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Abstract

Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in 

medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to 

produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through 

high-speed video microscopy and US interrogation that PCCAs composed of highly volatile 

perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated 

from standard microbubble contrast agents. Experimental results show that when activated with 

short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a 

final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic 

signal that can be passively detected in both time and frequency domain using confocal piston 

transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show 

that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a 

band-limited spectral processing technique, the droplet signals can be isolated from controls and 

used to build experimental relationships between concentration and vaporization pressure. The 

techniques shown here may be useful for physical studies as well as development of droplet-

specific imaging techniques.
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1. Introduction

The field of microbubble-based contrast agents for ultrasound has produced a host of 

applications ranging from diagnostic assessment of heart function to drug delivery and 

molecular imaging schemes that can be monitored in real-time (Gramiak and Shah 1968, 

Stride and Coussios 2010, Martin and Dayton 2013). Due to the underlying physics of 

oscillating microbubbles, bubble-specific detection techniques have been produced that 

exploit regimes of non-linear oscillation and/or nonlinear relationship to ultrasound driving 
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pressure such that they can be distinguished from the ultrasound signals returned from 

tissues (Whittingham 2005). Use of these techniques has allowed real-time separation of 

contrast and tissue signals, enabling new modes of qualitative and quantitative imaging, 

many of which have been implemented on commercial clinical and pre-clinical ultrasound 

platforms (ten Kate et al 2010, Streeter et al 2010, Needles et al 2010, Gessner and Dayton 

2010). Where microbubbles are used for therapeutic applications involving ultrasound-

mediated ablation of tissue, the destruction of microbubbles creates highly nonlinear signals 

that can be detected over tissue signals as a general increase in the broadband spectral 

content. Quantifying this relative to the harmonics generated from the surrounding tissues 

allows real-time monitoring of cavitation during the ablation procedure and has produced 

some unique methods of imaging cavitation passively (Coussios and Roy 2008, Salgaonkar 

et al 2009, Choi and Coussios 2012, Choi et al 2007).

Within the past 15–20 years, researchers have begun to investigate alternative ultrasound 

contrast agents in order to overcome some of the fundamental limitations of microbubbles 

(such as limited size range and short in vivo half-life). Many of these studies have centered 

on the idea of a phase-change contrast agent (or PCCA) that converts from the liquid state to 

the gas state upon some external stimulus (Kripfgans et al 2000, Miller et al 2000, Sheeran 

and Dayton 2012, Rapoport 2012). By harnessing the spatial and temporal aspects of this 

transition, researchers can take advantage of the change in particle size, density, and 

compressibility for specific applications, such as temporary vessel occlusion, drug delivery, 

and enhancement of focused acoustic ablation (Kripfgans et al 2000, Rapoport et al 2009, 

Zhang and Porter 2010, Zhang et al 2011, Sheeran and Dayton 2012, Zhang et al 2010). 

Nearly all formulations of PCCAs to date have used perfluorocarbons (PFCs) with boiling 

points near body temperature as the liquid core component due to the fact that PFCs have 

relatively high molecular weight, low solubility, and low toxicity at the injected volumes 

(Mattrey 1994, Sheeran and Dayton 2012). Using these PFCs, particles generate relatively 

low ultrasound contrast while in the liquid state, as the density and compressibility are 

similar to surrounding tissue and blood. However, once vaporized, the gas bubble produced 

is an efficient scatterer of acoustic energy that results in ultrasound imaging contrast 

(Kripfgans et al 2000). Depending on the choice of perfluorocarbon, encapsulation, and 

particle size, vaporized droplets may either form stable microbubbles (Kripfgans et al 2000, 

Reznik et al 2011, Sheeran et al 2013), or may recondense to the liquid state after the 

vaporization pulse ends (Rapoport et al 2011, Reznik et al 2013, Asami and Kawabata 2012) 

– both of which have utility for specific applications.

Although real-time acoustic detection and isolation of microbubble-specific signals exists, 

there are currently few proposed methods to detect acoustic signals unique to PCCAs (that 

is, distinct from the surrounding tissue as well as distinct from standard microbubbles). 

Asami et al. have suggested that the impulse wavefront from droplets vaporizing adjacent to 

a rigid boundary could be detected and used to characterize tissue properties (Asami et al 
2010). More recently, Reznik et al. have suggested that as bubbles produced from vaporized 

dodecafluoropentane (DDFP, boiling point 29°C) droplets evolve over the course of several 

hundred milliseconds, the change in scattered fundamental and harmonic power over time 

could be used to differentiate growing bubbles (produced by recently vaporized droplets) 

from nearby stable bubbles (Reznik et al 2011). Development of a technique to detect unique 
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signals produced by the droplet vaporization event would enable real-time imaging of 

droplet vaporization for diagnostic purposes as well as real-time monitoring of progress in 

therapeutic applications involving phase-change agents.

Some of the possibilities for acoustic detection of vaporized droplets may be learned from 

the underlying physical theory of expansion. A number of studies have modeled the physics 

of expansion after vaporization through theory and simulations in order to explore various 

aspects of parameter dependencies and in vivo implementation (Ye and Bull 2004, 2006, 

Qamar et al 2010, Eshpuniyani et al 2008, Calderon et al 2010, Shpak et al 2013b, 2013a, 

Pitt et al 2013, Qamar et al 2012). For those investigating droplet vaporization that produces 

stable bubbles, the models have generally predicted a monotonic expansion that can be 

modulated by the influence of the vaporization pulse and inward gas diffusion, which 

matches experimental data for DDFP microdroplets well (Shpak et al 2013b, 2013a, Wong 

et al 2011). For these types of droplets, the pressure wavefront generated by the initially high 

expansion velocities may be able to be detected as a sign of droplet vaporization – similar to 

the method proposed by Asami et al. (Asami et al 2010). Alternative models proposed by 

Qamar et al. (Qamar et al 2010, 2012) have suggested that, depending on droplet size and 

other physical properties, droplets may over-expand as a result of momentum of expansion 

and then settle to a final resting diameter in an oscillatory manner, although the experimental 

results with DDFP microdroplets did not exhibit this behavior. If this type of behavior could 

be achieved experimentally, it might be possible to detect these oscillations as an acoustic 

signature of droplet vaporization.

Recent studies by our group have produced a method to develop PCCAs from highly volatile 

perfluorocarbons that are inherently more sensitive to ultrasound energy than those formed 

similarly from DDFP or perfluorohexane (PFH, boiling point 56°C) (Sheeran et al 2011b, 

2011a, 2012). In this context, PFC volatility is inversely proportional to the boiling point of 

the PFC used, where lower boiling point PFCs have a higher volatility than high boiling 

point PFCs. When emulsified to diameters in the nanoscale, the additional Laplace pressure 

exerted on the droplet core raises the boiling point enough to create droplets that remain 

metastable in the liquid state at body temperature, even when formed out of compounds such 

as decafluorobutane (DFB, boiling point −2°C) and octafluoropropane (OFP, boiling point 

−36.7°C). Although an inherent tradeoff exists between sensitivity to ultrasound and thermal 

stability (and, therefore, circulation half-life), creating PCCAs from perfluorocarbon 

mixtures allows ‘fine-tuning’ the balance of these competing factors for specific applications 

(Sheeran et al 2012).

In this study, we first demonstrate through ultra-high-speed brightfield video microscopy 

that when vaporized by a brief US pulse, volatile PCCAs at micron and sub-micron sizes 

exhibit expansion phenomena after the pulse has ended including over-expansion and 

oscillatory settling to a stable bubble size. We next show that this radial expansion/

oscillation generates unique droplet-specific pressure signals that can be acoustically 

detected and differentiated from microbubble-based contrast agents and tissue with respect 

to both temporal and spectral content. These findings may be useful for physical studies as 

well as development of droplet-specific imaging techniques for medical imaging and 

therapy.
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2. Methods

2.1. Phase-Change Contrast Agent Preparation

To generate lipid-coated microscale and sub-micron droplets from volatile perfluorocarbons, 

a previously described ‘microbubble condensation’ method was used (Sheeran et al 2011b, 

2011a, 2012). This simple, high-yield technique involves first forming polydisperse 

microbubble emulsions with a 9:1 M dissolution of 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

methoxy(polyethylene-glycol)-2000 (DSPE-PEG2000) for a total lipid concentration of 1 

mg/mL in an excipient solution of phosphate-buffered saline (PBS), propylene glycol, and 

glycerol (16:3:1). All lipids were purchased from Avanti Polar Lipids (Alabaster, AL). From 

this lipid solution, 1.5 mL was pipetted into a 3 mL glass vial, and the air headspace 

replaced with perfluorocarbon gas (Fluoromed, Round Rock, TX). Bubbles were formed by 

mechanical agitation (Vialmix, Bristol-Myers-Squibb, New York, NY), resulting in a high-

yield, polydisperse microbubble distribution. The gas headspace was composed of either 

pure decafluorobutane (DFB, boiling point −2°C) or pure octafluoropropane (OFP, boiling 

point −36.7°C). The microbubble emulsions were allowed time to cool to room temperature, 

and then were immersed in an isopropanol bath maintained between −7°C and −10°C and 

stirred gently by mechanical rotation for approximately 1 minute. A change in consistency 

and translucency was typically noted by this point for DFB emulsions, though OFP 

emulsions could not be condensed by temperature alone. Vials were then connected to an 

adjustable pressure source and the pressure in the vial headspace was increased 

incrementally with room air while the low temperature was maintained to ensure particles 

reverted to the liquid state as previously described (Sheeran et al 2012). The combination of 

propylene glycol, glycerol, and PBS in the excipient solution prevented the emulsion from 

freezing due to the reduced temperatures. Vials were then stored at 4°C for no more than 2 

hours prior to use. Droplets were sized with dynamic light scattering (Malvern Nano ZS, 

Malvern Instruments Ltd., Malvern, Worcestershire, U.K.) by placing approximately 1.5 mL 

of a 10% dilution of the droplet emulsion in a plastic sizing cuvette. Nanoemulsions yielded 

consistent size distributions with a peak near 164 nm and a mean near 192 nm for number-

weighted measurement; a peak near 190 nm and a mean near 297 nm for intensity-weighted 

measurement (Sheeran et al 2013). Conveniently, the emulsions also contain a small number 

of droplets on the order of 800 nm or greater that can be resolved optically and studied.

2.2. High-Speed Video Experimental Setup

The experimental setup used here was similar to that described in earlier studies (Dayton et 
al 2002, Sheeran et al 2011b, 2011a, 2012, 2013). An acrylic-lined, continuously degassed 

water bath was mounted onto an inverted microscope (Olympus IX71, Center Valley, PA), 

and the water in the bath was passively heated to 37°C in order to test the emulsions at 

physiological temperatures. Brightfield images were captured using a 100x (NA = 1.0) water 

immersion objective interfaced with an ultra-high-speed framing camera (SIMD24, 

Specialised Imaging, Simi Valley, CA) capable of capturing 24 images at up to 200 million 

frames per second. A xenon strobe was interfaced with the microscope system to provide 

high intensity illumination. A calibrated needle hydrophone (HNA-0400, Onda Corp., 

Sunnyvale, CA) was used to place the focus of the piston transducer confocal with the 
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optical focus. The piston transducer was driven by an arbitrary waveform generator signal 

(AFG 3101, Tektronix, Inc., Beaverton, OR) and amplified 60 dB using an RF amplifier 

(A500, ENI, Rochester, NY). Acoustic pulses were manually triggered and synchronized 

with the high-speed camera in order to simultaneously capture video. For ultra-high-speed 

imaging studies, droplets were vaporized with a 7.5 MHz nominal center frequency 

spherically focused transducer (2.2 cm diameter, 5 cm focus; V321, Panametrics, Inc., 

Waltham, MA) driven with an adjustable-amplitude 2-cycle sinusoid at 8 MHz 

(insonification time of approximately 250 ns). The camera frame spacing was set to record 

evenly spaced captures within the imaging period (30–40 ns exposure times, maximum 20 

μs of continuous filming time allowed by flash duration). The brief, high-intensity acoustic 

pulses were typically in the non-linear regime, and so transducers were calibrated in the 

free-field at focus using a needle hydrophone (HNA-0400, Onda Corp., Sunnyvale, CA) 

with a magnitude-only hydrophone deconvolution method (Hurrell 2004).

Droplet suspensions diluted to 10% in PBS were injected into a nearly optically and 

acoustically transparent 200 μm inner diameter microcellulose tube (outer diameter of 216 

μm; Spectrum Laboratories, Inc., Rancho Dominguez, CA) resting in the confocal acoustic/

optical plane. The droplet emulsions were injected via an in-house manual volume injector 

and the forward flow stopped prior to the manually triggered vaporization pulse. The 

imaging frame rate was adjusted in order to capture the size-dependent droplet vaporization 

sequences in high detail, as smaller droplets finish vaporizing more rapidly than large 

droplets (Sheeran et al 2013). Between video captures, forward flow was restored in order to 

bring un-vaporized agents into the optical focus. Images were stored offline and analyzed in 

ImageJ (NIH, Bethesda, MD). Although the setup produced images with 15.58 pixels/μm, 

the practical optical resolution of the system due to image noise at the low exposure times 

limited measurement of particles to those greater than approximately 1 μm in diameter. The 

area of the droplets/bubbles in each frame were measured by hand using elliptical ROIs and 

converted to diameter to track the change in size due to vaporization. This provided up to 24 

measurements (the total number of frames) per video, which were then interpolated and 

analyzed with custom scripts in Matlab (The Mathworks, Natick, MA) to extract information 

such as rate of radial expansion, maximum expansion, final diameter, and the fundamental 

frequency of oscillation based on Fourier analysis of the radial oscillation. All statistical 

analysis was performed using a student’s t-test (two sided, unequal variance).

2.3. Acoustic Interrogation Experimental Setup

The experimental setup used to capture echoes emitted from vaporizing droplets was similar 

to that used for high-speed imaging of droplet vaporization. A microcellulose tube 

containing droplets was placed at the optical focus of the heated, degassed water bath 

described previously. In order to minimize reflections from the microcellulose interface, the 

tube was angled 66° relative to the face of the transducer, while keeping the tube length in a 

plane perpendicular to the microscope objective. A confocal dual-frequency transducer was 

used in order to vaporize the droplets at the optical focus using a brief, higher frequency 

pulse, and passively listen to echoes emitted with a lower frequency element having a non-

overlapping bandwidth with the activation element. This is analogous to, but opposite of the 

‘pulse low, listen high’ scheme used in other studies to isolate bubble signals from tissue 
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(Bouakaz et al 2002, Kruse and Ferrara 2005, Gessner et al 2010). The dual-frequency 

transducer (Panametrics, Inc., Waltham, MA) was a custom built two element annular piston 

spherically focused at 5.08 cm. The inner transmission element used to activate droplets had 

a 7.5 MHz nominal center frequency, an element diameter of 1.58 cm, and a −6 dB 

bandwidth from 6.07 MHz to 10.93 MHz. The low frequency receiver element, which was 

the outer element, had a center frequency of 1 MHz, a 2.2 cm inner diameter, a 4.44 cm 

outer diameter, and a −6 dB bandwidth from 700 kHz to 1.55 MHz. As above, the transducer 

elements were calibrated in the free-field at focus using a needle hydrophone (HNA-0400, 

Onda Corp., Sunnyvale, CA) to obtain both pressure output information as well as frequency 

response characteristics. The output of the 1 MHz element was sent to a receiver amplifier 

(BR-640A; RITEC, Inc., Warwick, RI) set to pass signals above 100 kHz with a gain of 32 

dB. The signals at the output of the receive amplifier were digitized at a 100 MHz sample 

rate (PDA14; Signatec, IL), captured in LabVIEW (National Instruments, Austin, TX), and 

stored for offline analysis in Matlab. Samples were injected at a constant flow rate driven by 

a syringe pump (PHD2000, Harvard Apparatus, Holliston, MA) at a rate of 10 μL/min in 

order to ensure that the volume exposed to the previous vaporization pulse translated a 

distance of at least 10 times the vaporization transducer’s lateral pressure field FWHM prior 

to the next pulse. A range of ultrasound pressures (between 100 kPa and 2500 kPa peak 

negative pressure) were delivered from the activation transducer in order to assess the 

threshold-dependence of the droplet vaporization signals. Two hundred instances of the 

‘pulse high, listen low’ scheme were captured at each pressure for each sample passing 

through the optical focus (at the pulse rate of 5 Hz). Droplet emulsions were diluted in PBS 

to final concentrations of 0.05%, 0.1%, 0.5%, 1%, 5%, 10%, and 50% in order to determine 

the influence of PCCA concentration on the returned acoustic signals. For comparison, 

similar data were captured for the cellulose tube when filled with only water, filled with only 

air, and filled with the same dilutions of microbubble contrast agents as used for the droplet 

emulsions. The microbubble emulsions used here consisted of the same lipid-encapsulated 

DFB microbubble precursors used to form DFB droplets, but without the additional step of 

condensation. Throughout these acoustic tests, the contents of the microcellulose tube were 

monitored in real-time by a high-speed camera (FastCam SA1.1, Photron USA, Inc., San 

Diego, CA) interfaced with a 60X water immersion objective. Radio-frequency (RF) signals 

captured from these tests were analyzed offline in Matlab for both time and frequency-

domain characteristics in order to distinguish acoustic properties unique to droplet 

vaporization. For controls, each signal consisted of a total acquisition time of 40 μs with the 

travel time to the focus of the transducer occurring approximately 20 μs after the beginning 

of acquisition. For droplet samples, each signal consisted of a total acquisition time of 60 μs 

beginning at the same time point as the control samples. Prior to analysis, all signals were 

bandpass filtered (between 50 kHz and 5 MHz) with a 100-order FIR Butterworth filter in 

Matlab to remove broadband noise introduced by the experimental setup, as well as any 

signals far outside the bandwidth of the 1 MHz receiving transducer. No windowing was 

used on the data during frequency analysis.
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3. Results and Discussion

In the following results and discussion, results from ultra-high-speed optical imaging 

experiments were used to develop the acoustic interrogation approach. The acoustic 

interrogation results, in turn, were used to implement a simple droplet-specific algorithm 

capable of isolating droplet signals from control cases.

3.1. Ultra-High-Speed Video Experiments

Investigations with ultra-high-speed imaging showed that droplets of the formulations used 

were able to be vaporized with 2-cycle pulses at 8 MHz, which is consistent with earlier 

studies (Sheeran et al 2012, 2013). The pulses used to vaporize droplets had peak negative 

pressures on the order of 2.5 MPa for octafluoropropane droplets, and between 3.7 and 4.2 

MPa for decafluorobutane droplets. It is worth noting that the pressures in this set of 

experiments were chosen because they were higher than necessary to induce vaporization 

rather than being indicative of any specific activation threshold for the emulsion. Because a 

short vaporization pulse was used that lasted less than 250 ns, and because droplets large 

enough to be resolved in the optical setup took longer than 1 μs to complete their initial 

expansion phase, the pulse primarily served to initiate the bubble nucleation, but did not 

influence bubble growth as a longer pulse would.

When activated with these short 8 MHz pulses, the transition from droplet to bubble was 

captured, and the diameter of the particle measured at each time point. The droplets showed 

unique vaporization properties not previously reported for droplets composed of less volatile 

compounds. During vaporization, particles showed characteristic over-expansion and 

subsequent oscillatory settling to a final bubble diameter smaller than the maximum size 

reached during the initial expansion phase (figure 1). This type of activity was observed for 

both OFP and DFB droplets ranging from the smallest size observable to the largest size 

present in the samples. The overexpansion and oscillation are expected to be a result of 

momentum of expansion leading to overshoot of the final diameter and oscillatory return to 

the final bubble size. This type of behavior has been previously predicted in simulations for 

vaporizing droplets under certain conditions (Qamar et al 2010).

This type of expansion behavior was captured for a total of 180 OFP and DFB droplets and 

separated into sub-groups for analysis depending on whether certain aspects of the 

expansion were resolvable/measurable based on visual assessment. If the initial droplet size 

was not well-resolved against background but the bubble expansion was, the initial time 

points in the individual trace were omitted from measurement. Similarly, if the particle 

vaporization and initial expansion was well resolved, but during the course of expansion the 

bubble oscillation was perturbed by neighboring bubbles, measurements were only taken up 

to the point of perturbation and the remaining points omitted. Of the data produced, 

subgroups were determined by assessing (1) whether the initial droplet size could be 

resolved with high confidence, (2) whether the initial expansion phase was well sampled, (3) 

whether the overshoot and oscillation behavior was captured and well-sampled, and (4) 

whether the final bubble size was captured or able to be predicted from oscillation behavior. 

During the initial expansion phase, DFB droplets over-expanded to 6.3 ± 1.2 times the initial 

droplet diameter (N = 76), while OFP droplets (N = 52) over-expanded to 8.3 ± 1.3 times the 
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initial droplet diameter. The over-expansion of the OFP droplet group was statistically 

significant compared to the DFB droplet group (p ≪ 0.01), and the expansion ratio did not 

appear to be dependent on initial diameter for either group in the range tested. The 

relationship between initial droplet size and final bubble size followed a strongly linear trend 

in the range tested (figure 2). The linear regression for DFB particles (N = 60) showed a 

ratio of approximately 5.12 (r2 = 0.94, 95% confidence intervals of 4.94 and 5.30, RMSE = 

2.06) between final and initial diameter, while OFP particles (N = 43) showed a ratio of 

approximately 5.53 (r2 = 0.93, 95% confidence intervals of 5.33 and 5.72, RMSE = 1.38). 

The expansion of DFB particles was statistically significant compared to the expansion of 

OFP particles (p ≪ 0.01). These experimental results match well with ideal gas law 

predictions for DFB and OFP expansion (Sheeran et al 2011b). For example, DFB droplets 

measuring 1 micrometer in diameter at 37°C would theoretically expand a factor between 

4.64 (assuming air/water interfacial surface tension of 71 mN/m) and 5.43 (negligible 

surface tension) times the original diameter, while identical droplets of OFP would expand a 

factor between 5.06 (air/water surface tension) and 5.88 (negligible surface tension) times 

the original diameter. During the initial expansion phase, peak radial expansion velocity in 

the imaging plane reached 9.8 ± 2.7 m/s (N = 84) for DFB and 13.9 ± 3.9 m/s (N = 52) for 

OFP. The OFP velocities were statistically significant from the DFB velocities (p ≪ 0.01), 

and both groups appeared to be independent of initial droplet size in the range tested.

Results showed that as vaporized droplets over-expanded and oscillated in a decaying 

manner to a final resting bubble size, the frequency of oscillation was inversely dependent 

on final bubble size (and therefore initial droplet size). Large bubbles oscillated at low 

frequencies near 100 kHz compared to small bubbles that oscillated above 1 MHz. This size-

frequency relationship is characteristic of a resonance phenomenon. In this case, the 

resonance was initiated by the overexpansion event in the initial vaporization phase (figure 

1). By collecting these data over a wide range of particle sizes, a final bubble size vs. 

resonance frequency curve can be experimentally developed to predict the frequency of 

echoes emitted by a particle (figure 3). Although separate curves can be developed for the 

DFB and OFP droplet groups, the error in measured frequency imposed by the small number 

of frames limits any comparisons made between the groups. Combining the data and 

produces a fit of f(r) = 2.679/r, where f is the measured frequency and r is the final bubble 

radius (r2 = 0.79, 95% confidence intervals of 2.578 and 2.779, RMSE 1.658×105).

Because the oscillation happened well after the vaporization pulse has passed, it was 

independent of the pulse, and represents natural resonance (rather than ‘driven’ or ‘forced’ 

oscillations). This is unique with respect to ultrasound contrast agents, in that the particle is 

‘tipped’ and then emits an entirely original acoustic signal that does not overlap with the 

acoustic pulse temporally or spectrally, which is radiated and received by the ultrasound 

transducer. This is similar in some aspects to the broadband post-excitation signals produced 

by microbubbles in prior studies (King et al 2010, King and O’Brien 2011) that are 

associated with bubble collapse/inertial cavitation as a result of high intensity pulses. In 

contrast, the droplet-based signals shown here occur during stable bubble formation, and the 

primary mechanism that produces the relatively narrowband droplet-based signals is the 

overexpansion of the droplet during vaporization (independent of the vaporization pulse). 
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The classic Minnaert equation for resonance of a free bubble (Minnaert 1933, Ainslie and 

Leighton 2011) is:

(1)

where fM is the natural resonance frequency, r is the radius of the bubble, κ is the polytropic 

exponent, Pl is the ambient pressure, and ρl is the density of the surrounding liquid. Here, 

assuming a polytropic index of κ = 1 (isothermal process), Pl = 101.325 kPa (ambient 

pressure), and ρl = 994 kg/cm3 (approximate density of PBS at 37°C) produces a resonance 

curve that represents the experimental data nearly as well as the optimal experimental fit (r2 

= 0.79, RMSE 1.658×105), and can be used for simple approximations of the bubble size/

resonance frequency. However, this ignores several aspects of the experimental system that 

deviate from the Minnaert model. An isothermal assumption for the polytropic index is not 

suitable for the size of microbubbles and the perfluorocarbon core of the bubbles. Most 

studies have suggested that adiabatic assumptions (κ = Cp/Cv, the ratio of specific heat at 

constant pressure to specific heat at constant volume) model the behavior of perfluorocarbon 

microbubbles well (Doinikov and Bouakaz 2011), which would produce values of κ = 1.052 

for DFB and κ =1.063 for OFP at 37°C (Linstrom and Mallard 2013). Using an approximate 

value of 1.06 for the combined data set, the Minnaert fit to the data is shifted slightly above 

the experimental data fit (figure 3, r2 = 0.77, RMSE = 1.735×105). The damping in the 

bubble oscillation accounts for the deviation between the experimental and ideal fits. For a 

classic damped harmonic oscillator undergoing un-forced oscillation, the decay of the 

system can be related to the measured (damped) oscillation frequency and ideal (Minnaert) 

frequency by:

(2)

where β−1 is the time constant of the decay in the exponentially decaying harmonic 

oscillation (Leighton 1994). The total damping constant of a freely oscillating bubble at 

resonance is the sum of radiation, thermal, and viscous damping, and can be related to β by:

(3)

Substitution of Eqns. 1 and 3 into Eqn. 2 gives:

(4)
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Fitting Eqn. 4 to the experimental data gives a total damping coefficient of δ = 0.76 for the 

oscillations produced from phase-change droplets (r2 = 0.79, 95% confidence intervals of 

0.53 and 0.98, RMSE = 1.658 ×105).

For the micron-sized particles characterized in these tests, the majority of particles exhibited 

oscillation frequencies between 100 kHz and 1 MHz, which is well below the bandwidth of 

the transducer delivering the activation pulse. Provided the new acoustic signals generated 

are strong enough to be detected, they could be picked up by an ultrasound transducer and 

used to localize the droplet activation event both temporally and spatially.

3.2. Acoustic Interrogation Results

To determine whether acoustic signals generated by vaporizing droplets could be detected, a 

‘pulse high, listen low’ scheme was used in order to differentiate low frequency acoustic 

signals not strongly related to the fundamental activation pulse. Based on the video data, any 

signals emitted from droplets oscillating on the order of 100 kHz to 1 MHz would appear as 

distinct spectral content relative to normal microbubble signals or tissue signals. To test this, 

the microcellulose tube setup previously described was injected with droplets at a constant 

flow rate and exposed to a series of 2-cycle pulses at 8 MHz. For controls, the same tube was 

filled with either water, air, microbubble dilutions. The water and air cases represented 

extremes of the microbubble dilutions – where there are so few bubbles present that the 

suspension acoustically appears as water, or when there are so many present that it appears 

as a solid air interface.

When the tube was filled with only water (figure 4A), the receiving transducer showed weak 

reflections of the activation pulse due to the interface of the water and capillary tube (a 

significant enough density difference to reflect some energy). Increasing the activation 

pressure only increased the amplitude of these pulses, but the frequency content remained 

noisy (figure 4B). Even though the activation pulse was well out of the frequency response 

of the 1 MHz transducer, the tube interface reflects back enough of the short burst of energy 

to ring the 1 MHz transducer near its own resonance frequency with a very minor harmonic 

component between 3 MHz and 3.5 MHz. This effect was amplified in the case of the ‘air-

only’ tube, where the interface formed by the air produced a strong reflection off the tube 

(figure 4C). Similar to the case of water, the reflection off of the tube/air interface produced 

signals that cause the transducer to ring at 1 MHz with a small harmonic peak present 

between 3 MHz and 3.5 MHz (figure 4D). As the incident pressure increased, the magnitude 

of the frequency domain signal increased, but the fundamental frequency components 

remained relatively similar. In both the air and water cases, the only acoustic energy 

produced was from the activation pulse directly reflecting off of interfaces. In this 

experimental setup, an additional acoustic artifact was introduced by the nearby objective 

used to monitor particle flow, which manifested as an echo beginning a few microseconds 

after the end of the tube reflection (figure 4A, C). Once the final reflection off of this 

acoustic artifact returned (around 75 μs), no acoustic signals were detected for the remaining 

period.

When the tube was filled with standard formulation microbubble contrast agents, the time 

and frequency domain signals were appreciably different from the air-only and water-only 
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cases. At very low bubble concentrations, a sinusoidal trace was observed between 66 μs and 

68 μs (corresponding with the temporal location of the tube reflection in figure 4) that 

increased with the incident pressure (figure 5A). The temporal length of this signal 

corresponds well with the expected tube diameter when the receive transducer’s impulse 

response is taken into account. Unlike the noisy spectra from the air-only and water-only 

cases, the bubble signals returned spectra that strongly resemble the receiving transducer’s 

frequency response centered near 1 MHz (figure 5B, D, F). This is likely due to the fact that 

the short 8 MHz burst causes bubbles to oscillate (or become destroyed at higher pressures) 

and return a brief burst of energy back to the receive transducer that causes it to ring at its 

center frequency (similar to an impulse response). At the concentrations tested, the 

magnitude of the time domain signal increased with microbubble concentration up to 1% 

dilution (figure 5C), past which the signal magnitude decreased rapidly up to 50% dilution 

(figure 5E). At 50% dilution, signals approached the magnitude of the air-only tube signals 

with similarly noisy frequency spectra. This can be anticipated, as the extremes of 

microbubble concentrations are acoustically similar to a gas-only or water-only interface. As 

evident from figure 5, the microbubble signal was contained within the same temporal span 

as the reflection from the tube (no portion of the total signal including the objective artifact 

extends beyond 75 μs), as it was a direct result of microbubbles interacting with the pulse 

travelling within the tube. As also demonstrated by figure 5, the bubble signals were highly 

correlated for each pressure – manifesting as a short 1 MHz pulse that begins near 66 μs 

with very similar amplitude across all pulses (data not shown).

When volatile phase-change contrast agents were vaporized in the microcellulose tube, the 

difference in both the time and frequency domain compared to controls could easily be 

observed (figure 6). At low concentrations and/or low vaporization pressures, individual 

droplet vaporization traces could be isolated and compared to the signals received when no 

droplet vaporization occurred. Unlike the control cases, which manifested as short Gaussian-

enveloped pulses between 64 μs and 75 μs with a wide frequency band centered around 1 

MHz, droplet traces appeared as exponentially decaying sinusoids that often extended well 

beyond the 75 μs timepoint (figure 6A, C), similar to the decaying radial oscillation over 10–

20 μs observed optically. As with the optical experiments capturing the initial rapid radial 

expansion of the vaporizing droplet, the maximum pressures recorded occurred at the very 

beginning of each droplet signal. Even when exposed to the same peak negative pressure, the 

voltage traces were highly variable from line to line with respect to both amplitude and 

frequency of the decaying sinusoid. In all cases, the pressure signal recorded began at the 

temporal location of the tube. In the frequency domain, sharp, narrowband peaks were 

present corresponding to the frequency of the decaying sinusoid (figure 6B, D). These 

narrowband peaks ranged from the low 100s of kHz to 1.3 MHz in this experimental setup – 

matching the experimental frequencies obtained in optical experiments (figure 3) well. At 

higher peak negative pressures and/or concentrations, the vaporization of multiple droplets 

produced voltage traces that were superimpositions of individual droplet pressure fields, and 

several individual narrowband peaks in the frequency domain could be observed 

corresponding to the individual droplets vaporized.

Although the frequency content of the droplets appeared generally independent of 

perfluorocarbon choice, the amplitude of the oscillations was significantly larger for OFP 
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droplets than similarly sized DFB droplets (figure 6A, C), likely as a result of a more rapid 

initial expansion and greater overexpansion ratio upon vaporization. By the oscillation 

frequency experimental curve fit (figure 3), figure 6A shows the resonance (333 kHz) of a 

DFB bubble near 16.1 μm in diameter. By figure 2, this originated from a droplet near 3.1 

μm in diameter. Similarly, the resonance (350 kHz) of the OFP bubble (figure 6C) originated 

from a bubble near 15.3 μm in diameter, or a droplet near 2.8 μm in diameter. Despite the 

similar sizes and the fact that a significantly higher pressure was used to vaporize the DFB 

droplet, the maximum amplitude of the OFP bubble oscillation was 2.8 times larger than the 

DFB bubble oscillation. Interestingly, the maximum amplitude observed in both cases 

occured during the compression phase just after the initial expansion, and it was apparent 

that the steadily decaying sinusoids were exhibiting nonlinear oscillation behavior that 

generates harmonics in the frequency domain.

Based on the optical results, larger droplets displace a larger volume of water during the 

radial oscillations at relatively similar speeds as smaller droplets, and should therefore 

generate larger amplitude pressure waves. In the acoustic detection scenario, this should 

result in lower frequency oscillation signals containing larger amplitudes of oscillation. 

However, this is not readily apparent from the raw data, as the frequency-dependent 

sensitivity of the receiver transducer must first be accounted for. The maximum sensitivity of 

the receiver transducer occurs for signals near 1.2 MHz. For signals near 330–350 kHz with 

the same amplitude, the received signal will be only 15% of the 1.2 MHz case. As a result, 

the raw signals shown in figure 6 had similar amplitude to the very largest bubble signals 

produced in any case once this factor is accounted for. By scaling the raw data in order to 

correct for the receiving transducer’s frequency response, the relative amplitudes across the 

entire frequency range can be recovered.

For example, the relationship between the amplitude of oscillation and the frequency of 

oscillation for single OFP droplets can be evaluated experimentally by exposing highly 

dilute samples of OFP droplets to peak negative pressures large enough to vaporize the 

majority of the droplets in the focal zone. Out of 200 vaporization pulses, 109 instances of 

the characteristic droplet oscillation were detected. Two of these were excluded, as they 

contained several spectral peaks, and did not represent single-droplet traces. For the 

remaining data set, mapping the amplitude of oscillation to the peak in the frequency domain 

revealed a power-law relationship of (fkHz)−2.072, (r2 = 0.89, 95% confidence intervals of 

−2.403 and −1.741) (figure 7). As expected, the lower oscillation frequencies produced by 

bigger droplets result in significantly larger oscillation amplitudes. Here, frequency peaks 

were observed between 216 kHz and 1.3 MHz – corresponding to bubbles between 24.8 μm 

and 4.1 μm, or droplets between 4.5 μm and 0.7 μm in diameter (by the experimental 

relationship in figure 2).

3.3. A Simple Spectral Approach to Droplet Detection

As the results above show, the general characteristics of signals produced by droplets when 

vaporized by a higher-frequency pulse can be easily distinguished from the control cases 

temporally and with regard to frequency content. In these tests, samples were collected for a 

single line of interrogation so that droplet signals could be localized axially. Extending this 
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to a linear or matrix transducer array and collecting similar data on all channels 

simultaneously would allow for localization of the droplet vaporization signals in 2D or 3D 

space. This would have high utility for both diagnostic and therapeutic applications of 

PCCAs, such as localizing vaporization activity to correlate with in vivo PCCA-mediated 

drug delivery. For the purposes of developing the techniques demonstrated here into imaging 

strategies, many approaches are available. The temporal aspects of vaporized droplet signals 

would be distinct from the surrounding tissue and alternative ultrasound contrast agents, and 

could be isolated through correlation-based approaches such as spatial coherence (Lediju et 
al 2010) or matched-filtering (Misaridis and Jensen 2005). Alternatively, the signals 

generated from vaporizing droplets could be detected and distinguished from the 

surrounding tissue by only passing signals with narrowband frequency properties. These 

types of considerations will be the subject of future investigations.

In the remainder of this manuscript, we implement a simple spectral approach to detect 

vaporization from droplets within a desired size range and demonstrate that the droplet 

vaporization signals can be distinguished from all control cases even at low concentrations 

and peak negative pressures. In this approach, the raw signals collected from each pulse 

ensemble are processed in three steps: wall-filtering, scaling to correct for receiving 

transducer frequency dependence, and frequency domain integration over a narrow 

frequency range related to the desired droplet sizes.

In the first processing step, the raw data ensemble obtained from the 200 pulses at each peak 

negative pressure is wall-filtered similar to conventional Doppler ultrasound processing in 

order to remove signals that are stationary from pulse-to-pulse. Here, the mean echo for each 

temporal location across all pulses is subtracted from that temporal location, leaving only 

signals that are transient from pulse to pulse. This largely eliminates the echoes returned 

from the water, air, and bubble samples, where there is very little variation from successive 

lines. Next, the frequency spectrum of each wall-filtered time domain signal was obtained 

and the magnitude of the spectrum scaled to correct for the receive transducer’s frequency-

dependent sensitivity between 50 kHz and 2 MHz. Finally, the signals were bandpass filtered 

with a 100-order Butterworth FIR filter between 50 kHz and 700 kHz and integrated in this 

same frequency band to arrive at a final measure of magnitude for the band-limited signals. 

These edge frequencies correspond to bubbles between 7.7 μm and 107 μm in diameter, or 

droplets between 1.4 μm and 20.9 μm in diameter for both PFCs by the experimental fit in 

figure 2. It’s worth noting here that the largest droplet characterized in the optical 

experiments was approximately 9.5 μm, and so there are likely to be very few droplets larger 

than this, if any, that contribute to the measure.

Applying this processing to the data as a function of concentration and peak negative 

pressure allows calculation of signal statistics for comparison between droplets and control 

cases. The largest value produced by any of the control cases after this processing was for 

the 50% bubble dilution at the highest peak negative pressure used. Droplet samples, on the 

other hand, produced a wide range of values as a result of the presence of lines with no 

droplet vaporization (values below the 50% bubble dilution reference) and those with droplet 

vaporization (values well above the 50% bubble dilution reference). Droplet signals can 

therefore be identified by choosing a control-based threshold. In this case, the 99th percentile 
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integrated spectral value obtained for the 50% bubble dilution case at the highest peak 

negative pressure was chosen as a reference, and any signals at least 10% greater than this 

were considered to be droplet signals. This threshold is highly conservative, as a 50% bubble 

concentration is not a physiologically relevant scenario for agents flowing in the 

bloodstream. However, for the purposes of this investigation it serves as a proof-of-concept 

that the droplet-based signals are distinct from any possible value of the control groups when 

processed in this manner.

Applying this threshold to the 200 individual pressure traces captured at each concentration 

and peak negative pressure allows calculation of the likelihood of detecting droplets at the 

given flow rate for each combination of parameters (figure 8). Out of the 200 pulses for each 

test case, DFB droplets did not begin to show significant vaporization until the concentration 

was above 0.5% at the highest peak negative pressure. The number of pulses with droplet 

vaporization increased with concentration up to 10% concentration – after which every pulse 

exhibited droplet vaporization. At the higher concentrations, a significant number of DFB 

droplet signals were registered at lower peak negative pressures, illustrating the interplay of 

concentration and peak negative pressure in the stochastic process. It should be noted here 

that some individual droplet signals could be detected at lower concentrations and peak 

negative pressures than shown in figure 8 (such as the droplet trace in figure 6A), as this 

figure is limited to tests where 5% or more of the 200 lines exhibit droplet signals. However, 

for any combination of concentration and pressure where the peak negative pressure is 1250 

kPa or less, very little droplet vaporization was captured. OFP samples, on the other hand, 

showed significant vaporization across a range of concentrations and peak negative pressures 

– reflecting the greatly reduced vaporization thresholds of OFP droplets compared to DFB. 

For nearly all combinations where concentration was above 0.5% and pressure was above 

400 kPa, 5% or more of the samples showed droplet signals. No significant vaporization was 

detected below 200 kPa for any concentration, while at the lowest two concentrations used, 

peak negative pressures above 1000 kPa occasionally produced vaporization at the 5% level.

At concentration/pressure combinations where at least 3 droplet-specific signals were 

detected, statistics show that the spectral integration magnitude was dependent on PFC 

choice, as can be expected from earlier results. The DFB droplet signals at lower 

concentrations were on the order of 2 dB higher than the bubble threshold value, while 

higher concentrations produced signals upward of 9 dB over the bubble threshold value 

(figure 9A). The increase in signal strength observed for higher concentrations as a function 

of peak negative pressure is expected to be a result of a much larger number of droplets 

vaporizing in the focal zone (these are combinations that produce very high vaporization 

percentages in figure 8). For OFP droplets, concentrations 1% or below produced a 

consistent 4 dB increase over the bubble threshold regardless of the increase in vaporization 

pressure, while higher concentrations increased with vaporization pressure to values as high 

as 15 dB above the bubble threshold.

It should be noted here that Figure 9 shows the strength of the droplet signals relative to the 

99th percentile bubble signal for the 50% dilution of bubbles. In vivo, a more relevant 

reference level may be the water-only microcellulose tube control, which mimics a blood-

filled vessel. When compared to the 99th percentile water-tube signal, DFB droplet signals 
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were approximately 6 to 13 dB greater in magnitude, and OFP signals were approximately 8 

to 19 dB greater in magnitude, depending on concentration.

3.4. Limitations and Future Directions

This study provides a preliminary demonstration that, under the right vaporization 

conditions, PCCAs emit size-dependent acoustic signals that can be detected. To the authors’ 

knowledge, this is the first article that has characterized these phenomena both optically and 

acoustically and implemented a specific droplet detection technique based on the results. 

However, there are some fundamental limitations to the study that warrant discussion.

The experimental relationships between bubble size and resonance frequency obtained by 

optical experiments is modeled well by the simple Minnaert resonance calculations (figure 

3). However, this model neglects factors such as surface tension and shell properties that are 

likely to influence the physical phenomena captured here. In this study a classic damped 

harmonic oscillator model was implemented to account for some of these aspects, but the 

uncertainty in frequency resolution imposed by having only 24 frames maximum during 

optical experiments limits implementation of more robust models. Future refinement in the 

size/frequency relationship through alternative optical imaging equipment or simultaneous 

optical/acoustic capture may allow implementation of alternative resonance models in order 

to estimate physical properties of the droplets. Alternatively, the exponentially decaying 

sinusoidal pressure waveforms captured during acoustic interrogation may be used to 

estimate physical properties through the interaction of amplitude, frequency, and decay rate 

for droplets of varying size. The decay rate, in particular (as demonstrated in figure 6), is 

directly related to thermal damping, which includes effects of Laplace pressure and the gas-

dependent polytropic index (Ainslie and Leighton 2011). One aspect that warrants future 

study is the degree to which the initial vaporization pulse influences the vaporization 

phenomena observed. It is assumed in this study that the impact on overexpansion, 

oscillation, and final size of the 2-cycle 8 MHz pulse is not significant. Future studies with 

shorter, higher frequency pulses will reveal whether this is the case or not.

Frequency-banded detection techniques such as those used for figure 8 may be useful for 

determining thresholds of activation for different perfluorocarbon emulsions under various 

flow conditions and concentrations. Currently, there is no standardized method to evaluate 

practical in vivo activation parameters for PCCA formulations. Many studies measuring 

thresholds rely on acoustic techniques that are highly influenced by large outliers in the 

typically polydisperse size distributions, and alternative optical techniques of determining 

thresholds are limited with respect to sub-micron particles (Sheeran et al 2013). Using the 

techniques demonstrated here, the frequency bands corresponding to sizes of interest can be 

isolated in order to determine relative activation under given peak negative pressures. 

Therefore, these methods offer, for the first time, the potential to determine activation of 

droplets of a particular size when surrounded by droplets of different sizes through acoustic 

interrogation.

Here, the detection is shown only for a single point in space, and with a single transducer 

element. Ongoing efforts are focused on capturing these signals with imaging transducers 

(across many elements) in order to detect these signals and form images incorporating the 
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spatial aspects of droplet vaporization. Ultimately, detection of these signals may enable 

real-time imaging of droplet activation that could be used for many diagnostic and 

therapeutic applications of medical ultrasound. Although the ability to distinguish these 

signals in a water bath does not directly indicate the ability to do so in tissue, several factors 

suggest detection of these signals in vivo would be likely. The frequencies of the natural 

resonance of droplets investigated here occur on the order of 100 kHz to 2.5 MHz – which is 

relatively low in the context of diagnostic medical ultrasound. Because the activation pulse is 

8 MHz in frequency, tissue will scatter energy back towards the transducer at this same 

frequency as well as higher harmonics – but generally not at lower frequencies (Clarke and 

ter Haar 1999). Bubbles driven by the ultrasound pulse, on the other hand, will reflect back 

energy across a wide range of higher harmonics of 8 MHz, but generally not much below the 

½ frequency harmonic (Forsberg et al 2000) other than broadband energy that occurs from 

microbubble destruction (Sassaroli and Hynynen 2007). As a result, neither microbubbles 

nor tissue will generate substantial acoustic waves on the order of 100 kHz to 3 MHz when 

pulsed at 8 MHz, and the signal from droplets of this size vaporizing in tissue will be 

detectable. Additionally, the signals returning from vaporized droplets will suffer less from 

frequency-dependent tissue attenuation than the higher frequency bubble and tissue signals 

(D’Astous and Foster 1986), and only have to travel one-way through the tissue to reach the 

transducer.

Although only the outliers in the distributions used here were investigated in order to pair 

optical and acoustic results (average droplet size in each suspension was sub-micron and not 

well-resolved optically), these techniques could be used to detect vaporization of droplets 

much smaller than those shown here. For instance, droplets near 200 nm in diameter would 

vaporize to form bubbles on the order of 1 μm in diameter. By the isothermal Minnaert 

approximation, these would generate acoustic signals with frequencies near 5–6 MHz. These 

frequencies would likely still be detectable through tissue, but they overlap with the 

bandwidth of the vaporization pulse transducer used here and therefore would be more 

difficult to discern from tissue and bubble signals. In order to maintain signal separation, a 

higher frequency vaporization pulse would be necessary, which may limit the ability to 

achieve droplet vaporization through a depth of tissue. In addition to separation between the 

vaporization pulse frequency and the oscillation frequencies, the underlying physics impose 

limits on the relationship between droplet oscillation frequency and the length of the 

vaporization pulse. In order to detect these unique signals, it is necessary that the activation 

pulse not extend into the oscillation period so that the resulting bubble is not ‘driven’ by the 

ultrasound pulse itself. The time to finish vaporizing depends directly on the droplet size, 

and so to detect very small droplets, very short pulses must be used to initiate vaporization. 

The activation pulse can be shortened by increasing the frequency, but frequencies much 

higher than 10–15 MHz do not provide sufficient penetration into tissue to be useful in 

human diagnostic imaging in deep tissues, and would only be relevant to superficial 

applications. Thus, with ultrasound as the activation source, there may be a practical limit to 

the smallest size of droplet detectable for medical ultrasound. Despite this, there are many 

therapeutic applications where droplets are large in order to deliver large payloads of drugs 

(Couture et al 2011) or enhance ablation (Zhang et al 2010, 2011).
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One of the most interesting possibilities of these techniques is to activate the droplets with 

non-acoustic sources and detect the unique droplet signals with ultrasound. Other groups 

have recently demonstrated activation with lasers through primarily thermal mechanisms to 

enable applications in medical photoacoustics (Strohm et al 2011, Wilson et al 2012), and it 

has been suggested that droplet nucleation may be possible with ionizing radiation such as 

X-ray (Apfel 1998). In these cases, there may be little to no acoustic interference from the 

activation source, and so the droplet-specific signals may be received with high fidelity. 

Also, a non-acoustic source will not ‘drive’ the resulting bubbles with forced oscillations in 

the same manner as an acoustic source, and so oscillations from very small droplets on the 

order of 5 MHz or higher may also be isolated easily.

4. Conclusion

In this study we demonstrate that, as a result of the phenomena of over-expansion and 

oscillation, unique acoustic signals are generated by vaporizing phase-change droplets that 

can be detected and isolated from other acoustic sources. Beyond physical studies, this 

technique may have wide applicability in real-time monitoring of therapeutic processes 

involving phase-change contrast agents in ultrasound as well as other modalities, and may 

result in new diagnostic techniques.
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Figure 1. 
Vaporization and expansion properties of volatile perfluorocarbon droplets vaporized with a 

2-cycle sinusoid at 8 MHz. A) A DFB droplet near 2.7 μm in diameter vaporizes and 

expands to a maximum near 15.5 μm in diameter within 2 μs, and eventually settles to a 

smaller resting diameter. B) An OFP droplet near 2 μm in diameter expands to a maximum 

near 14.6 μm in diameter and settles to a smaller resting diameter. In both cases, the droplet 

oscillations occurred over the course of 10 μs after vaporization. Scale bar represents 5 μm.
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Figure 2. 
Relationship between final bubble diameter and initial droplet diameter for droplets of DFB 

(N=60) and OFP (N = 43). The strong linear trends showed a ratio of 5.12 between final and 

initial size for DFB (r2 = 0.94) and a ratio of 5.53 between final and initial size for OFP (r2 = 

0.93). These experimental values matched well with ideal gas law predictions (see text) and 

appeared to be independent of initial diameter in the range tested.
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Figure 3. 
Oscillation frequency curve of resulting bubbles. As a function of final bubble radius, the 

particles oscillated at specific frequencies after the initial over-expansion phase. For the OFP 

(N = 49) and DFB (N = 81) particles tested that were optically resolvable, these were on the 

order of 100 kHz to 2.5 MHz, depending on bubble size. Curve-fitting the data produces a 

relationship of f(r)=2.679/r where f is the measured oscillation frequency and r is the final 

bubble radius (r2 = 0.79). Approximating the data with a Minnaert free bubble resonance 

model produces a slightly worse fit (r2 = 0.77).
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Figure 4. 
Control recordings with no bubbles or droplets present. Echoes reflected from the 

microcellulose tube are apparent in the received signals on the 1 MHz transducer beginning 

near 60 μs from the pulse trigger, while a later echo is produced from the nearby microscope 

objective beginning near 70 μs. A) The water-microcellulose interface creates a small 

reflection when the tube is filled with water that manifests as B) noisy frequency content in 

the 50 – 2000 kHz range, whereas C) the water/microcellulose/air interface creates a very 

large reflection for a tube filled with air that manifests as D) noisy frequency content in the 

50–2000 kHz range with an additional harmonic peak between 3 – 3.6 MHz. The final echo 

from the microcellulose tube in both cases returns near 70 μs, and the final echo from the 

objective artifact returns near 75 μs. Note: A) and C) are the mean of 200 captures of the 
water-only and air-only cases. B) and D) show the Fast-Fourier Transform of A) and C).
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Figure 5. 
Individual voltage traces received from microbubble samples of varying concentration and 

associated spectra. At each concentration, signal magnitude increased with incident pressure 

while retaining similar temporal characteristics. Signal magnitude increased from the lowest 

concentration tested of 0.05%, (A, B) and maximized at 1% (C, D). Past this, signal 

magnitude decreased up to the maximum concentration of 50% (E, F).
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Figure 6. 
Signals produced by individual droplets vaporizing in the receive transducer’s focus 

manifest as exponentially decaying sinusoids with very narrowband frequency content. 

Examples of A) DFB droplet vaporization and B) the associated frequency spectrum. C) and 

D) OFP droplets oscillating at a similar frequency produce larger amplitude oscillations even 

when exposed to significantly lower incident pressure as a result of greater droplet volatility. 

In both A) and C), the blue trace shows the preceding pulse that did not produce a vaporized 

droplet for the same sample and pulse pressure.
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Figure 7. 
When scaled to correct for the receiver transducer’s frequency-dependent sensitivity, the 

amplitude of single OFP droplet signals can be related to the frequency of oscillation by a 

power-law fit of (fkHz)−2.072.(r2 = 0.89). A similar relationship can be experimentally 

derived for DFB droplets.
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Figure 8. 
Percentage of 200 sequential pulses where droplet signals are detected as a function of 

concentration and peak negative pressure of the incident 8 MHz ultrasound pulse. A) DFB 

droplets show little vaporization below the higher concentration/pressure combinations, 

while B) OFP droplets with much higher sensitivity to ultrasound show a significant amount 

of vaporization at low concentration/pressure combinations.
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Figure 9. 
Strength of detected droplet signals relative to 99th percentile microbubble (50% dilution) 

signal magnitude after processing. A) DFB droplets exceed the threshold by 2 to 9 dB, 

depending on concentration and peak negative pressure. B) OFP droplets exceeded the 

threshold by between 4 and 15 dB, depending on concentration and peak negative pressure, 

highlighting the much larger signals produced by OFP droplets as a result of greater 

volatility. At concentrations 1% or below, signal strength was independent of pulse pressure 

as a result of fewer droplets vaporizing in the focal plane. At combinations of high 

concentration and high pulse pressure, the much greater number of vaporizing droplets 

resulted in an increase in signal strength. Note: The lowest concentrations (0.1% and 0.05%) 
omitted for clarity, and traces shifted slightly for clarity in error bars.
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