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Summary. Cancer survival comparisons between cohorts are often assessed by estimates of relative or net survival. These
measure the difference in mortality between those diagnosed with the disease and the general population. For such comparisons
methods are needed to standardize cohort structure (including age at diagnosis) and all-cause mortality rates in the general
population. Standardized non-parametric relative survival measures are evaluated by determining how well they (i) ensure the
correct rank ordering, (ii) allow for differences in covariate distributions, and (iii) possess robustness and maximal estimation
precision. Two relative survival families that subsume the Ederer-I, Ederer-II, and Pohar-Perme statistics are assessed. The
aforementioned statistics do not meet our criteria, and are not invariant under a change of covariate distribution. Existing
methods for standardization of these statistics are either not invariant to changes in the general population mortality or are
not robust. Standardized statistics and estimators are developed to address the deficiencies. They use a reference distribution
for covariates such as age, and a reference population mortality survival distribution that is recommended to approach zero
with increasing age as fast as the cohort with the worst life expectancy. Estimators are compared using a breast-cancer survival
example and computer simulation. The proposals are invariant and robust, and out-perform current methods to standardize
the Ederer-II and Pohar-Perme estimators in simulations, particularly for extended follow-up.
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1. Introduction

When cause of death is unavailable or unreliable it is not
possible to directly estimate disease-specific survival. For this
reason, disease-specific survival is sometimes assessed by a
measure of the relative survival between a group diagnosed
with disease and the wider population. The main use of rela-
tive survival analysis is to compare survival between cohorts,
such as from different countries or over periods in time. A
complication is that cohort structures can differ. For example,
relative survival in cancer is often lower for older patients than
younger patients, and different countries may have different
distributions of age-at-diagnosis. In this article, we compare
the use of relative survival measures for making such com-
parisons by defining general criteria based on the following
setup.

Let S be a survival function and � the corresponding cumu-
lative hazard, with superscript C denoting a cohort of interest
(often patients diagnosed with cancer), and P the general pop-
ulation from which the cohort was derived. We assume that
survival may depend on covariates x, including in particular
age and gender. Then

�e(t | x) = �C(t | x) − �P(t | x)

is defined to be the conditional excess cumulative hazard at
time t, although �e need not be monotone or even positive.
Typically t is time from diagnosis and �P(t | x) = �P

b (a + t |

x), where �P
b is the cumulative hazard from birth and a is the

age at diagnosis. Corresponding to �e

Se(t | x) = SC(t | x)/SP(t | x)

is the conditional relative survival (which may not be a sur-
vival function).

The initial estimators developed by Ederer and co-workers
focused on the relative survival EH {SC(t | X)}/EH {SP(t | X)},
where H is the marginal distribution of X, and EH denotes
expectations with respect to H (Ederer and Heise, 1959;
Ederer et al., 1961). Estève et al. (1990) suggested that when
Se depends on x, the target of estimation should instead be
the marginal net survival

Snet(t) = EH {Se(t | X)}

=
∫

Se(t | x)dH(x). (1)

When the relative survival is homogeneous, i.e., Se(t | x) =
Se(t), then the Ederer estimators are consistent for the
marginal net survival. However, Estève et al. (1990) pointed
out that when the relative survival is heterogeneous the limit
of the classical estimators depends on the survival in the
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general population P , and so they are not universal. They
suggested modeling the excess hazard parametrically. Sasieni
(1996) showed how it could be modeled semi-parametrically,
but it was not until Perme et al. (2012) that a non-parametric
estimator of the net survival corresponding to the marginal
excess hazard was developed. Unlike the classical methods,
the Pohar-Perme estimator is consistent for the net survival
(1) in the heterogeneous setting and, consequently, Roche
et al. (2013) suggested that all classical methods should be
abandoned. Lambert et al. (2015) noted a trade-off between
consistency of the new estimator and its precision.

We are not convinced that the mean of the relative con-
ditional survival is the only statistic of interest for the
comparison of survival between countries, periods in time
or types of disease. Indeed, it is clear that the net survival
depends on the covariate distribution, and two populations
with different such distributions may have different marginal
net survivals, even when the conditional net survival func-
tions are identical. We next take a step back from focus on
the net survival, by considering what features one would like
a covariate-free descriptor of the relative survival to hold.

2. Criteria

Consider a functional R of two conditional survival functions
and a covariate distribution that is a function of time t only
(i.e., R is not a function of covariates x), which describes the
ratio of survival functions. For example, R might be the net
survival:

R(SC, SP, H)(t) = EH {SC(t | X)/SP(t | X)},

or it could be the relative survival:

R(SC, SP, H)(t) = EH {SC(t | X)}/EH {SP(t | X)}.

If the purpose is to recreate the ratio of survival functions
when they are independent of covariates then this should be
a requirement: R(SC, SP, H)(t) = SC(t)/SP(t) whenever SC(t |
x) = SC(t) and SP(t | x) = SP(t) for all x. More generally, we
might require this to hold provided only that the ratio of
survival functions Se (or equivalently the excess cumulative
hazard �e) is independent of covariates. This is our first
requirement:

A1 R(SC, SP, H)(t) = Se(t) whenever SC(t | x)/SP(t | x) =
Se(t).

Se may be independent of covariates in real data. For exam-
ple, relative survival from advanced breast cancer in Section 6
appears to be approximately independent of age at diagnosis
until t = 10 years. When the ratio is not independent of covari-
ates (A1 is vacuous, but) we would still like the statistic to
reflect the ordering of the ratio.

A2a If for some T , SC(t | x)/SP(t | x) ≤ SC∗
(t | x)/SP∗

(t | x)
for all x and t ≤ T , then
R(SC, SP, H)(t) ≤ R(SC∗

, SP∗
, H)(t) for all t ≤ T .

A2b If for some T , SC(t | x)/SP(t | x) = SC∗
(t | x)/SP∗

(t | x)
for all x and t ≤ T , then
R(SC, SP, H)(t) = R(SC∗

, SP∗
, H)(t) for all t ≤ T .

A2c If for some T , SC(t | x)/SP(t | x) < SC∗
(t | x)/SP∗

(t | x)
for all x and t ≤ T , then
R(SC, SP, H)(t) < R(SC∗

, SP∗
, H)(t) for all t ≤ T .

Condition A2b is key for comparing relative survival between
cohorts. It ensures that R does not depend on SP other than
through Se. Ideally, we would like R to depend on SC and SP

only through their ratio even if the covariate distribution is
different. This leads to our third requirement that the statistic
is independent of the covariate distribution

A3 R(SC, SP, H)(t) = R(SC, SP, H∗)(t).

When both A3 and A2b are satisfied, if SC(t | x)/SP(t | x) =
SC∗

(t | x)/SP∗
(t | x) for all x, then R(SC, SP, H)(t) = R(SC∗

,

SP∗
, H∗)(t). One reason for considering different statistics

other than the net survival (1) is that the net survival does
not satisfy A3.

Conditions A1 and A2 might be considered essential for a
descriptive measure of relative survival, whereas A3 is neces-
sary only for comparing relative survival between cohorts with
different covariate distributions. By analogy, the crude rate is
useful for describing a single cohort, but the age-standardized
rate is more useful when comparing two cohorts.

If a measure meets criteria A1–A3 then we might ask what
additional properties would be desirable. We consider the fol-
lowing.

A4 Robustness. Small changes in SC for a fixed SP and H do
not cause large changes in R.

A5 Precision. We prefer measures with smaller var(R̂)R−2,
where R̂ is an efficient estimator of R.

3. Some Relative Survival Families and
Estimators

The observable data for individuals i = 1, . . . , n are (Ti, Xi),
where Ti is the time of death and Xi the covariate value; P(Ti >

t | xi) = SC(t | xi), X ∼ H ; SP
i (·) is assumed known. If (ŜC, Ĥ)

denote empirical versions of (SC, H) (putting mass 1/n at each
point (Ti, Xi)), then corresponding to a measure R(SC, SP, H)
we may have an estimator R(ŜC, SP , Ĥ). To allow for right cen-
soring we follow Andersen et al. (1996) and use notation Yi(t)
for the at-risk process (Yi(t) = I(Ti ≥ t) in the absence of cen-
soring, where I(·) is the indicator function); and the counting

process Ni(t) = ∫ t

0
dNi(u) where dNi(t) = Yi(t)I(Ti = t).

Now, under independent censoring, consider a family of
estimators of the cumulative excess hazard

Âw(t) =
∫ t

0

∑n

i=1
wi(u)Yi(u){dNi(u) − d�P

i (u)}∑n

i=1
wi(u)Yi(u)

, (2)

where �P
i is the cumulative hazard for an individual with

covariate xi in the general population, and wi(t) is a cho-
sen weight given to the ith individual at time t, that may
depend on xi. Setting wi(t) = 1 for all i = 1, . . . , n and t > 0
yields the Ederer-II estimator of the cumulative excess hazard
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(Â1) (Ederer and Heise, 1959), and setting wi(t) = {SP
i (t)}−1

provides the Pohar-Perme estimator (Â1/SP ) (Perme et al.,
2012). They may be put onto a survival scale through the
usual transformation exp{−Âw(t)}. Since Y(u | X)dN(u | X) =
dN(u | X), E{N(u | X) | X} = 1 − SC(u | X) and E{Y(u | X)} =
SC(u | X), we may write

Âw(t) =
∫ t

0

EĤ [w(u, X){dŜC(u | X) − ŜC(u | X)d�P(u | X)}]
EĤ {w(u, X)ŜC(u | X)} .

It follows that if the Xi are independent and identically dis-
tributed then Âw(t) converges to

∫ t

0

EH [w(u, X){dSC(u | X) − SC(u | X)d�P(u | X)}]
EH {w(u, X)SC(u | X)} ,

and because −dSC/SC = d�C

Aw(t) =
∫ t

0

EH [w(u, X)SC(u, X){d�C(u | X) − d�P(u | X)}]
EH {w(u, X)SC(u | X)} .

This leads to our first family of relative survival measures:

R1
w(SC, SP, H) = exp{−Aw(t)} (weighted excess hazards).

A second family is defined

R2
w(SC, CP, H) = EH {w(t, X)SC(t | X)}

EH {w(t, X)SP(t | X)}
(relative weighted survival).

If w(t, X) = 1 then we have the limit of the Ederer-I estimator
(Ederer et al., 1961). Relative weighted survival satisfies our
criterion A1 because in this case

EH {w(t, X)SC(t | X)} = Se(t)EH {w(t, X)SP(t | X)}.

In order for it to satisfy A2, and depend only on Se and not
SP , the weight w(t, X) = v(t, X)/SP(t) where v(t, X) is a weight
function that does not depend on SP(t). Since R2

1/SP is the net

survival, we call R2
v/SP weighted net survival.

There is a natural family of estimators corresponding to
R2

w that, to our knowledge, has been not been used previ-
ously. When there is no censoring then R2

w may be estimated
consistently by

∑n

i=1
wi(t)Y

+
i (t)∑n

i=1
wi(t)S

P
i (t)

, (3)

where Y+
i (t) = I(Ti > t). For the more general case with cen-

soring D that is independent of the covariate (so that SD
i =

SD), we can define a family of estimators for R2
w as

Uw(t) =
∑n

i=1
wi(t)Y

+
i (t)

ŜD(t)
∑n

i=1
wi(t)S

P
i (t)

, (4)

where ŜD(t) is a Kaplan–Meier estimate of the censoring sur-
vival distribution. When w(t, x) = 1 we have Ederer-I and
when w(t, x) = 1/SP(t | x) we have an alternative to the Pohar-
Perme estimator that is also consistent for the net survival.
Further, when there is no competing mortality so that SP

i (t) =
1 for all i and t, then R̂1 = R̂1/SP and U1 = U1/SP , and it

can be shown that U1(t) = R̂1
1(t), with both equal to the

Kaplan–Meier estimate of SC(t) in the cohort (which is the
non-parametric maximum likelihood estimate).

We end by imposing some restrictions on the weights w(t, x)
based on the criteria. By definition the first two arguments to
each R may be stated in terms of any two of SC, SP , and Se. If
we consider R as a function of (SP, Se, H), then A2a and A3
imply that it depends only on Se. Suppose that Rw′ satisfied
A2a and A3 and that w = w′v, then for Rw to also satisfy A2a
and A3 v should depend on (SP, Se, H) only via Se.

4. Assessment of Criteria

We next consider whether the families R1
w and R2

w satisfy our
fundamental requirements A1–A3.

A1 Both R1
w and R2

w satisfy A1. This is seen by taking the
excess terms such as Se outside of the expectation.

A2 When w(t, x) = v(t, x)/SP(t | x) and v(t, x) depends on
(SC, SP, H) only through Se (or not at all) then both
R1

w and R2
w satisfy A2. It is for this reason that the

limit of the Ederer-I and II estimators do not satisfy
A2: they depend on SP even when Se is fixed.

A3 Neither R1
w nor R2

w are guaranteed to satisfy A3. In order
for them to do so one needs to standardize so that the
weights are proportional to the ratio of the standard-
ized to the observed covariate density, i.e., h0(x)/h(x),
using the superscript 0 to denote a standard popu-
lation. This is the approach to age adjustment that
was proposed by Brenner et al. (2004); see Section 5.2
for further discussion. If we wish to standardize two
cohorts with covariate distributions H and H∗ that do
not have the same support, then to meet A3 the sup-
port of the standard distribution H0 should be their
intersection only (i.e., h0(X) = 0 if either h(X) = 0 or
h∗(X) = 0).

We have, thus, established that R1
w and R2

w satisfy our main
requirements A1–A3 provided w(t, x) = h0(x)v(t, x)/{SP(t |
x)h(x)} and v(t, x) depends on (SC, SP, H) only via Se.

A4 Assuming w = h0v/(hSP) then R1
w(t) becomes

exp

[
−

∫ t

0

EH0{v(u, X)Se(u | X)d�e(u | X)}
EH0{v(u, X)Se(u | X)}

]
,

and R2
w(t) becomes

EH0{v(t, X)Se(t | X)}
EH0{v(t, X)} .

It is then clear that in order for R1
w and R2

w to be
robust (against for instance a very large |d�e(u | Xi)|
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which might happen in a sample when SC is very
small), one should require that w(u, x) is bounded
for all u and x. When w = h0v/(hSP) then this can
either be achieved by setting h0(x) = 0 when SP is
very small (compared with other x at the same t)
or ensuring that v/SP is bounded. Further, consider
SC� such that |SC�(t | x) − SC(t | x)| ≤ � for all t and
x and SC�(t | x) = SC(t | x) − � for tl < t < tu, some x

and small constant � > 0 where SC(t∗ | x) = ε > � for
some t∗ ∈ (tl, tu). Then assuming the hazards exist

λC(t∗ | x) = −dSC(t∗ | x)/dt

ε

λC�(t∗ | x) = −dSC(t∗ | x)/dt

ε − �

and

λC�(t∗ | x)

λC(t∗ | x)
= ε − �

ε
.

Thus, for fixed �, as t gets large so that SC(t | x) = ε

gets small, λC�(t | x) may be substantially different
from λC(t | x), which affects the excess hazard (for
fixed SP). In other words, R1

w and R2
w are not robust

unless w is carefully chosen: for each x, the weights
w(t, x)SC(t, x)/EH {w(t, X)SC(t | X)} need to approach
zero with t as fast or faster than SP(t | x). This
argument is also relevant for comparisons between
populations: to be robust w(t, x)/EH {w(t, x)} should
approach zero as fast or faster than SP(t | x) in all
populations compared. Recall that if a is age at diag-
nosis, then SP(t | a) = SP

b (t + a) where SP
b (t) is the

probability of living until age t in the general pop-
ulation.

A5 The asymptotic variance of R̂1
w may be estimated by

R̂1
w(t)σ̂2(t) using the same arguments as Perme et al.

(2012) where

σ̂2(t) =
∫ t

0

J(u)
∑n

i=1
dNi(u)w2

i (u)

{∑n

i=1
Yi(u)wi(u)}2 , (5)

with J(t) = I{∑n

i=1
Yi(t) > 0}.

The variance of the estimator of R2
w(t) in (3) is

∑n

i=1
w2

i S
C
i (1 − SC

i )

(
∑n

i=1
wiS

P
i )2

. (6)

It is not straightforward to use this formula for esti-
mation because of the difficulty in estimating SC

i

without modeling its dependence on X. Although
E{Y+

i (t)} = SC
i (t), Y+

i (t) ∈ {0, 1} so we cannot in gen-
eral simply replace SC

i in (6) by Y+
i . One exception

is when there are assumed to be j = 1, . . . , k homo-
geneous groups of size nj. Then, with independent

censoring within each strata one may estimate R2
w as

∑k

j=1
njwj(t)Ŝ

C
j (t)∑k

j=1
njwj(t)S

P
j (t)

,

based on a stratum-specific Kaplan–Meier estimate
ŜC

j (t), and the variance may be estimated via

∑k

j=1
njw

2
j var(ŜC

j )

(
∑k

j=1
njwjS

P
j )2

,

where Greenwood’s formula might be used for
var(ŜC

j ). However, in practice a bootstrap estimate
of the variance of Uw is recommended because one
may avoid the assumption of homogeneous groups.
Precision of the estimators of R1

w and R2
w is clearly

affected by the choice of weight function due to the w2
i

term in the numerator of the variance. In both, func-
tions that place more weight on the oldest patients,
such as wi(t) = 1/SP

i (t) (Pohar-Perme with R1
w) are

less precise than others with weights such as wi(t) = 1
(Ederer-II with R1

w), or wi(t) = vi(t)/S
P
i (t) where vi(t)

down-weights small SP
i (t).

5. Standardization

Methods of standardization that are used in the numerical
sections of this article are next introduced, and discussed in
relation to the criteria A1–5.

5.1. Stratification

The Ederer-II and Pohar-Perme estimators are often stan-
dardized by stratification, particularly by age group (Pokhrel
and Hakulinen, 2008). The most common method is a
weighted arithmetic mean of stratum-specific estimates of the
relative survival R̂j in stratum j = 1, . . . , k. Let gj = PH0(xi ∈
Gj) for groups Gj. Then denote the traditional standardized
statistic by

Dg(R) =
k∑

j=1

gjRj. (7)

Dg satisfies A1–A3 provided the statistic Rj satisfies A1–
A3 in each stratum. Note also that when the same level of
stratification is used for the weights in R̂1

w and for weights
in the standardization, (i.e., if wi(t) = wi′(t) whenever the
observations i and i′ come from the same stratum Gj), then
Dg(R̂

1
w) does not depend on the particular weights since the

wi(u) terms in (2) cancel out. Thus, when the same fac-
tors are used to stratify the population mortality SP and for
standardization by stratification, the standardized Ederer-II
(corresponding to wi = 1) and the standardized Pohar-Perme
(corresponding to wi = 1/SP

i ) estimators will be identical.

5.2. Baseline Weighting

A problem with stratification is that the number in each stra-
tum needs to be sufficient to obtain an estimate of Se over
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the follow-up period of interest: with censored data it is not
possible to estimate the excess survival beyond the smallest of
the stratum-specific last follow-up times. A second approach
to standardization is to use a weighted estimator. Each indi-
vidual is weighted so that the weighted sample at baseline
represents the standard population (Brenner et al., 2004).
This approach corresponds to using time-constant weights
within the estimator, rather than taking a weighted average of
stratum-specific estimates. It is exactly what needs to be done
to ensure that our condition A3 is satisfied. When used with
Ederer-II one has weights (nzi)/ni, where ni = ∑n

j=1
I(xj = xi)

is the number of individuals in the sample at baseline with the
same covariate values, and zi is a standard probability mass
function for the covariates (

∑n

i=1
zi = 1). When this approach

is applied to the Pohar-Perme estimator one has

wB
i (t) = nzi

SP
i (t)ni

. (8)

Unlike the usual Pohar-Perme estimator these weights satisfy
A3 for both R̂1

w and R̂2
w, but they are similarly not robust.

5.3. Standardized Relative Survival

Our proposal is to standardize the estimators of R1
w and R2

w

by using weights

wi(t) = nziS
0
i (t)

SP
i (t)ni

. (9)

If the covariate distribution at time 0 is zi and individuals are
subject to survival S0

i (t), then ziS
0
i (t) will be the covariate

distribution at time t in the standard population. Thus,
ziS

0
i (t) can be thought of as a standard prevalence of patients

with the disease and covariates xi at time t post diagnosis.
The limit of the estimators with these weights corresponds
to R1

w and R2
w with w = h0S0/(SPh). With these weights R1

w

and R2
w meet A3 as described above. The parameterization

is still arbitrary, in that S0 and H0 (or zi) may be chosen,
but A4 helps to rule out certain choices of S0. For example,
if H0 = H and S0(t) = 1 for all t then R1

w is the Pohar-Perme
estimator which does not meet A4. Suppose that X = (a, l)
where a is age at diagnosis and l is a categorical variable
with l = 1, 2, . . . , L levels, and SP(t | a, l) = SP

bl(a + t), where
SP

bl is the survival from birth in group l. Then to meet A4 we
showed that the standard reference weights should be chosen
so that S0

bl(t) ≤ SP
bl(t) for all l and t. For instance, a country

with the poorest population survival could provide S0.
Equations (5) and (6) show how the choice of S0 in

(9) relates to A5. The proposed weight wi(t)=h0(xi)S
0
i (t)/

{h(xi)S
P
i (t)} enables us to ensure S0

i (t)/SP
i (t) is stable through

the choice of S0. Equations (5) and (6) also show that there
may be a trade-off between robustness and precision. If wi(t)
is zero then the data from individual i will not be used for
estimation at time t; this will give the estimator robustness
against outlying events at time t, but (5) will be larger and
precision worse. Thus, one would not wish to set S0(t | x) to
zero for t ≥ T unless there is no interest in estimating R at or
beyond time T .

In summary, we have two measures and corresponding esti-
mators that satisfy criteria A1–A4, under an assumption of
independent censoring. It is not clear whether there are cir-
cumstances when one might dominate the other in terms of
estimation precision (A5). This will be explored later using a
computer simulation.

To help interpretation note that when S0 = SP and h0 =
h, the weights in (9) equal one. Thus, R2

w and R1
w are,

respectively, the Ederer-I and II estimation targets when the
standard survival is taken to be the same as that in the refer-
ence population, and the standard covariate distribution is
the same as in the observed cohort. Suppose instead that
SP = 1, i.e., there is no competing hazard) then both Ederer-
II and Pohar-Perme weights in R1

w are one, and R̂1
w gives the

Kaplan–Meier estimator (more precisely Âw gives the Nelson–
Aalen estimator). The use of S0 in our weights (9) provides
a stratum-weighted Kaplan–Meier estimator (Xie and Liu,
2005). Thus, R1

w with weights given by (9) can be interpreted
as the marginal net survival that would be observed in popu-
lation H0 subject to censoring S0(t | x). It might be called the
S0-filtered net survival. At each time t, R1

w corresponds to a
weighted average of the conditional excess hazard functions:
EH0{w(t, X)λe(t | X)}, where EH0{w(t, X)} = 1. If the excess
hazard is independent of X then the weights do not matter.
More generally we want the weights to be reasonably homo-
geneous. In particular, we would like to give (approximately)
equal weight to subsets of X that have equal probability of
being at risk at time t. Ederer-II does this exactly but at
a price—it does not satisfy A2. Our weights (9) provide a
good approximation to homogeneous weighting while ensuring
A1–A3 hold.

6. Example

The R package relsurv (Perme, 2013), which implements the
Pohar-Perme, Ederer-II, and some other relative survival esti-
mators was extended to fit the standardized methods in this
report (supplementary material). To demonstrate the meth-
ods, we obtained data on breast cancers diagnosed between
1973 and 2010 in the United States from SEER (2014). Death
rates for the same period were obtained from National Center
for Health Statistics (2015) by age and gender. The following
reference data were used for standardization.

(1) The reference age distribution of cases was a standard
taken from Corazziari et al. (2004). This weights age
groups (15–44, 45–54, 55–64, 65–74, 74+) as (7, 12, 23,
29, 29)%.

(2) For exposition the standard reference mortality rate
was taken to be that estimated for the Russian Fed-
eration (Human Mortality Database, 2016), where
mortality rates were approximately 70% higher than
in the United States for women aged 60 between 1980
and 1989, rising to 300% by 2000–2010. The effect of a
lower reference rate (not recommended) was considered
by dividing the U.S. mortality rates by three.

We focus on the survival of 16,597 women younger than 85
who were diagnosed with invasive breast cancer with distant
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Figure 1. Pohar-Perme net survival estimates by age band
and age-standardized: (a) to 10 years; (b) beyond 10 years.
PPa, traditional age-standardization; PPb, age standardiza-
tion based on (8).

spread (stage 4 based on SEER historic stage A), between
1980 and 2010, of whom 15,572 died after a median follow-up
of 7.9 years.

Figure 1 shows the Pohar-Perme relative survival estimates
by age band, where there was little difference to 10 years
between the younger (<55) and older groups. Thus, to 10
years, net survival appeared to be almost independent of age
at diagnosis (c.f. criteria A1). However, beyond 10 years the
differences become more pronounced for the 75+ group, as
competing mortality rates increased and precision decreased.
This had an impact on the traditional age-standardization
estimate, as this age group is weighted most heavily.

Figure 2 compares un-standardized and standardized esti-
mates. To 10 years where there was very little difference
in net survival by age, there was very little practical dif-
ference between the estimators; only a very small difference
is visible between the stratified estimators and the others.
Larger differences were seen after 10 years. Traditional age-
standardization of Pohar-Perme or Ederer-II yielded very
similar estimates, with substantial variability. The Brenner
age-adjustment of Pohar-Perme was close to un-standardized
Pohar-Perme. Our proposals (with a reference mortality that
is higher than in the United States) were less variable and
closer to un-standardized Ederer-II than the others. Refer-
ence rates lower than the United States are only shown for
insight and are not recommended; as expected these weights
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Figure 2. Estimated relative survival curves from example: (a) to 10 years; and beyond 10 years for (b) some existing
methods and (c) proposed estimators with reference to Ederer-II. E2, Ederer-II estimate; PP, Pohar-Perme estimate; PPa,
E2a, traditional age-standardization from (7); PPb, Brenner age standardization from (8); R1S, proposal R̂1

w with (9) and
standard reference mortality from the Russian Federation; R1S*, as R1S but with standard mortality rates three times lower
than the United States; R2S, proposal estimated by Ûw from (4) with standard rates from the Russian Federation; R2S*,
similarly but with standard rates three times lower than the United States.
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Figure 3. Estimated standardized relative survival from simulation example at: (a) 5, (b) 10, (c) 15, and (d) 20 years. The
true net ( ) and standard survival statistics (· · · R1

w, R2
w; both with weights (9)) in the reference population are given;

samples are from two cohort populations [1] and [2]. Net survival estimates are from PPa, traditional standardization applied
to Pohar-Perme estimation, and PPb which is Brenner standardization from (8). The standardized survival estimates R1

w and
R2

w with weights (9) are labeled, respectively, R1S and R2S.

yield an estimate with properties somewhere between those
of the Pohar-Perme and Ederer-II estimates.

7. Two-Group Simulation

A computer simulation with the following characteristics was
used to further compare the estimators. Mortality rates in
cohort 1 were based on women in the United States in 1980,
in cohort 2 they were (i) 1.2 times higher for those younger
than 70, (ii) two times higher for those aged 70–85, and (iii)
four times higher when aged 86 or older. The standard ref-
erence population rates were (i) two times higher for those
younger than 70, (ii) four times higher for those aged 70–85,
and (iii) 100 times higher when aged 86 or older, to reflect
a standard population where very few people lived into their
90s. The excess hazard was the same in both cohorts, being
3% greater per year from age 65. There were two groups in
each population aged 65 or 75 at diagnosis. The percentage
aged 65 at diagnosis was 60% for cohort 1, 70% for cohort 2,
and 50% in the standard reference population. There were two
censoring scenarios: (i) no censoring, and (ii) uniform censor-
ing between 1 and 25 years. In the first cohort, approximately
41% were censored before their event time, and 35% in the sec-

ond cohort. The outcomes of interest were estimates of relative
survival at 5, 10, 15, and 20 years. A group of 2000 individuals
was simulated 5000 times from both cohort populations.

Standardization is needed or methods will show a difference
between the cohorts that only reflects their age distribution
at baseline; we used the methods from Section 5.

We focus first on the simulations without censoring. Fig-
ure 3 shows boxplots of the simulation survival estimates,
and summary statistics are given in Table 1. The plots high-
light that the net and standardized survival in the reference
population are different quantities. Our interest is not in a
comparison of how well the estimator for standardized sur-
vival recovers net survival etc, but whether one would draw
an appropriate conclusion when comparing the two cohorts.
For this the plots show little difference to 10 years. All the esti-
mators had only small bias, and the right conclusion would be
drawn for all the estimators. However, at 5 and 10 years, stan-
dardized relative survival R1 and R2 were more precise than
net survival in terms of Var(R̂)R−2 (Table 1), so they would
rule out larger differences because they are more precise.

Beyond 10 years the net survival estimators started to
break down, showing differences between the cohorts even
though the age-specific excess hazards are identical. This is
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Table 1
Summary results from simulation. Net survival estimates are from PPa, traditional standardization (7) applied to

Pohar-Perme estimation; PPb, Brenner standardization of Pohar-Perme estimation from (8); R1S, standardized survival
based on (9); R2S, standardized survival based on (9); [1], first cohort; [2], second cohort; SD, standard deviation of

estimates R̂, i.e.,
√

var(R̂); ****results could not be estimated in some simulations, so summary statistics excluded.

Without censoring With independent censoring

Mean SD Var(R̂)R−2 Mean SD Var(R̂)R−2

bias (%) (×100) (×10000) bias (%) (×100) (×10000)

(a) 5-yr
PPa[1] −0.1 1.1 1.7 0.0 1.2 1.7
PPb[1] 0.0 1.1 1.7 0.0 1.2 1.7
R1S[1] 0.0 1.0 1.2 0.0 1.0 1.3
R2S[1] −0.1 0.9 1.0 −0.1 1.0 1.2
PPa[2] −0.1 1.7 3.7 −0.2 1.8 4.0
PPb[2] −0.1 1.7 3.7 −0.1 1.8 4.0
R1S[2] 0.0 1.3 2.1 −0.1 1.3 2.2
R2S[2] −0.1 1.0 1.3 −0.1 1.1 1.4

(b) 10-yr
PPa[1] −0.1 1.7 5.5 −0.1 1.9 7.4
PPb[1] −0.1 1.7 5.5 0.0 1.9 7.5
R1S[1] −0.1 1.5 3.7 0.0 1.7 4.7
R2S[1] −0.2 1.6 3.7 −0.1 2.1 6.3
PPa[2] −0.5 2.9 16.4 −0.5 3.3 21.2
PPb[2] −0.3 2.9 16.5 −0.3 3.3 21.5
R1S[2] −0.3 1.9 6.0 −0.3 2.1 7.4
R2S[2] −0.4 1.9 5.2 −0.3 2.2 7.2

(c) 15-yr
PPa[1] 0.0 2.0 15.8 0.0 2.6 26.6
PPb[1] 0.1 2.0 15.9 0.2 2.6 27.4
R1S[1] −0.2 2.0 9.4 −0.1 2.5 15.5
R2S[1] −0.3 2.1 9.6 −0.1 3.1 19.7
PPa[2] **** **** **** **** **** ****
PPb[2] 0.5 25.6 2586.3 −0.6 35.5 4955.4
R1S[2] −0.6 2.7 17.9 −0.6 3.5 30.0
R2S[2] −0.5 2.9 17.5 −0.6 3.8 30.7

(d) 20-yr
PPa[1] 0.3 2.1 47.8 **** **** ****
PPb[1] 0.7 2.1 49.6 0.7 3.8 161.2
R1S[1] −0.5 2.3 25.9 −0.5 4.0 76.0
R2S[1] −0.6 2.5 26.1 −0.7 4.5 83.6
PPa[2] **** **** **** **** **** ****
PPb[2] −11.9 23.1 5948.3 0.4 76.5 65030.4
R1S[2] −1.0 3.8 69.9 −1.3 6.4 198.1
R2S[2] −1.1 4.1 69.8 −1.6 6.9 201.5

reflected by substantial differences between estimates of net
survival in the second cohort compared with the first. The
reason accounts for the lack of results for traditional stan-
dardization at 20-years survival, where it was not possible to
estimate relative survival in the second cohort because every-
one in the older group was dead. This robustness issue likewise
affected the Brenner baseline standardization method. Our
standardization methods performed robustly even at 20 years,
as the standard reference population effectively excluded
everyone once they were older than 85.

Censoring decreased the precision of all estimators, but did
not appear to affect R̂1

w very much more than R̂2
w. To 5 years

R̂1
w had slightly better precision than R̂2

w. Beyond that it was

very similar to R̂1
w for no censoring, and slightly worse with

censoring in cohort 2: there was not a clear winner between
R̂1

w and R̂2
w in these simulations.

8. Discussion

In this article, we outlined some criteria for relative survival,
and then assessed different families of measures. We developed
two new measures and estimators that met our criteria. Stan-
dardized R1 may be interpreted as the marginal net survival
that would be “observed” in a standard population subjected
to standard censoring. This is because it provides the survival
transform of a weighted excess hazard: viewing the weights
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as the probability of being at risk in the standard population
(at time t given covariate x) gives the interpretation (provided
that SC(t) ≤ SP(t)). Standardized R2 targets a marginal prob-
ability of surviving the excess hazard from the disease if the
person would survive as long with respect to the standard
population. It has a similar interpretation to the stratified
standardization approach of Brenner and Hakulinen (2003),
who proposed time-dependent weights of the form S0

j (t) in
the context of stratified estimation (Pokhrel and Hakulinen,
2008). Here, we applied similar weights but to the individ-
ual subject, which follows the ideas in Brenner et al. (2004),
also incorporating the inverse probability of sampling weights
introduced in this context by Perme et al. (2012). Interpre-
tation of R1

w is arguably easier than R2
w, because the excess

(non-cumulative) hazard and relative density functions corre-
sponding to R1

w do not depend on the derivative of the weights
with respect to time dw/dt, whereas for R2

w they do depend on
the derivative dw/dt. However, both are statistical constructs.
For a non-specialist audience we suggest to describe both pro-
posals as standardized relative survival indicies designed to
accurately and precisely determine the direction and ordering
of survival differences between cohorts.

Standardized R1 and R2 may be applied for longer follow-
up than traditional standardization, by placing more weight
on those young enough to be expected to survive that long
after diagnosis. But, they are not consistent estimators of the
marginal net survival. In our view, this is much less impor-
tant than our other criteria. Indeed, whenever one uses a
Pohar-Perme estimator that is standardized by stratification,
one is already foregoing having an estimator of the (unstan-
dardized) net survival. More importantly, any measure of
relative survival that is not the same when the excess haz-
ard given covariates is the same in two populations, seems
more deficient than one which is inconsistent for estimation
of the marginal net survival. We do not accept the need to
only estimate the marginal net survival, and would prefer to
precisely estimate the mean net survival with respect to a
standard covariate distribution. Our argument mirrors Bickel
and Lehmann (1975), who showed that although a trimmed
mean is not an unbiased estimate of the mean of an asymmet-
ric distribution, it has a place as a measure of central location
of a distribution, and may be better for this than the mean
in many situations.

This article has considered properties of relative-survival
measures and estimators, and from this some general guidance
was provided on how to choose the standardization weights.
More practically, it would be useful to provide investigators
recommended tables of standard weights. We will develop
elsewhere recommended cancer-site specific standardization
tables for our methods. Another limitation is that we have
not considered dependent censoring patterns, such as those
described by Hakulinen (1982); Kodre and Perme (2013).
Future work will address this and testing differences between
standardized relative survival estimates.

In conclusion, we hope that the criteria developed to assess
relative survival measures and estimators are useful for a
theoretical understanding of their properties. We recommend
that our proposed standardization methods be considered for
non-parametric relative survival estimation, when the aim
is to make comparisons between cohorts, such as from dif-

ferent countries or periods in time, or even between disease
types.

9. Supplementary Materials

An R package implementing the new methods is available
with this article at the Biometrics website on Wiley Online
Library.
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