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Introduction
Infectious disease agents such as bacteria, viruses, 
fungi1 and parasites account for approximately 
15 million deaths worldwide, with acute respira-
tory infections and human immunodeficiency virus 
(HIV) being the leading causes.2 Viral infections 
alone pose significant global health challenges by 
affecting millions of people worldwide, with a neg-
ative impact on both health and socioeconomic 
development.3 Efficient treatment of viral infection 
is hindered by the development of drug resistance, 
especially those associated with HIV4–7 and influ-
enza.8 This phenomenon constitutes a public 
health threat, which includes increased morbidity 
and mortality,9 added costs associated with the use 
of more expensive drugs and a greater burden on 
public health systems.2 Consequently, there is an 
obvious requirement for the development of novel 
methods to treat viral infections.

Nanotechnology refers to the development or 
application of particles with dimension(s) that fall 

into the nanometer range (10−9 or one billionth of 
a meter).10,11 The interaction between nanosci-
ence and biological systems is known as ‘nanobio-
technology’,12,13 while the associated area known 
as ‘nanomedicine’ deals with the application of 
nanostructured materials to diagnose, treat and 
prevent diseases.14

The first nanosystems applied in medicine were 
introduced to increase the efficacy of current, yet 
dose-limiting and poorly bioavailable drugs.15 
Currently, nanoparticles are known to exert their 
antiviral activities by various mechanisms. First, 
the unique properties of nanoparticles such as (1) 
small particle size (which can facilitate drug deliv-
ery into anatomically privileged sites),11,16 (2) 
large surface area to volume ratios (which ensures 
that large drug payloads can be accommodated),17 
and (3) tunable surface charge (to facilitate cellu-
lar entry across the negatively charged cellular 
membrane),18,19 make nanoparticles attractive 
tools for viral treatment. Second, it has 
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been demonstrated that nanoparticles can contain 
biomimetic properties,20–22 which result in intrin-
sic antiviral properties. Popular examples of these 
include silver nanoparticles23,24 and dendrim-
ers.25,26 Third, the possibility of drug encapsula-
tion,16,27 functionalization by the formation of 
stable structures,28 or modifications (with poly-
mers such as poly(ethylene glycol) (PEG))17,29 can 
all lead to optimized drug dosing and improved 
delivery by increasing stability30 and drug reten-
tion times.31 Finally, it is believed that drug deliv-
ery can be vastly improved by engineering 
nanoparticles with targeting moieties to increase 
specificity to desired cell types, target tissues or 
sub-cellular compartments.17,19,32 A condensed 
summary of the mechanistic approaches to engi-
neer nanoparticles with improved treatment ben-
efits is shown in the schematic in Figure 1.

Certain challenges exist for the treatment and sub-
sequent eradication of viruses in the infected host. 
One major example is the establishment of reser-
voirs in cellular and anatomically privileged sites 
such as the blood-brain barrier (BBB) and blood-
testis barrier.33 This leads to low-level replication34 
in these compartments, which are inaccessible to 
conventional therapeutics. Nanoparticulate drug 
carriers are, however, able to traverse these mem-
branes and are therefore promising tools to be 
investigated for circumventing this obstacle.35 
Other challenges in viral treatment include the use 
of RNA interference (RNAi) technology – a 

popular molecular approach for the treatment of 
many infectious diseases.36 The inability of RNA 
to cross the cell membrane, due to the large 
molecular weight and anionic charge,37 rapid 
renal clearance, uptake by phagocytes, and toxic-
ity due to stimulated immune response,38 all pre-
sent limitations which prohibits their clinical 
utility. The incorporation of siRNA onto nano-
carriers, however, can also overcome this limita-
tion39 to achieve successful inhibition of viral 
replication.

This review will provide an overview of the most 
recent (past 5 years) and relevant literature, which 
describes the application of nanotechnology for the 
treatment of common viral infections. Examples of 
nanosystems with applications in both drug and 
vaccine delivery for prevention of these viral infec-
tions are also reviewed. Finally, important consid-
erations for nanoparticle antigenicity as well as the 
requirements for the design of nanomaterials, 
which are unique to viruses, are discussed.

Examples of biocompatible systems
A nanopharmaceutical refers to any nanomaterial 
with therapeutic potential, for example, dendrim-
ers, liposomes, micelles and nanocapsules.11,40 
These can function as therapeutic agents, whereby 
the drug is either dissolved, entrapped, encapsu-
lated, adsorbed or chemically attached.41 
Nanoparticles can have various shapes and 

Figure 1.  Multifunctional mechanisms for engineering nanoparticles with benefits in drug delivery.
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chemical compositions42 and can be classified 
according to the way drugs are delivered or by the 
characteristics of the matrix of which it is 

composed.43 Here, we describe the most common 
types of nanocarriers (Figure 2) that are used for 
drug delivery, based on their composition.

Figure 2.  Examples of common nanocarriers used for antiviral drug delivery: (a) nanocapsules,44 (b) 
nanosphere,45 (c) liposome,46 (d) micelle,27 (e) dendrimers,47 and (f) gold nanoparticle.48
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Organic nanoparticles
Organic nanoparticles are the most extensively 
researched type of nanoparticle for drug delivery 
and the most widely approved system for thera-
peutic use in humans.43 The most common types 
of organic nanoparticles are presented as follows.

Polymeric nanoparticles.  Polymeric nanoparticles 
are colloidal solids with sizes ranging from 10 to 
1000 nm. The small size can facilitate capillary 
penetration and uptake by cells resulting in 
increased concentrations at target sites.49 Poly-
mers approved by the World Health Organization 
(WHO) and the Food and Drug Administration 
(FDA) for use in medicine and pharmaceuticals 
include polylactides (PLA), polyglycolides (PGA) 
and poly(lactide-co-glycolides) (PLGA).50 
Poly(D,L-lactide-co-glycolide) (PLG) and 
PLGA-based nanoparticles are most widely used 
due to their superior biocompatibility and biode-
gradability profiles.51 Surface modifications with 
hydrophilic polymers such as PEG are essential to 
reduce non-specific interactions with serum pro-
teins, decrease susceptibility to opsonization52,53 
and to defer uptake by phagocytosis, thereby pro-
longing the drug half-life and further altering the 
biodistribution and pharmacokinetic profile of 
the drug,54 and has thus been considered as the 
‘gold-standard’ of cloaking agent systems.55 Poly-
meric nanoparticles can be classified as nanocap-
sules or nanospheres.

Nanocapsules.  Nanocapsules are hollow 
spheres, in which the drug is confined to an inner 
cavity, surrounded by a polymer coating.56 The 
size can range from 50 to 300 nm, and they are 
characterized by their low density and high load-
ing capacities.49

An example of the use of nanocapsules in enhanc-
ing drug distribution is described;33 limited anti-
viral distribution to brain tissue may be due to 
the permeability glycoprotein (P-gp) efflux trans-
porter. Solutol® HS15 is an excipient that is able 
to inhibit P-gp, thereby improving drug distribu-
tion across the BBB.11 Results from this study 
demonstrated that Solutol® HS15 nanocapsules 
loaded with the HIV protease inhibitor, indina-
vir, showed significantly increased uptake in the 
brain and testes of mice, compared to control 
mice where only indinavir solution was 
administered.33

Nanospheres. These are matrix systems where 
the drug is physically or uniformly dispersed, 

with sizes ranging from 100 to 200 nm in diam-
eter.56,57 Several research studies have been done 
using nanospheres for the treatment of hepatitis 
B virus (HBV),58 herpes simplex virus (HSV),45 
and influenza,59,60 while comprehensive review 
articles on the application of these agents in viral 
treatment are also available.61,62

Liposomes.  Liposomes are spherical63 carriers 
ranging from 20 to 30 nm in size. They are com-
posed of a phospholipid bilayer (which can 
mimic cell membranes and directly fuse with 
microbial membranes),64 containing an aqueous 
core.2 Hydrophilic and lipophilic drugs (or other 
biologically active compounds) can be incorpo-
rated into the inner aqueous cavity or the phos-
pholipid bilayer, respectively.65 Additional 
advantages of liposomes are that they are rela-
tively non-toxic and biodegradable.63 Liposomal 
formulations have been extensively studied in 
vaccine studies due to their ability to act as 
immunological adjuvants.66

Micelles.  Micelles range in size from 10 to 
100 nm.57 These are composed of an inner hydro-
phobic core (which can incorporate poorly water 
soluble drugs) and surrounded by an outer hydro-
philic polymer (such as PEG, which can increase 
circulation time and consequently improve accu-
mulation).49 Examples of these include polymeric 
micelles, which have attracted much attention as 
drug delivery agents with significant therapeutic 
potential.67–69 Drug encapsulation with polymeric 
micelles is one of the most attractive nanotech-
nologies used to improve both the water solubility 
and stability of otherwise technologically limited 
(poorly water soluble and unstable) drugs.70 An 
additional advantage of using micelles in thera-
peutics is that they display a slower rate of disso-
ciation, thereby enabling a longer drug retention 
time, and eventually a higher accumulation of the 
drug at the target site.35

Dendrimers.  Dendrimers are symmetrical, mac-
romolecular, and hyper-branched structures radi-
ating from a central core via connectors and 
branching units, where interaction with its target 
environment is controlled by the terminal 
groups.71 These are globular in nature and com-
prised of three distinct domains (central core, 
branches, and terminal functional groups).72 
They have increased functionality because they 
can encapsulate several chemical moieties, inte-
rior layers and have the ability to display multiple 
surface groups (multivalent surface).35,71

https://journals.sagepub.com/home/tai


L Singh, HG Kruger et al.

journals.sagepub.com/home/tai	 109

Solid lipid nanoparticles.  Solid lipid nanoparticles 
(SLNs) represent an alternative drug delivery sys-
tem to the conventional colloidal nanoparticles, 
described above. The use of SLNs also aims to 
combine the advantages of conventional nanocar-
riers, while avoiding some of their limitations. For 
example, large-scale production of polymeric 
nanoparticles is a major challenge, which limits 
their utility in drug delivery, whereas the produc-
tion of SLNs can be achieved in both cost-effec-
tive and relatively simple ways (e.g. by high 
pressure homogenization and micro emulsion 
techniques).73 Additional advantages of using 
SLNs include increased stability, safety and avail-
ability, and decreased toxicity, with improved 
drug-release profiles, compared to synthetic poly-
mer nanoparticles.74–76

Inorganic nanoparticles
Metallic nanoparticles can be smaller than organic 
nanoparticles, ranging between 1 nm and 100 nm 
in size, while their loading efficacy is much 
higher.35 There are two main approaches for the 
synthesis of metallic nanoparticles: the ‘bottom-
up’ (or self-assembly) approach refers to the con-
struction of the nanoparticle, level by level (e.g. 
atom by atom or cluster by cluster), and the ‘top-
down’ approach uses chemical or physical meth-
ods to reduce the inorganic material to its 
nanosized form.77 The reaction conditions (pH, 
temperature, time, or concentration) can be used 
to modify the nanoparticle characteristics (size 
and shape), while the choice of reducing agent 
can influence properties such as loading capacity, 
release, and aggregation profiles.43

Gold nanoparticles.  Gold nanoparticles (GNPs) 
are widely researched as nanocarriers due to 
their excellent conductivity, flexibility of surface 
modification, biocompatibility, and simplistic 
preparation methods.78 Other advantages 
afforded by their unique physical and chemical 
properties include the gold core (which is inert 
and non-toxic),79 photophysical properties 
(which can facilitate efficient drug release at 
remote sites),80 and versatility of functionaliza-
tion via thiol linkages.81 There are basic GNP 
preparation methods which exist and can pro-
duce nanoparticles of varying diameters (1–
2 nm,82 1.5–5 nm,83,84 or 10–150 nm,85–87 
depending on the application).

Silver nanoparticles.  Silver nanoparticles are the 
most effective of the metallic nanoparticles 

against bacteria, viruses and other eukaryotic 
microorganisms,88 particularly due to the inher-
ent inhibitory and bactericidal potential of sil-
ver,89 but also because of their good conductivity, 
catalytic properties, and chemical stability.64 The 
key mechanisms of action of silver nanoparticles 
are the release of silver ions (which enhances 
antimicrobial activity),90 cell membrane disrup-
tion, and DNA damage.91 The reader is referred 
to a detailed review on the application of silver 
nanoparticles as virucidal agents.92

Other metallic nanoparticles. Various other metal-
lic nanoparticles such as titanium,93 zinc,94 and 
copper,95 as well as metal oxide nanoparticles 
such as iron oxide, zinc oxide, and titanium diox-
ide96 have demonstrated specific antiviral activi-
ties. Others, like platinum nanoparticles, which 
are used for the detection of influenza virus,97 are 
yet to be evaluated.

Core-shell nanoparticles contain a simple spher-
ical core particle, which is completely sur-
rounded by a shell of a different material,98 
which can be monometallic or bimetallic in 
nature.99 Several types of core-shell nanoparti-
cles have been demonstrated to have biomedical 
applications.100–103

The reader is referred to recently published litera-
ture giving a comprehensive account of the appli-
cation of metal and metal oxide nanoparticles in 
the treatment of viral infections.96

Antiviral nanotherapeutics
Several nanomedicines have been approved or are 
currently undergoing investigation for the treat-
ment of viral infections (Table 1). Examples of 
studies investigating the antiviral activities of 
potential nanotherapeutics in development are 
presented in the sections that follow.

HIV
A cure or vaccine for HIV/AIDS remains elu-
sive. Treatment is based on the use of drugs that 
target the various stages in the life cycle of the 
virus. The current antiretroviral (ARV) arma-
mentarium includes six classes of drugs, that is, 
nucleoside/nucleotide reverse transcriptase 
inhibitors (N(t) RTIs),115 non-nucleoside inhib-
itors (NNRTIs),116 protease inhibitors (PIs),117 
entry/fusion inhibitors (FIs),118 CCR5 antago-
nists,119 and integrase inhibitors.120,121

https://journals.sagepub.com/home/tai


Therapeutic Advances in Infectious Disease 4(4)

110	 journals.sagepub.com/home/tai

Ta
bl

e 
1.

 N
an

om
ed

ic
in

es
 w

hi
ch

 a
re

 a
pp

ro
ve

d 
or

 u
nd

er
 e

va
lu

at
io

n 
fo

r 
th

e 
tr

ea
tm

en
t o

f v
ir

al
 in

fe
ct

io
ns

.

N
am

e
C

om
pa

ny
D

es
cr

ip
ti

on
M

ec
ha

ni
sm

 o
f a

ct
io

n
In

di
ca

ti
on

A
pp

ro
va

l y
ea

r/
st

ag
e 

of
 

de
ve

lo
pm

en
t

R
ef

er
en

ce

In
fl

ex
al

 V
®

C
ru

ce
ll,

 
B

er
na

 B
io

te
ch

Vi
ro

so
m

al
 (1

50
 n

m
 

lip
os

om
es

) v
ac

ci
ne

M
im

ic
ki

ng
 n

at
iv

e 
an

tig
en

 p
re

se
nt

at
io

n:
 

Li
po

so
m

es
 m

im
ic

 th
e 

na
tiv

e 
vi

ru
s 

st
ru

ct
ur

e,
 th

us
 a

llo
w

in
g 

fo
r 

ce
llu

la
r 

en
tr

y 
an

d 
m

em
br

an
e 

fu
si

on
R

et
en

tio
n 

of
 th

e 
na

tu
ra

l p
re

se
nt

at
io

n 
of

 a
nt

ig
en

s 
on

 li
po

so
m

al
 s

ur
fa

ce
 

pr
ov

id
es

 fo
r 

hi
gh

 im
m

un
og

en
ic

ity
.

In
fl

ue
nz

a
19

97
H

er
zo

g 
et

 a
l.,

10
4  

M
is

ch
le

r 
an

d 
M

et
ca

lf
e,

10
5  

B
ac

hm
an

n 
an

d 
Je

nn
in

gs
10

6

Ep
ax

al
®

C
ru

ce
ll,

 
B

er
na

 B
io

te
ch

In
ac

tiv
at

ed
 v

ir
os

om
al

 
(li

po
so

m
e)

 v
ac

ci
ne

U
ni

qu
e 

m
ec

ha
ni

sm
 o

f a
ct

io
n 

w
hi

ch
 

m
im

ic
s 

th
e 

na
tu

ra
l p

ro
ce

ss
H

A
V

19
99

B
ov

ie
r10

7

P
eg

In
tr

on
®

M
er

ck
P

EG
yl

at
ed

 in
te

rf
er

on
 

al
fa

-2
b

Im
pr

ov
ed

 s
ta

bi
lit

y 
of

 p
ro

te
in

 th
ro

ug
h 

P
EG

yl
at

io
n

H
C

V
20

01
A

lc
on

ce
l 

et
 a

l.10
8

P
eg

as
ys

®
G

en
en

te
ch

P
EG

yl
at

ed
 in

te
rf

er
on

 
al

fa
-2

b
Im

pr
ov

ed
 s

ta
bi

lit
y 

of
 p

ro
te

in
 th

ro
ug

h 
P

EG
yl

at
io

n
H

B
V,

 H
C

V
20

02
A

lc
on

ce
l 

et
 a

l.10
8

In
fl

uv
ac

®
 

P
lu

s
So

lv
ay

 
P

ha
rm

a/
A

bb
ot

t

Vi
ro

so
m

e 
va

cc
in

e
C

on
ta

in
in

g 
in

fl
ue

nz
a 

su
rf

ac
e 

pr
ot

ei
ns

 
ne

ur
am

in
id

as
e 

an
d 

he
m

ag
gl

ut
in

in
In

fl
ue

nz
a

20
05

W
ak

ni
ne

10
9

Fl
uq

ui
tTM

(S
TP

 7
02

)
Si

rn
ao

m
ic

s 
In

c.
Sh

or
t i

nt
er

fe
ri

ng
 R

N
A

(S
iR

N
A

) t
he

ra
pe

ut
ic

G
en

e 
si

le
nc

in
g

H
5N

1 
an

d 
H

1N
1 

in
fl

ue
nz

a
P

re
cl

in
ic

al
 e

va
lu

at
io

n
Si

rn
ao

m
ic

s11
0

C
er

vi
si

l®

(S
TP

 9
09

)
Si

rn
ao

m
ic

s 
In

c.
Sh

or
t i

nt
er

fe
ri

ng
 R

N
A

(S
iR

N
A

) t
he

ra
pe

ut
ic

G
en

e 
si

le
nc

in
g

H
P

V
P

re
cl

in
ic

al
 e

va
lu

at
io

n
Si

rn
ao

m
ic

s11
0

Vi
va

G
el

®

(S
P

L 
70

13
)

St
ar

ph
ar

m
a

D
en

dr
im

er
Ly

si
ne

-b
as

ed
 d

en
dr

im
er

 w
ith

 
na

ph
th

al
en

e 
di

su
lf

on
ic

 a
ci

d 
su

rf
ac

e 
gr

ou
ps

H
IV

, H
SV

C
lin

ic
al

 tr
ia

l
(n

um
be

r:
 N

C
T0

07
40

58
4)

 
(a

pp
ro

ve
d 

fo
r 

us
ed

 a
ga

in
st

 
ba

ct
er

ia
l v

ag
in

os
is

)

St
ar

ph
ar

m
a11

1

D
er

m
aV

ir
G

en
et

ic
 

Im
m

un
ity

Th
er

ap
eu

tic
 v

ac
ci

ne
Sy

nt
he

tic
 p

la
sm

id
 D

N
A

 im
m

un
og

en
 

ex
pr

es
si

ng
 1

5 
an

tig
en

s,
 in

du
ci

ng
 

si
gn

ifi
ca

nt
 e

xp
an

si
on

s 
of

 th
e 

H
IV

-
sp

ec
ifi

c 
pr

ec
ur

so
r/

m
em

or
y 

T 
ce

ll 
po

ol
.

H
IV

C
lin

ic
al

 tr
ia

l
(n

um
be

r
N

C
T0

02
70

20
5

R
od

ri
gu

ez
 

et
 a

l.11
2

D
or

av
ir

in
e

(M
K

-1
43

9)
M

er
ck

So
lid

 d
ru

g 
na

no
pa

rt
ic

le
 

fo
rm

ul
at

io
n

N
on

-n
uc

le
os

id
e 

re
ve

rs
e 

tr
an

sc
ri

pt
as

e 
in

hi
bi

to
r

H
IV

C
lin

ic
al

 tr
ia

l
(n

um
be

r:
 N

C
T0

25
49

04
0)

M
ol

in
a 

et
 a

l.11
3

A
R

B
-

00
14

67
 

TK
M

-H
B

V

A
rb

ut
us

 
B

io
ph

ar
m

a
W

et
 li

pi
d 

na
no

pa
rt

ic
le

Li
pi

d 
pa

rt
ic

le
 c

on
ta

in
in

g 
th

re
e 

R
N

A
i

th
er

ap
eu

tic
s 

th
at

 ta
rg

et
 th

re
e 

si
te

s 
on

 
th

e 
H

B
V 

ge
no

m
e

H
B

V
C

lin
ic

al
 tr

ia
l

(n
um

be
r:

 N
C

T0
26

31
09

6)
Se

to
 e

t a
l.11

4

H
AV

, h
ep

at
iti

s 
A

 v
ir

us
; H

B
V,

 h
ep

at
iti

s 
B

 v
ir

us
; H

C
V,

 h
ep

at
iti

s 
C

 v
ir

us
; H

IV
, h

um
an

 im
m

un
od

ef
ic

ie
nc

y 
vi

ru
s;

 H
P

V,
 h

um
an

 p
ap

ill
om

av
ir

us
; H

SV
, h

er
pe

s 
si

m
pl

ex
 v

ir
us

.

https://journals.sagepub.com/home/tai


L Singh, HG Kruger et al.

journals.sagepub.com/home/tai	 111

The combination of three or more drugs, known 
as highly active ARV therapy (HAART) has sig-
nificantly improved the expectancy and quality of 
life of HIV-infected individuals.122 This type of 
therapy, however, is not devoid of unwanted 
occurrences; suboptimal adherence, heavy pill 
burdens, toxicity and other negative side effects, 
are all limitations of currently available therapeu-
tics. Moreover, the chronic nature of HIV/AIDS 
infection requires that life-long treatment be 
taken, which can result in the development of 
drug resistance. It is therefore essential that novel 
methods to enhance the inhibition of HIV infec-
tion be investigated and developed.

Nanotechnology-based drug systems for HIV 
treatment represent an important option that 
requires ongoing investigation. Modern drug 
design, which can incorporate ARV drug delivery 
with nanosystems can decrease the dosage 
requirements and toxic side effects associated 
with current heavy pill burdens (which reduces 
the possibility of drug resistance), thereby improv-
ing the safety and efficacy profiles of the drug.35

Different reviews have been published that focus 
specifically on HIV/AIDS vaccine develop-
ment123–125 and delivery of siRNA for the treat-
ment of HIV.37 The reader is also referred to 
comprehensive accounts on conventional methods 
for HIV treatment and the recent advances using 
different types of nanoformulations with their 
respective applications in HIV treatment.11,126,127

In a study performed by Chiodo et  al.,128 the 
NRTI drugs abacavir (ABC) and lamivudine 
(3TC) were attached to glucose-coated GNPs 
and evaluated for their anti-HIV activity, in vitro. 
Smart functionalization was achieved via the pri-
mary hydroxyl groups of the drugs, through an 
ester bond that can be cleaved off in acidic condi-
tions (e.g. in the vagina to inhibit viral replica-
tion), to render the hydroxyl group available to 
facilitate chain termination – a fundamental 
mechanism of action of the NRTI class of drugs. 
These results illustrate a new level of multi-func-
tionalization of GNPs as multivalent drug deliv-
ery systems for the treatment of HIV.128

Regulatory T (Treg) cells are a specialized subpop-
ulation of T-cells129 that are important compo-
nents of the immune system130 and are also 
susceptible to HIV infection.131 Infection with 
HIV can lead to immune hyperactivation, which 
can subsequently result in erosion, depletion, or 

exhaustion of T-cells. Treg cells are therefore of 
significant importance during HIV infection 
because of the potential to suppress immune 
hyperactivation and inflammation,132 thereby pre-
venting HIV disease progression. Jaramillo-Ruiz 
et al.,133 demonstrated for the first time that car-
bosilane dendrimers can be used for the preven-
tion of Treg cell infection with HIV, in vitro. The 
negative phenotypic effects and decreased func-
tionality of these cells due to HIV infection were 
also decreased with the application of these den-
drimers. In addition, high biocompatibility and 
significant reduction in p24 antigen production 
was observed in cell culture and intracellularly.133

In a study by Parboosing et al.,134 RNA decoys in 
the form of a 16-mer oligoribonucleotide origi-
nating from the stem loop 3 of the HIV packaging 
signal, were attached to dendrimers in an effort to 
disrupt the packaging process of the HIV life 
cycle. The results of this study demonstrated effi-
cient delivery into lymphocytes and modest cyto-
protective effect against HIV infection.134

Jayant et al.,135 demonstrated that an ARV (teno-
fovir) and an investigational latency-reversing 
drug136 (vorinostat) can be co-encapsulated on 
ultrasmall (10 ± 3 nm) iron oxide nanoparticles. 
This research achieved a sustained drug release 
period (increased by 30%) showing absolute drug 
release profiles over a 5-day period with simulta-
neous activation of latent HIV in cultured human 
astrocytes. Improved transmigration ability across 
the BBB and in vitro antiviral efficacy was also 
demonstrated.135

Similarly, there has been a multitude of other 
studies that have investigated nanoparticles as 
novel agents in ARV drug delivery,137–139 other 
small molecule HIV inhibitors,140,141 and in vac-
cine development.142

HBV
HBV causes inflammation of the liver and is the 
cause of chronic infection in approximately 240 
million people. Complications of HBV infection 
include cirrhosis and liver cancer and accounts 
for more than 780,000 deaths per year.143 Current 
anti-HBV nano-therapy includes interferon 
(IFN)-α, pegylated IFN (Pegasys®), lamivudine 
(Epivir®), adefovir (Hepsera®), entecavir 
(Baraclude®), telvivudine (Tyzeka®), and tenofo-
vir (Viread®).144 Limitations of anti-HBV treat-
ment include high costs, undesirable side effects, 
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the risk of liver failure during hepatic flares, and 
development of drug resistance.145

New developments for HBV treatment using 
nanotechnology are being investigated. In an in 
vitro study done by Wang et al.,146 different types 
of cationic nanoparticles composed of biodegrad-
able polymers were prepared by nanoprecipita-
tion and solvent evaporation methods. These 
nanoparticles were evaluated for their transfec-
tion efficiencies in delivering siRNA and DNA to 
finally achieve inhibition of hepatitis B surface 
antigen (HBsAg) production. The results demon-
strated that methoxy poly (ethyleneglycol)–
poly(lactide) (mPEG–PLA) nanoparticles, 
containing a polyethyleneimine (PEI) layer, 
achieved the highest ant-HBV effect, and that 
successful delivery of siRNA is dependent on 
both size and surface charge.146

Hepatitis C virus
Hepatitis C virus (HCV) infects approximately 
130–150 million people globally, with progression 
to liver cirrhosis or liver cancer being a common 
occurrence. Approximately 500,000 people die 
each year as a result of HCV-related liver dis-
ease.147 Standard nano-treatment for HCV infec-
tion is based on the use of PEGylated IFN and 
ribavirin.148

Peginterferon α-2a (Pegasys®) was approved by 
the FDA for the treatment of HCV in 2002, while 
Peginterferon α-2b (PegIntron ®) was available in 
2001. The latter drug has a molecular mass of 
31 kDa showing superior results in clinical studies 
(versus the un-PEGylated form IFN-α2b of 
19 kDa).149

It has been demonstrated that IFN-α can be effi-
ciently coupled to GNPs (physical binding), com-
plexed with hyaluronic acid (HA) (via a thiolated 
interaction) for the target-specific and long-acting 
delivery in mouse models. These nano-complexes 
remained in the liver for 7 days post-injection 
(when compared to native IFN-α and PEG-
Intron), thus offering great potential for the 
enhanced and prolonged treatment of HCV 
infection.150

Notable results showing >99% HCV inhibition 
were reported by Wang et  al. where nanozymes 
were constructed using GNPs functionalized with 
RNAse A and anti-HCV oligonucleotides, for 
active cleavage of sequence-specific HCV RNA in 

both cell culture and mouse models. These 
nanozymes also displayed excellent stability 
against proteinase degradation, effective internal-
ization, and good toxicity profiles.151

In a separate study152 cross-linked polymeric 
micelles (CLPM) were used to target HCV, in 
vitro. The micelles were loaded with the recently 
identified potent anti-HCV compound, campto-
thecin (CPT),153 which is also associated with 
limitations such as poor water solubility and 
chemical instability. The CLPMs used in this 
study enabled the formation of suitable amphi-
philic micelles containing a hydrophobic core and 
hydrophilic shell, which demonstrated high load-
ing capacity for CPT while maintaining HCV 
antiviral activity and reducing cytotoxicity.

In a study done by Moon et al.,154 siRNA target-
ing the proviral host factor required for HCV rep-
lication, was attached to lipidoid nanoparticles 
(lipid-like delivery molecules)155 and investigated 
for its antiviral properties in mouse models. The 
results showed potent anti-HCV activity over sev-
eral days, and could have important implications 
for treatment in patients who are non-responsive 
to current HCV drug regimens.154

Cationic liposomes, particularly cholesterol-
based types, are well suited for clinical application 
due to the decreased toxicity. Vitamin E 
(α-tocopherol) is rich with lipid-soluble antioxi-
dants, with physiological pathways that can facili-
tate targeted delivery from the serum to the 
liver.36 Vitamin E was attached to cholesterol-
based cationic liposomes and used to effectively 
deliver inhibitory siRNA specifically to the liver in 
mouse models. Both HCV core antigen produc-
tion and firefly luciferase activity (used as a 
reporter gene to determine extent of HCV repli-
cation)156 were suppressed.36

Influenza
Influenza is a highly infectious respiratory dis-
ease157 with epidemics which are associated 
with morbidity worldwide,158 while annual epi-
demics and sporadic pandemics results in the 
deaths of millions of people. Antigenic shifts 
and mutations of the genome between different 
species of influenza results in the high degree of 
variation, thereby enabling the emergence of 
novel influenza strains and drug resistance.159 
The emergence of new strains continues to pose 
a public health threat.160
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STP702 (FluquitTM) from Sirnaomics is a poly-
mer-based nanotherapeutic which is currently 
under preclinical investigation. This incorporates 
siRNA targeting the conserved regions of influ-
enza for effective antiviral activity against H5N1 
(avian flu), H1N1 (swine flu), and newly emerg-
ing H7N9.161

‘Nanotrap’ particles are thermoresponsive hydro-
gels which are capable of capturing live infectious 
virus, viral RNA, and viral proteins.162 This type 
of novel technology can be extended to treatment 
of infectious diseases such as the influenza virus. 
Hendricks et al.,163 used liposomes for the deliv-
ery of glycan sialylneolacto-N-tetraose c (LSTc)-
sialoside – a synthetic decoy receptor for influenza 
binding. The results showed that these liposomes 
are highly effective at competitively binding and 
capturing influenza A viruses, and can inhibit 
infection of target cells in a dose-dependent 
manner.163

Hemagglutinin (HA) and neuraminidase (NA) 
are influenza glycoproteins, which function in 
viral attachment (to sialic-acid containing recep-
tors on the cell surface) and release, respec-
tively.164 Oseltamivir is a NA inhibitor that 
inhibits cell–cell spread and ongoing influenza 
transmission from occurring.165 In a study by Li 
et  al.,166 oseltamivir-modified silver nanoparti-
cles were shown to efficiently decrease H1N1 
infection by inhibiting both HA and NA activi-
ties, in vitro. It was shown that prevention of 
DNA fragmentation, chromatin condensation, 
and caspase-3 activity also contributed to the 
antiviral properties of these nano-constructs. 
The toxicity profiles of these oseltamivir-modi-
fied silver nanoparticles, evaluated by cytopathic 
effect, transmission electron microscopy, and 
cell viability assays, were also demonstrated to 
be enhanced in MDCK cells, when compared to 
oseltamivir controls.166

In another study, titanium dioxide (TiO2) nan-
oparticles functionalized with DNA fragments 
targeting the 3′ non-coding region of influenza 
A virus were synthesized using a polylysine 
linker. These nanocomposites were able to 
enter cells without transfection agents and were 
demonstrated to be efficient inhibitors of influ-
enza A virus, in vitro. Control samples contain-
ing random DNA sequences, unbound DNA 
fragments in the presence of nanoparticles, and 
naked nanoparticles showed minor antiviral 
effects.167

HSV
HSV is the causative agent of orofacial lesions, 
encephalitis (HSV-1),168 genital (HSV-2) infec-
tions,169 or disseminated disease.170 The standard 
treatment for HSV infections is acyclovir,171 with 
valacyclovir and famciclovir being precursor 
drugs with better bioavailability.172

Acyclovir is used for the management of HSV 
with treatment modalities including oral, paren-
teral, or topical application.173 There are, how-
ever, limitations associated with these treatment 
modes, which include poor oral bioavailability 
(15–30%), poor patient compliance, and low 
skin permeability, respectively.174 Buccal admin-
istration of drugs provides an alternative route to 
improve efficiency and absorption of otherwise 
poorly absorbed drugs.175 Nanospheres were 
evaluated as delivery agents for the buccal deliv-
ery of acyclovir in an effort to increase bioavaila-
bility. In vivo studies in rabbits showed a marked 
increase in the absorption of acyclovir-loaded 
nanospheres with peak plasma concentrations 
three fold higher than the free drug using oral 
dosing. The results also showed that the maxi-
mum drug concentration was prolonged (6 h ver-
sus 2 h), and this can reduce the frequency of 
drug administration.176

Several studies have demonstrated increased 
HSV inhibition using acyclovir-loaded nanoparti-
cles,170,177 and the inherent antiviral action of sil-
ver nanoparticles.178–180 Increased bioavailability 
was also demonstrated in nanoparticles loaded 
with anti-herpetic siRNA in mice181 and acyclovir 
in rabbits.182 Another recent study conducted in 
rat models, showed that hybrid polymeric nano-
particles loaded with acyclovir effectively 
improved permeability through vaginal mem-
branes, and can increase the tissue distribution 
and bioavailability compared to the free drug. 
This will have important implications for the clin-
ical therapy of HSV in the female population.183 
Other in vivo studies demonstrated similar results 
with increased drug retention times184,185 as well 
as enhanced dermal delivery.186

Human papillomavirus
Epithelial cells are the target cells for human pap-
illomavirus (HPV) infection and can result in a 
range of symptoms, varying from common warts 
to cervical neoplasia and cancer. There are more 
than 100 types of HPV that have been classified, 
with only a subset being identified as high-risk.187
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STP909 (Cervisil®) is a nanobased drug candi-
date, which incorporates siRNA for the treatment 
of HPV16 and HPV18 – two of the high-risk gen-
otypes accounting for approximately 70% of cer-
vical cancer cases. The results of in vitro studies 
show that strong duplexes are formed with the 
mRNA from the E7 genes in both HPV16 and 
HPV18, while in vivo rabbit studies demonstrate 
that these nanoparticles exert their antiviral activ-
ity by knock-down technology of the E7 gene.110 
The reader is referred to several other gene silenc-
ing studies targeting the E7 gene in mice mod-
els188 and mammalian cells,189 as well as vaccine 
studies190,191 investigating nanoparticles in vac-
cine formulations.

Other viruses
SPL7013, marketed as VivaGel® (Starpharma, 
Melbourne, Australia), is a poly-L-lysine den-
drimer-based pharmaceutical that has potent 
antiviral action against the sexually transmitted 
HSV, HIV69,192, and HPV.193,194 Safety studies in 
clinical trials, however, demonstrated mild irrita-
tion and inflammation in the participants from 
the VivaGel® arm of the study.195,196

Zika virus (ZIKV) is a mosquito-borne and sexu-
ally transmitted infection, which the WHO 
declared as a global emergency outbreak in 
2016,197 affecting more than 20 countries in the 
Americas alone.198 The unavailability of effective 
drugs or a vaccine hinders the efforts to control 
ZIKV infection globally.199 VivaGel® has also 
been shown to have potent antiviral activity 
against ZIKV.111

Respiratory syncytial virus (RSV) is the leading 
cause of severe lower tract respiratory disease, 
including bronchiolitis and pneumonia,200,201 and 
is the leading cause of hospitalization of infants.202 
It can also cause severe respiratory illness in the 
elderly and immunocompromised populations. 
ALN-RSV01 is a lipid-based nanoparticulate sys-
tem containing siRNA and targets the nucleocap-
sid ‘N’ gene, a key viral protein of RSV. This was 
the first RNAi-based therapy approved for clini-
cal trials and has since entered human phase II 
clinical trials, which demonstrate both safe and 
promising antiviral effects.203,204

Human parainfluenza 3 (HPIV-3) is an airborne 
virus, which infects human epithelial cells,205 and 
it is the causative agent of respiratory tract disease 
in infants and children.206 A recent study 

demonstrated inhibition of HPIV-3 replication, 
probably due to a cell-virus blocking mechanism 
using silver nanoparticles. The results of this 
study demonstrate that the inhibitory activity is 
dependent on both the size and zeta potential of 
the nanoparticles.178

Ebola virus disease (EVD) is an often fatal and 
highly contagious disease in humans and non-
human primates and is responsible for sporadic 
outbreaks of Ebola hemorrhagic fever.207,208 
TKM-130803, developed by Tekmira 
Pharmaceuticals, is a lipid-based nanosystem 
containing siRNA directed against EVD. Results 
from a recent clinical trial showed that the drug 
was well tolerated, however, no significant pro-
tection was achieved in infected patients. This 
may have been attributable to the high viral 
loads and advanced stage of disease of the 
enrolled patients.209 These results are in con-
trast to studies using non-human primates,210,211 
where TKM-130803 was protective following 
administration of lethal doses Ebola virus. 
Further investigation into the drug formulation 
and dosage requirements of TKM-130803 are 
therefore warranted.

Human norovirus (HuNoV) has emerged as a 
leading cause of gastroenteritis outbreaks world-
wide. The lack of effective antiviral treatment212 
against HuNoV is due to the absence of an appro-
priate animal model and inability to propagate 
the virus in cell culture, required for antiviral 
research. Gold/copper sulfide (AuCuS) core-shell 
nanoparticles have demonstrated rapid antiviral 
activity against GI.1 (Norovirus) virus-like parti-
cles. The AuCuS nanoparticles interact with the 
capsid proteins causing denaturizing (causing dis-
ruption and ultimately inactivation), thereby 
resulting in its virucidal activity.213 Virus inactiva-
tion by metallic nanoparticles is a promising alter-
native to other physical and chemical methods.

Nanovaccines
Nanovaccinology has applications in both pro-
phylactic and therapeutic approaches and can be 
used to either increase antigen processing or pres-
entation and/or as an immunostimulatory adju-
vant.51 This approach offers many advantages 
over traditional vaccine design; it has the poten-
tial to overcome the limitations associated with 
conventional vaccines (weak immunogenicity, 
intrinsic in vivo instability, toxicity and the 
requirement of multiple administrations).214
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The enhanced humoral and cellular immune 
response that is elicited by nano based vaccines is 
due to the smaller size – which increases uptake 
by phagocytic cells, the gut-associated lymphoid 
tissue, and the mucosa-associated lymphoid tis-
sue. This subsequently leads to enhanced antigen 
recognition and presentation.214

Surface modification of these nanocarriers with 
targeting moieties (peptides, carbohydrates, or 
antibodies) can facilitate specific and selective 
immune responses by targeting specific receptors 
on the surface of various immune cells.215–217 An 
additional benefit of incorporating nanoparticles 
in vaccine formulations is accomplishing slow 
and sustained release of antigens or adju-
vants.51,214 Nanovaccines can also eliminate the 
requirement for cold-chain transport or storage as 
the formulation can be lyophilized, thereby pro-
longing shelf-life over an increased range of tem-
peratures (from 0°C to 4°C).2 Another major 
advantage of using nanoparticles in vaccine deliv-
ery is that the sizes of these particles are approxi-
mately the same as viruses and bacteria, which 
the immune system readily identifies.91 Examples 
of key vaccine studies incorporating nanotechnol-
ogy are presented in the following section.

The occurrence of hepatitis A virus (HAV) is spo-
radic and epidemic in nature and is most closely 
associated with food-borne infections, transmit-
ted via the fecal–oral route.218 No specific treat-
ment for HAV exists; however, it has been shown 
that cyclosporine A and silibinin can inhibit viral 
replication.219 Epaxal® is an approved, liposomal-
based vaccine for the prevention of HAV15 and 
can be applied as an adjuvant with immuno-
potentiating reconstituted influenza virus (IRIV); 
containing purified influenza antigens (neurami-
nidase and haemagglutinin).220 Liposomes (viro-
somes) have been used to prepare these 
aluminum-free vaccines based on formalin-inacti-
vated HAV (strain RG-SB).107 Exapal® demon-
strates good immunogenicity, efficacy, and 
tolerability in both adults and children.221

Limitations of parenteral vaccines include 
requirements such as trained medical personnel, 
cold-chain maintenance, danger of reusing nee-
dles, high-dose regimens, and possibility of non-
responsive immune response.222 Mucosally 
administered vaccines are therefore an alternative 
approach that requires investigation. Chitosan, 
with its non-toxic, biodegradable and good bio-
logical profile, was investigated for the ability to 

form positively charged nanoparticles to facilitate 
the incorporation of other negatively charged 
therapeutic proteins or antigens by electrostatic 
interactions.223 Both humoral and mucosal 
immune responses were elicited in mouse mod-
els, making this approach a valuable gene delivery 
system for nasal vaccination against HBV.

HepaXen is a liposome-based vaccine, which was 
initially intended to have antiviral action against 
hepatitis A, C, and E. Preclinical studies with this 
vaccine, which incorporates recombinant hepati-
tis B surface antigen and plasmid DNA encoding 
the protein, elicited an immune response which 
was 20 times greater than that of a leading pro-
phylactic vaccine.224 It is, however, uncertain 
whether a clinically valid vaccine candidate will 
become available,225 as the last update from 
Lipoxen (the bio-pharmaceutical company 
involved in HepaXen’s development) was from a 
report in 2008, which stated that a partner organ-
ization (Serum Institute of India) would be 
responsible for the vaccines co-development.226

Inflexal® V is a licensed virosomal adjuvant-based 
influenza vaccine, which has been on the market 
since 1995. The virosomes consist of reconstituted 
influenza virus envelope proteins, lacking the inner 
core and nucleic acid. Inflexal® V is extremely bio-
compatible and efficacious as it mimics natural 
infection. This vaccine also represents a good 
immunogenicity profile and is effective in immu-
nocompromised and immunocompetent adults, 
children, and the elderly.104 Influvac® is another 
licensed surface antigen inactivated subunit vac-
cine against influenza infection, showing good 
immunogenicity and safety profiles.109,227

In a study done by Tao et al.,228 the highly con-
served extracellular matrix 2 protein (M2e) of 
influenza A virus was attached to 12 nm GNPs 
via thiol-gold interactions. Vaccination in mouse 
models provided complete protection following 
exposure to lethal PR8-H1N1 influenza, when 
the adjuvant CpG (a cysteine-guanine rich oli-
gonucleotide) was added to the M2e-gold 
conjugates.228

A number of other reports have been published 
that report results on influenza vaccines and the 
success in eliciting protective immunity.228–233 
The reader is also referred to literature on recent 
vaccine research done on other viruses such as 
Ebola virus,234 RSV,235–237 HPV,190 norovirus, 
and rotavirus.229
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Nanoparticle uptake
Uptake is an important consideration in the 
design of nanotherapeutics, because this will have 
a direct influence on the therapeutic load, and 
hence the appropriate dose, entering the cells. 
Variations in the physical properties of the nano-
particles, as well as differences in the cellular 
membrane characteristics, can affect the efficacy 
of the uptake process.238,239

Accordingly, nanoparticle size is a major determi-
nant of cellular uptake with approximately 50 nm 
in diameter being optimum for non-phagocytic 
cells.239 Various ligands (proteins or peptides) can 
be used to enhance cellular uptake.240 For exam-
ple, the HIV-derived TAT peptide is a well-recog-
nized cell penetrating peptide, which can be used 
to facilitate cellular entry.241,242 The surface charge 
of the nanoparticle has influence on whether or not 
it can traverse the negatively charged cell mem-
brane,18 whereby increasing the overall surface 
charge of the nanoparticle can result in increased 
uptake across cellular membranes.239

Mechanisms of cellular internalization of nano-
particles include phagocytosis, macropinocytosis, 
caveolar-mediated endocytosis, or clathrin-medi-
ated endocytosis.19 The size of the nanoparticle 
also determines the mechanism by which nano-
particles enter the cells and where it subsequently 
localizes intracellularly.11 It has recently been 
demonstrated that the shape of nanoparticles is 
also a determining factor of the mechanism of 
uptake.243–247 Therefore, knowledge of both of 
these aspects is invaluable in the engineering of 
nanoparticles targeted to specific micro- 
environments.

Antigenicity
The complement system forms part of the 
immune system and can be classed into four 
pathways (classical, alternate, lectin, and lytic 
pathways), which can be stimulated by synthetic 
materials.248 The classical complement pathway 
is driven by antigen/antibody complex formation, 
while the others are antibody independent.249 
Certain nanocarriers, such as immunoliposomes 
and carbon nanotubes, are able to activate the 
complement system,250 and can therefore pro-
mote opsonization or clearance of foreign nano-
materials,251 thereby limiting its in vivo utility.

As described earlier, PEG is an important poly-
mer for incorporation into nanoparticles (and 

drug carriers in general), mainly to facilitate 
enhanced bioavailability and therapeutic efficacy. 
The presence of anti-PEG antibodies has been 
demonstrated in patients receiving PEGylated 
drugs, but also in healthy individuals who remain 
unexposed to PEGylated therapeutics.252 In addi-
tional, PEG polymers and PEG-like structures 
may be present in various consumer products,253 
cosmetics,254 laxatives, and other pharmaceutical 
applications.51,255 In this regard, antibodies that 
are specifically directed at PEG may compromise 
the safety, efficacy256, and tolerance257 of 
PEGylated nanocarriers.

Nanoparticle biodegradation and 
elimination
As the range of nanoparticles and their respective 
applications in medicine increases, it also becomes 
increasingly necessary to better understand the 
biodegradation processes. Biodegradation pro-
cesses are also a critical determinant of sustained 
drug release and biodistribution profiles.258 A sys-
tematic and complete analysis of the absorption, 
distribution, metabolism, and excretion pharma-
cokinetics of nanoparticles will result in improved 
and rational drug design.259 Several factors, such 
as polymer composition, tacticity, hydrophobic-
ity/hydrophilicity profiles, particle size, and 
molecular weight, can affect the rate of degrada-
tion.260 Nanoparticle degradation has, however, 
been poorly studied at the cellular level,261 and 
there is a paucity of information from in vivo 
studies.

Eventually, nanoparticles must exit the cell (via 
exocytosis) if biodegradation did not occur. The 
rate of exocytosis depends largely on nanoparticle 
composition and surface properties. For instance, 
cationic particles that tend to agglomerate intra-
cellularly262 have a slower rate of elimination 
compared to PEGylated particles that avoid pro-
tein interaction and subsequent agglomeration.263 
Subsequently, nanoparticles are excreted from 
the body. Nanoparticles <5 nm may be excreted 
in the urine while larger particles are often reab-
sorbed into systemic circulation and excreted 
mainly via the liver, kidneys, or colon.264,265

Some nanoparticles may be too large to undergo 
renal clearance and can accumulate in the body 
since they cannot be degraded.11,49 Uptake by 
macrophages of the mononuclear phagocytic sys-
tem (MPS) can then modify/increase blood circu-
lation time.266 This also has important implications 
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for viruses such as HIV, which infect and reside in 
these cells.

Limitations of nanoparticles as therapeutics
The poor permeability of biological membranes 
can limit the use of many important therapeutic 
agents.267 Furthermore, not all cell types have 
the required machinery to conduct any one of 
the endocytotic pathways (macropinocytosis, 
phagocytosis, clathrin-mediated endocytosis, 
caveolin-mediated endocytosis, and clathrin- 
and caveolin-independent endocytosis),268 
thereby limiting uptake and utility of nanoparti-
cles in medicine.

Non-specific cellular uptake can be defined as 
the internalization of extraneous materials and is 
characterized by poor material selectivity.269 
Non-specific uptake of nanoparticles by mac-
rophages (which are the main component of the 
immune system) and organs of the reticuloen-
dothelial system (e.g. liver and spleen) presents a 
significant limitation for its use as therapeutic 
agents. This phenomenon results in removal of 
the nanoparticles from circulation before reach-
ing the target sites, thereby reducing treatment 
efficacy.270,271 A common approach to overcome 
non-specific interactions is to introduce PEG 
molecules with an optimum molecular weight 
onto the nanoparticle surface272 and the use of 
active targeting ligands.269

Certain physical processes that enable contact 
between nanoparticle surfaces can cause aggrega-
tion of nanoparticles, thereby resulting in clus-
ters, which renders the particles larger than the 
nanometer range. This has important implica-
tions for the uptake,273 persistence,274 toxic-
ity,275,276 fate, and mobility277 of nanoparticles. 
The use of polymers, which act as steric stabiliz-
ers on the nanoparticle surface, however, can 
decrease aggregation in aqueous suspensions.278 
Other technical limitations of systemically admin-
istered nanoparticle-based therapeutics include 
uptake by the reticuloendothelial system and 
macrophages (discussed before), renal and biliary 
clearance, and enzymatic degradation of any pro-
teins that may be present.279,280

As the range of nanoparticles and their utility in 
biomedical applications increases, so too does the 
requirement for toxicity studies, to evaluate the 
corresponding safety concerns in humans. 
Important parameters to consider include type of 

nanoparticle and its surface modification, dosage 
administered and the biodistribution at both cel-
lular and organismal levels.281 Examples of toxic-
ity concerns include the effects of nanoparticle 
accumulation, circulation time,282 and subse-
quent slow elimination or clearance.259 
Nanoparticle toxicity can potentially result in pul-
monary toxicity,283 renal and hepatotoxicity,284 
neurotoxicity,285 and spermatoxicity.286

Nanoparticle requirements that are unique 
to viral infections
Viruses are obligate intracellular parasites whose 
interactions with host cells often comprise a vari-
ety of receptor-ligand interactions. The intrinsic 
characteristics of viral disease, which include 
complexities in life cycles, different stages of rep-
lication in different sub-cellular compartments or 
organelles, differences in replication dynamics, 
the possibility of latent infection in inaccessible 
biological compartments and the development of 
drug resistance, all result in unique requirements 
for drug design.

Nanotechnology has been shown to be highly 
effective for biomedical applications such as can-
cer therapy,287 with several marketed compounds 
such as Caelyx® and Doxil®.288 A major limitation 
of chemotherapeutic agents, however, is the lack 
of specificity to the tumorous site, thereby neces-
sitating large doses of toxic drugs to be delivered 
in order to achieve sufficient concentrations.287

An important requirement for any effective thera-
peutic agent is delivery to the appropriate place at 
the appropriate concentrations for the appropri-
ate period of time.289 Two types of targeting 
mechanisms are possible. Passive targeting can 
occur due to increased permeability or leakiness 
(which can be caused by malignancy or inflam-
mation) of the local vasculature. This results in 
the diseased area becoming more permissive to 
the accumulation of the nanotherapeutic agent. 
On the other hand, active targeting requires 
ligand (peptide, antibody, etc.) attachment to 
direct the nanotherapeutic to specific receptors, 
epitopes, or sites.11 Active targeting is an impor-
tant requirement for the treatment of virus infec-
tion because many antiviral drugs are required to 
localize at specific sub-cellular regions or orga-
nelles, which is dependent on the stage of replica-
tion and the mode of action of the drug. For 
example, integrase inhibitors preventing the 
strand transfer reaction of the HIV life cycle 
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requires activity specifically in the nucleus of the 
cell where this process occurs.290 Active targeting 
by incorporating a nuclear localization signal on 
the nanocarrier, for example, is therefore desira-
ble to enhance specificity.

As previously mentioned, the size of the thera-
peutic is another critical consideration for infec-
tious disease drug development, where entry to 
biologically inaccessible compartments (example 
viruses traversing the BBB and blood-testis bar-
rier)33 is necessary to prevent the establishment of 
latent infection with ongoing low-level replica-
tion. The BBB is a compactly controlled and 
selectively permeable barrier,291 which restricts 
the passage of many substances, thereby hinder-
ing drug delivery (in efficient concentrations) 
from the blood to the brain.292 HIV is able to 
establish latency in the brain where there is no 
exposure to ARV drugs.291 Replication in this 
compartment can lead to several neurological dis-
orders.293 Nanocarriers have been successfully 
developed, which are capable of overcoming these 
barriers to achieve both targeted and specific 
delivery.291,294 The increased ability of ARV-
conjugated nanoparticles to cross the BBB, while 
therapeutic efflux is reduced, is necessary to con-
trol and limit viral replication in this anatomically 
privileged site.295 The use of nanoparticles to 
facilitate entry into these compartments is there-
fore an excellent option due to the small size. The 
reader is referred to recent literature on the chal-
lenges and recent advances in the treatment of 
HIV across the BBB.296,297

The drug payload to nanocarrier size ratio is an 
important consideration. High drug-loading and 
entrapment efficiency298 is necessary to ensure 
that sufficient concentrations at the target site is 
available, thereby decreasing the possibility of the 
development of drug resistance. Targeted deliv-
ery of nanoformulations directly to the target site 
will also increase drug efficacy.299

Premature drug-release has important implica-
tions for the treatment of systemic and intracel-
lular infections.64 Nanoparticles are retained for 
much longer periods than conventional thera-
peutics in the body91 and therefore slow and 
sustained release is achievable. Controlled and 
sustained release is also an important considera-
tion to ensure that the drug concentration is 
maintained within the therapeutic window,81 
thereby also decreasing the possibility of drug 
resistance.

Conclusion and future perspective
Nanoparticle-based delivery systems present new 
opportunities to overcome challenges associated 
with conventional drug therapies and have there-
fore attracted enormous interest in the treatment 
of viral infections. Nanomaterials can be engi-
neered to incorporate conventional antiviral 
properties with those modifications that are 
unique to nanosystems (ultra small and control-
lable size, large surface area to volume ratio, and 
the ability to tailor the surface with the possibility 
of multi-functionalization). This is undoubtedly a 
promising tool for biomedical research and clini-
cal use.

The recent advances in nanomedicine [ability to 
encapsulate or incorporate drugs with surface 
modification, targeted drug delivery (intracellu-
larly or to specific cell populations), biocompat-
ibility, and the ability to achieve slow and 
sustained drug release] offers superior therapeu-
tic potential, compared to conventional 
approaches. These modifications can overcome 
common limitations associated with nanoparti-
cles for biomedical applications, including 
increased permeability of biological membranes 
with associated specific uptake, and decreased 
toxicity profiles. Similarly, poorly water soluble 
and unstable drugs can be modified and com-
plexed with nanocarriers to achieve improved 
solubility and stability under physiological 
conditions.

Future research should explore the possibility of 
(1) multi-functionalization to achieve concur-
rent drug delivery and imaging (via a fluorescent 
signal, for example), to determine in vitro locali-
zation, and specific cell/tissue/compartment tar-
geting (using targeting ligands like peptides and 
proteins or molecular recognition strategies, for 
example) and (2) multiplexing, in order to 
increase the spectrum of disease that can be 
treated in heterogeneous populations, by simple, 
reliable and cost-effective methods. 
Improvements (increasing bioavailability and 
reducing toxicity) of currently available conven-
tional antivirals should also be explored using 
advances in nanotechnology. As previously dis-
cussed, ‘nanotraps’ have illustrated effective 
inhibition of influenza viruses. This can be 
extended to other viruses such as HIV, hepatitis, 
and so on by specifically modifying the attach-
ment carbohydrates of the defined host recep-
tors. To this end, further research and 
development of these particles are required.
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There is a paucity of information on the interac-
tion between the immune system and nanomate-
rials.250 When engineered to enable immune 
response modulation, as in the case of nanovac-
cines, two modes of action are possible: (1) to 
enhance antigen presentation and processing or 
(2) to function as an immunostimulatory adju-
vant, both of which have important implications 
in drug design. Studies investigating the immuno-
logical characterization of nanocarriers are neces-
sary to advance these systems closer to the reality 
of pharmaceutical application. In addition, stud-
ies relating to the pre-existence and induction of 
anti-PEG antibodies, and the impact of PEGylated 
nanotherapeutics, require careful attention.

The incorporation of nanotechnology for the 
treatment of infectious disease offers enormous 
potential for enhanced mechanisms of action of 
currently available therapeutics, or the develop-
ment of novel therapeutics, both of which are des-
perately required in an era of drug resistance. 
Despite the various advantages that these nano-
particles have compared to conventional thera-
pies, investigation into the toxicities and potential 
deleterious effects of certain nanosystems are still 
required.

Microbial evolution, resulting in the development 
of drug resistance, remains to be a major public 
health concern. Similarly, the evolution of tech-
nology, particularly exploiting the dynamic and 
versatile nature of nanomedicine, is necessary for 
the effective combating of infectious disease 
agents.
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