 

combine with enzymatic domains to define the substrate specificity for catalysis or regulate 

enzymatic activity. In this figure, the RNA-binding modules are represented as ellipses with 

their RNA-binding surfaces colored in light blue, with the corresponding binding sites 

within the RNA colored in red; individual domains are colored differently.
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Figure 3. How RNA-binding modules recognize RNA
a) Structure of the N-terminal RNA-recognition motif (RRM) of human U1A bound to 

RNA18; in this structure, and in many other RRM-RNA complexes, single stranded bases are 

specifically recognized through the protein β-sheet and two loops connecting the secondary 

structure elements. b) The hnRNP K homology 3 (KH3) domain of Nova-2 bound to 5′-

AUCAC-3′41; these domains bind to both single-stranded DNA and RNA through a 

conserved GXXG sequence located in an exposed loop (light blue). c) The Rnt1 double-

stranded RNA-binding domain (dsRBD) bound to a RNA helix capped by an AGNN 

tetraloop50; a conserved protein loop (left-most part of the structure) interacts with 2′-OH 

groups in the RNA minor groove while highly conserved Lys and Arg residues at the end of 

the longer helix recognize the position of phosphate atoms characteristic of an A-form helix. 

d) The two zinc fingers of Tis11d bound to an AU-rich RNA element57; the identity of the 

single stranded RNA is recognized by the protein backbone through hydrogen bonds with 

the Watson-Crick face of each base. In all panels, the RNA backbone is represented with an 

orange ribbon, α-helices are in red and β-sheets in yellow; the Zn atom in the Tis11d 

structure is in magenta.
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Figure 4. RNA-binding modules function together or alone to recognize a specific RNA
a) The structure of human Pumilio provides an example of how multiple repeats (eight in 

this case) that individually recognize a few nucleotides (one in this case) combine to 

specifically recognize a much longer RNA sequence. Repeats are alternatively colored in 

magenta and blue; the RNA is colored similarly in all other structures with the backbone 

shown as an orange tube. b) In the structures of the two RNA recognition motifs (RRMs) 

from Hrp116 and c) the two K-homology (KH) domains of NusA37, a short linker (in gray) 

allows the two domains to position themselves with respect to one another upon binding 

RNA; for Hrp1, the first RRM is in yellow and the second in red; for NusA, the first KH 

domain is cyan and the second is purple. d) Flexibility within the linker between two double-

stranded RNA-binding domains (dsRBDs) allow recognition of separated binding sites. The 

two dsRBDs of ADAR2 are connected by a flexible linker (dashed gray line) that may allow 

the protein to interact with a variety of targets of different structure49. e) The RNA-

recognition motifs RRM3 (yellow) and RRM4 (red) of PTB form interdomain interactions 

involving the face of the protein opposite to the β-sheet involved in RNA recognition. This 

interaction positions the two domains in such away that interacting RNA sequences are 

looped away from each other, as indicated by the orange dotted line connecting the two 

RNAs28. f) The structure of the TFIIIA-RNA complex illustrates how zinc finger ZF5 (blue) 

functions as a spacer that properly positions zinc fingers 4 (teal) and 6 (tan) for recognition 

of loops E and A, respectively, within 5S rRNA55.
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Figure 5. Protein-protein interactions and protein-RNA interactions define the site of 
spliceosomal assembly
Proper definition of the splicing site requires a number of cooperative binding events that are 

mediated by both protein-protein and protein-RNA contacts between various RNA binding 

modules. a) Schematic of the interactions between various proteins and RNA at the splicing 

site. Some of the key domains involved in these interactions whose structures are shown 

below are labeled. Within the RNA the branch-point sequence (BPS), pyrimidine tract (Py-

tract), and the 3′ splice site (3′ ss) are labeled with the intron colored gray and the exon 

colored dark blue. b) SF1 recognizes the BPS through its KH-QUA2 domains. The 

additional QUA2 domain creates an extended KH domain that can recognize the full BPS 

sequence RNA42. c) This interaction is strengthened by protein-protein interactions between 

it’s N-terminus and the non-canonical RRM3 of U2AF6535, d) which is bound to the 

pyrmidine tract through it’s first two canonical RRMs10. Finally, the U2AF65 interaction is 

also aided by protein-protein interactions between it’s N-terminus and the non-canonical 

RRM of U2AF35 bound at the 3′ splice site33. All of the protein and peptide structures are 

colored as shown in the schematic (a).
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Figure 6. Modular architecture allows for regulation of the catalytic activity of enzymatic 
domains
In both PKR and ADAR proteins, inter-domain interactions between the RNA-binding 

module and the catalytic domain maintain the proteins in an inactive state. a) The kinase 

domain of PKR is inhibited by an interaction with the double-stranded RNA-binding domain 

(dsRBD2). Binding to dsRNA releases the kinase from its inactive state allowing it to inhibit 

translation by phosphorylating eIF2α. b) The activity of ADAR2 is controlled by a 

mechanism similar to PKR, but in this case dsRBD1 is involved in the inactivation of the 

catalytic domain. When double-stranded RNA (dsRNA) binds to both dsRBDs, the protein 

dimerizes and the catalytic domain becomes exposed to convert adenosine to inosine.
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Table 1

Common RNA binding domains and general features of their RNA binding sites and RNA recognition 

properties.

Topology RNA Recognition Surface Protein-RNA interactions Representative Structures (PDB ID)

RRM αβ Surface of β–sheet Interacts with 4 nucleotides of 
ssRNA through stacking, 
electrostatics and hydrogen 
bonding

U1A N-terminal RRM18(1URN)

KH (Type I 
and Type 
II)

αβ Hydrophobic cleft formed by 
variable loop between β2 and 
β3 and GXXG loop; Type II: 
Same as type I, except 
variable loop is between α2 
and β2

Recognizes 4 nucleotides of 
ssRNA through hydrophobic 
interactions between non-
aromatic residues and the 
bases; sugar-phosphate 
backbone contacts from 
GXXG loop, and hydrogen 
bonding to bases

Nova-1 KH3 (Type I)41 (1EC6)
NusA (Type II)37(2ASB)

dsRBD αβ α-helix 1, N-terminal portion 
of α-helix 2, and loop 
between β1–β2

Shape specific recognition of 
dsRNA’s minor-major-minor 
groove pattern through 
contacts to sugar-phosphate 
backbone; specific contacts 
from N-terminal α-helix to 
RNA in some proteins

dsRBD3 from Staufen48(1EKZ)

ZnF-C2H2 αβ Primarily residues in α-
helices

Protein side chain contacts to 
bulged bases in loops and 
through electrostatic 
interactions between side 
chains and RNA backbone

Fingers 4–6 of TFIIIA56(1UN6)

ZnF-CCCH Little 
regular 

secondary 
structure

Aromatic side chains form 
hydrophobic binding pockets 
for bases that make direct H-
bonds to protein backbone

Stacking interactions between 
aromatic residues and bases 
create kink in RNA that 
allows for direct recognition 
of Watson-Crick edges of the 
bases by the protein backbone

Fingers 1 and 2 of Tis11d57 (1RGO)

S1 β Core formed by two β-
strands with contributions 
from surrounding loops

Stacking interactions between 
base and aromatic residues 
and hydrogen bonding to the 
bases

Ribonuclease II118(2IX1), Exosome99(2NN6)

PAZ αβ Hydrophobic pocket formed 
by OB-like β-barrel and 
small αβ motif

Recognizes single-stranded 3′ 
overhangs of siRNA through 
stacking interactions and 
hydrogen bonds

PAZ73(1SI3), Argonaute76 (1U04), 
Dicer72(2FFL)

PIWI αβ Highly conserved pocket 
including a metal ion that is 
bound to the exposed C-
terminal carboxylate

Recognizes the defining 5′ 
phosphate group in siRNA 
guide strand with highly 
conserved binding pocket that 
includes a metal ion

AfPIWI75(1YTU), Argonaute (1U04)

TRAP β Edges of β-sheets between 
each of the 11 subunits that 
form the entire protein 
structure

Recognizes GAG triplet 
through stacking interactions 
and hydrogen bonding to 
bases; limited contacts to the 
backbone

TRAP119 (1C9S)

Pumilio α Two repeats combine to form 
binding pocket for individual 
bases; helix α2 provides 
specificity-determining 
residues

Binding pockets for bases 
provided by stacking 
interactions; specificity 
dictated by hydrogen-bonds to 
Watson-Crick face of base by 
two amino acids in helix α2

Pumilio84(1M8Y)

SAM α Hydrophobic cavity between 
three helices surrounded by 
an electropositive region

Shape-dependent recognition 
of RNA stem-loop, mainly 
through interactions with 

Vts1p120(2ESE)
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Topology RNA Recognition Surface Protein-RNA interactions Representative Structures (PDB ID)

sugar-phosphate backbone 
and a single base in loop.
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