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Abstract

The bacterial diversity in the Su Bentu Cave in Sardinia was investigated by means of 16S

rRNA gene-based analysis. This 15 km long cave, carved in Jurassic limestone, hosts a

variety of calcite speleothems, and a long succession of subterranean lakes with mixed

granite and carbonate sands. The lower level is occasionally flooded by a rising groundwa-

ter level, but with only scarce input of organic remains (leaves and charcoal fragments).

On the quiet cave pools there are visible calcite rafts, whereas walls are locally coated with

manganese deposits. In the drier upper levels, where organic input is much more sub-

dued, moonmilk—a hydrated calcium-magnesium carbonate speleothem—can be found.

Relative humidity approaches 100% and the measured mean annual cave air temperature

is 14.8˚C. Samples were obtained in 2014 from calcite rafts, moonmilk, manganese oxide

deposits and soil (limestone and granite grains). Microclimatic conditions in the cave near

the sampling sites, sample properties, physico-chemical parameters of water, and sedi-

ment composition were determined. The microbial community of this system is predomi-

nately composed of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Nitrospirae,

and Firmicutes. Sampling sites near the entrance of the cave and in close proximity of the

underground campsite–located 500 meters deep into the cave—revealed the highest

diversity as well as the highest number of human associated microorganisms. Two sam-

ples obtained in very close proximity of each other near the campsite, indicate that the

human impact is localized and is not distributed freely within the system. Analysis of the

abundance of bacterial and archaeal amoA genes revealed a far greater abundance of

archaeal amoA genes compared to bacterial representatives. The results of this study

highlight that human impact is confined to locations that are utilized as campsites and that

exploration leaves little microbial trails. Furthermore, we uncovered a highly specialized
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microbiome, which is perfectly adapted to survive and thrive in an environment with low

nutrient availability.

Introduction

Microorganisms inhabit a diverse number of extreme environments such as hot springs, gla-

cial lakes and subterranean systems [1–4]. Due to their subsurface nature, being hosted deep

underground, and to the lack of sunlight, caves are nutrient depleted environments where the

levels of available organic carbon to support heterotrophic microbial growth are significantly

lower than in terrestrial surface ecosystems [5]. As such, underground systems provide a win-

dow for analyzing the metabolic potential and flexibility of microbial communities in an apho-

tic, oligotrophic habitat with potential similarities to diverse globally dominant terrestrial and

marine environments [6].

As most caves are formed in carbonated rocks, the majority of microbiological investiga-

tions carried out in caves have been described in such systems [7–12]. Some studies have also

been done in quartzite caves in Venezuela, which are characterized by an even lower mineral

diversity [13]. Similar to extreme conditions on the surface, microbial communities have

adapted to oligotrophy in subterranean environments; despite these low nutrient conditions,

the average number of microorganisms thriving in these subterranean systems is estimated at

106 cells/g of rock [14]. Studies of the microbial composition prevalent in oligotrophic cave set-

tings revealed a surprisingly high degree of diversity within the domains of Bacteria and

Archaea [2]. Representatives of the phylum Proteobacteria are prevalent and abundant in

caves such as the Tito Bustillo cave in Spain [15] or the karstic Herrenberg cave in Germany

[16]. Furthermore, this group represents the dominant phylum in biofilms, matrix-enclosed

bacterial populations adherent to each other and the surface [17], which have been studied in

serval other caves such as the Grotta de Fiume ([8]), karst systems in Slovenia [18] and the

Lower Kane Cave in Wyoming [19].

Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to

play a critical role in the global biogeochemical nitrogen cycle since the oxygenation of Earth

[20]. For closed or semiclosed environments, such as caves, nitrogen fixation by Bacteria and

Archaea can be the main source of bioavailable nitrogen for other organisms while ammonia

from organic matter mineralization and /or guano deposits can be a source of energy for che-

molithotrophic organisms [21]. In recent years, the newly discovered Thaumarchaeota have

gathered a lot of attention in terms of their ability to thrive in environments with low nutrient

availability [6, 22, 23]. Other studies have identified Thaumarchaeota as chemoautotrophic

ammonia-oxidizers and have shown them to fix CO2 using the 3-hydroxypropionate/

4-hydroxybutyrate (HP/HB) cycle [24]. They have been detected by molecular surveys in

many different environments, including the water column [25], soils [26], freshwater sedi-

ments [27] and subterranean habitats [13, 28].

The impact of human interference on the microbial composition of subterranean systems

has been an issue for many decades. Several karst systems are open to the public, e.g. the Nara-

coorte cave in Australia or the Lascaux Cave in France, and the anthropogenic influence of fre-

quently visiting such environments has been often investigated [29, 30] Other caves have

limited access, e.g. the Lechuguilla Cave in the USA, which has been closed for free human vis-

its 20 years ago [10].

Microbial community structure of the Su Bentu Cave

PLOS ONE | https://doi.org/10.1371/journal.pone.0180700 July 12, 2017 2 / 22

program under grant agreement No 654208. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0180700


For this study we investigated the microbial diversity of the Su Bentu Cave, a karst system

located in the north-western part of Supramonte karst massif (Central-East Sardinia, Italy).

The cave comprises over 15 km explored passages and most of the cave is not subjected to

flooding, creating a typical oligotrophic environment. This cavity is not a show cave; however,

several local and international speleologists frequent this system throughout the year. Within

the cave, one spot is regularly used as campsite (described in detail in Material & Methods),

which serves as a test-bed to investigate the human impact of short-term settlement on the

present microbial diversity.

Besides the naturally occurring biosphere, this study also focuses on the potential human

impact occurrence on the microbiome within this subterranean environment and the pres-

ence, abundance and distribution of ammonia-oxidizing bacteria and archaea. To deepen our

understanding of the microbial interactions within subterranean environments, we elucidated

the microbial diversity, as well as the impact of human exploration on the native system of the

Su Bentu Cave in Sardinia, Italy.

Material and methods

The Su Bentu Cave

Su Bentu Cave is located in the Supramonte karst massif (Central-East Sardinia, Italy), a Meso-

zoic carbonate plateau, 9 km wide and 20 km long corresponding to an area of 170 km2, topo-

graphically elevated over a Paleozoic crystalline basement. With its biodiversity, this region of

mountain wilderness preserves small areas of oak and juniper forest surrounded by wide

degraded shrubland. This plant community is constituted by sclerophyll species over a very

thin soil and by mountain garigue on bare rock pavement [31]The climate is semi-arid with an

annual mean temperature and precipitation of 13˚C and 1.100 mm, respectively. Rain mainly

falls during spring and autumn, separated by a long summer drought [32]. The Su Bentu

underground network is hosted within Jurassic and Cretaceous limestones along a large

reverse faults system that delineates to the west, and an east-facing monocline slope consti-

tuted by the flank of the Tertiary syncline of Lanaitto Valley [33]. With its three entrances, one

of them connected to Sa Oche sump, Su Bentu Cave opens at 206 m above sea level (asl) in the

southern margin of this geological structure. It comprises more than 15 km of explored cave

passages, for a vertical range of 210 meters developed between approximately 105 meters and

315 meters asl. The karst conduits expand almost horizontally over an area of about 6 km2 and

more than 200 meters underneath the surface. They are organized in two main branches: the

Lakes Branch, a seasonally flooded underground canyon where an ephemeral stream fed by

the phreatic passages at 105 meters asl flows at a lower cave level, and the 4th Wind Branch, a

network of dry looping tunnels of considerable dimensions interconnected through large

chambers where dripping water creates emerald pools in well-decorate passages. Both

branches converge close to the narrow passage called 4th Wind, at a distance of 1,000 meters

from the entrance, creating the huge room of Sala Piredda and the “Grande Cengia”. The

whole cave system is connected to Su Gologone spring, the major of Supramonte aquifer,

located at 104 m asl in the northern edge of the karst massif. Surface runoff in the area is typi-

cally absent. The present day recharge of the cave tributaries occurs predominantly during

rainfall events by direct infiltration and/or by the rising water table. Its hydrological catchment

comprises carbonate rocks, mainly limestones, while there is strong evidence of past allogenic

water input from the Paleozoic basement, now at a lower elevation, constituted by weathered

granite and metamorphic rocks [34].
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Sampling sites

The samples used in this analysis were collected in 2014 at 5 different remote areas of Su Bentu

Cave, namely Ball Room, Shaft, and Water Tower, that only occasionally have been impacted

by caver activity, as well as Piredda Hall which is close to a frequently used campsite during

explorations and Chaos, a site close to the entrance were all explores have to pass to get into

the cave. At these locations the following samples were taken: loose, solid calcite raft samples

from “Chaos” (SO1), moonmilk samples from “Piredda Hall” (SO2 and SO3) by aseptically

scraping material in a 50 mL falcon tube (SO2) and an additional sample 5 cm adjacent to the

first sample by swiping a flocked swap over the approx. 1 cm3of moonmilk (SO3). The lime-

stone cave wall was scraped off at the location “Shaft” (SO4), two samples from manganese

oxide were taken at “Water Tower”, one was scraped into a 50 mL falcon tube (S05), the other

sample adjacent by swiping a flocked swap over the approx. 1 cm3of the manganese deposit

(SO6) and a sediment sample was taken from “Ball Room” (SO7). Representative sampling

sites are shown in Fig 1 and are described in detail below.

Chaos (SO1) is the most downstream part of the lower Lake’s level and connects through a

sump with the Sa Oche cave entrance. It can be accessed descending a series of ropes down to

40 meters below the Witch’s Hat conduit and the main upper cave level. The sample was taken

close to the sump area, approximately 5 meters above water level at the time of sampling. The

sample regarded the calcite rafts, which were lying on the rocky floor of the cave together with

brown muddy sediments. These calcite rafts originally were floating flakes of calcium carbon-

ate formed by oversaturation of the standing water body caused by evaporation of the water.

The lowering of the water level caused these rafts to be abandoned on the cave floor. The fine

sediments that accompany these white rafts are residual clays mostly of local origin (insoluble

remains of limestone dissolution).

Piredda Hall (SO2 and SO3) is a very wide cave room located at only less than 100 meters

from the main campsite in the cave. This hall forms the junction between the Lakes Branch

and the 4th Wind branch, and is characterized by the confluence of the air masses flowing

though these separate branches. The mixing of these air masses causes formation of under-

ground clouds, where condensation occurs on the upper parts of the cave voids, while evapora-

tion predominates in its lower parts. The over 20 meter high cave roof is characterized by

cupola-like and ceiling channel-like morphologies, and lacks any type of speleothem. The

lower part hosts flowstones, gours, and some other vadose speleothems. The microbiological

samples have been taken along the walls of the cave where white toothpaste-like soft deposits

are growing (known as moonmilk). Although this area is frequently visited by cavers, the sam-

pling spot was out of the main path.

The sampling spot “Shaft” (SO4) is located 500 meters deeper into the cave, at the base of a

vertical passage, a few meters from Rainbow Lake. This shaft is 15 meters deep and leads into a

lower series of galleries that are seasonally flooded by infiltrating waters. Less than 100 meters

further into the cave, Baikal Lake is encountered, a small pool that forms a sump during these

high water periods. The sampling area is characterized by a floor composed of permanently

wet flowstone, together with sands (granite and limestone grains) and some organic material

brought in by the infiltration waters.

Sampling site “Water Tower” (SO5 and SO6) is located deep into the cave, at the end of the

Lakes series. The cave rooms become very large with a sandy floor and a roof up to 80 meters

high at some places. This area is flooded seasonally for a couple of days, and the floor is charac-

terized by an admixture of granite and carbonate sands and some organic material. The Water

Tower is situated below an area with intense dripping, and a permanent pool is present on a

ledge above. Although not frequently used by cavers, the sampling spot is located on the
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obligate passage point toward the final rooms of the cave. The sampled material occurs as

black coating on the cave walls that can be referred to as manganese oxides, the most common

black wall crust in caves [35].

The sampling site “Ball Room” (SO7), located 200 meters from “Water Tower”, is charac-

terized by spherical intrasediment concretions now exposed on the cave floor (the “balls" of

the room), and a roof only a few meters high. This part of the cave is seasonally flooded during

high flow, the water rising from the nearby shaft. When this happens many features indicate

the flow to be rather turbulent, creating vortices that have eroded all loose sediments leaving

only these hardened parts (balls) on the floor. At the end of these floods water subsides slowly

leaving muddy sediments mixed with some organic material. Samples were collected from the

cave floor and consisted of limestone sands and muddy sediments.

Environmental factors and physico-chemical analysis

As cave microclimate is almost constant [36], the micrometeorological parameters in Su Bentu

Cave were measured at 1,200 meters from the entrance and at 30 minutes intervals with three

Onset HOBO U23 Pro v2 Temperature/Relative Humidity data loggers (resolution: 0.02˚C

accuracy: ± 0.21˚C for temperature and resolution: 0.03% accuracy: ± 3.5% for relative humid-

ity, respectively). The sensors were placed close to the Piredda Hall sampling point at the con-

fluence between the 4th Wind Branch and Lakes Branch, at three different levels along a 40

meters high vertical profile from the thalweg of the canyon (Great Lake) to the Chessa Camp,

and up to the roof of a frequently used campsite (Piredda Hall). Cave air circulation was mea-

sured continuously 100 meters from this last place, between Bell Hall and 4th Wind passage (Fig

2 “Wind station”), using a CR200 Campbell Scientific Inc. data logger equipped with a Gill 1

wind sonic anemometer (3˚ and 2% of wind direction and wind speed accuracy, respectively).

Spot measurements of carbon dioxide concentration in the cave atmosphere were performed

with a portable NDIR sensor (Zenith AZ7755, range 0–10,000 ppm—accuracy ±50 ppm).

Two aliquots of water were collected in disposable containers with no headspace for chemi-

cal analysis, one at Rainbow Lake in the upper 4th Wind branch (a still water pool above and

close to sample SO4), the second in a lake below campsite, in the lower Lakes Branch. Two

hundred and fifty mL samples were collected for major anions (SO4
2-, Cl-, HCO3

- and NO3
2-)

and fundamental metals (Na+, K+, Mg2+ and Ca2+) respectively. Samples for cation analyses

(100 mL in volume) were filtered with a 0.45 μm sterile filter and acidified with 1 mL of con-

centrated HNO3. The water physical parameters were determined in situ with a portable

Hanna HI 991301 probe measuring pH, temperature (T) and electrical conductivity (EC). The

range of this probe is between 0.00 and 14.00 for pH (resolution: 0.01; accuracy: ± 0.01),

between 0.00 and 20.00 mS/cm for EC (resolution: 0.01 mS/cm; accuracy: ± 2%) 0.00 and

10.00 ppt (g/L) for TDS (resolution: 0.01 ppt; accuracy: ± 2%) and 0.0 to 60.0˚C for the temper-

ature (resolution: 0.1˚C; accuracy: ± 0.5˚C). The alkalinity was also determined in situ as

Fig 1. Representative sampling sites in the cave. A) Calcite raft deposit at Chaos (SO1); B) moonmilk

deposit at Piredda Hall (SO2 & SO3); C) manganese oxide deposit at Water Tower site (SO6) and D)

sampling of a limestone wall at location Shaft (SO4)

https://doi.org/10.1371/journal.pone.0180700.g001
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bicarbonate ion concentration (HCO3
-), by titration with methyl orange and hydrochloric

acid. The saturation index (SI) of calcite was computed using Merlak’s algorithm [37]. Water

samples were analyzed at the University of Bologna (Italy) using an Atomic Absorption Spec-

trophotometer (AAS) and an Ionic Chromatography within two weeks from sampling.

For chemical analysis, two clastic sediment samples were collected on the cave floors in the

4th Wind Branch and the Lakes Branch (Fig 2, indicated by yellow stars) and are representa-

tive for the two main soil types in the cave. There was not enough material to perform detailed

chemical analysis on the calcite rafts, moonmilk deposits and manganese oxide. The bulk

chemical composition of two sediment samples were obtained by a wave dispersive X-ray

fluorescence spectrometer (WD-XRF) (Panalytical Axios, XRF Laboratory, BIGEA–Bologna)

on pressed powder pellets, following the matrix correction methods of Franzini et al. [38],

Leoni and Saitta [39], and Leoni et al. [40]. Calibration is based on 35 international reference

materials and the estimated precision and accuracy for trace-element determinations are bet-

ter than 5%, except for elements at concertation <10 ppm (10–15%). Volatile content (LOI)

was evaluated by thermogravimetric TG-DTG-DTA analysis (XRF Laboratory, BIGEA–Bolo-

gna) in air atmosphere using a Setaram Labsys double-furnace apparatus (temperature range

20–1,050˚C; heating rate 10˚C/min; platinum crucibles; calcined Al2O3 as reference sub-

stance; flow rate of air 0.27 mL/s; temperature accuracy about ±1˚C).

Fig 2. Phyla distribution at different sampling points. Illustrated are the bacterial phyla and

proteobacterial classes found within the cave. Taxonomic classification was performed according to SILVA

SSU rRNA database 123. Bacterial phyla with a relative abundance lower 0.5% were summarized in the

artificial group “Other”. This group includes representatives of the following phyla: Deinococcus-Thermus,

JL-ETNP-Z39, Chlorobi, Saccharibacteria, SHA-109, TM6, Armatimonadetes, Chlamydia, Elusimicrobia,

WD272, Candidate_division_OP3, Parcubacteria, Fibrobacteres, Fusobacteria, OC31, TA06, WCHB1-60,

Aenigmarchaeota, Spirochaetae, Thermotogae, Lentisphaerae, Synergistetes, Candidate_divison _SR1,

SM2F11, and Omnitrophica. Two yellow stars indicate representative sampling locations for the chemical

analysis of the 4th Wind branch and the Lakes Branch.

https://doi.org/10.1371/journal.pone.0180700.g002
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Microbiological sample collection

Seven samples were taken during cave exploration at the previously described five sampling

sites: Approximately 5 g of calcite raft, manganese oxide or moonmilk were sampled with a

sterile spoon and filled into a 50 mL falcon tube containing 15 mL of RNAlater and mixed vig-

orously. In addition, two flocked swap (MicroRheologics) samples were obtained from moon-

milk (SO3) and the manganese oxide deposit (SO6). Samples were stored at ambient

temperatures (approx. 14˚C) until the end of the expedition and put immediately on ice once

the expedition crew left the cave. Samples were transported at 4˚C and upon arrival at the labo-

ratory immediately stored at -80˚C.

DNA extraction and quality assessment

DNA from the calcite raft (SO1), moonmilk (SO2), limestone (SO4, SO7) and manganese

deposit (SO6) samples was extracted using the PowerSoil extraction kit (MoBIO) according to

the manufacturer’s protocol. Briefly, 0.25 g of soil was employed and DNA was extracted using

a combination of bead-beading and lysis buffer. DNA was eluted into a final volume of 50 μL

dH2O. DNA from flocked swap samples (SO3 and SO6) was extracted using the XS-lysis buffer

method as described in detail by Tillett and Neilan [41]. DNA was purified with a standard

PCI (25:24:1) purification and Isopropanol precipitation followed by to washes with 75%

EtOH. DNA was re-suspended in 50 μL dH2O. The concentration of extracted DNA was

determined with a Nanodrop spectrophotometer at 260 nm. The quality of the extracted DNA

was tested by the following PCR setup and protocol. Reactions were performed in 20 μL con-

taining 1 U Platinum Taq polymerase, 1 x polymerase buffer, 3 mM MgCl2, 0.2 mM dNTP’s,

and 0.5 μM of PCR primers 515F (5’GTGCCAGCMGCCGCGGTAA’3) and 806R (5’ GGACT
ACHVGGGTWTCTAAT’3) [42]. Amplification followed the protocol provided by the Earth

Microbiome project website (www.earthmicrobiome.org) and is described there in detail.

Illumina MiSeq analysis and data processing

The community composition and diversity of Archaea and Bacteria in cave samples were stud-

ied using amplicon sequencing method: a variable region of 16S rRNA gene, present in Bacte-

ria and Archaea, were amplified with universal PCR primers 515F (5’GTGCCAGCMG-CCG
CGGTAA’3) and 806R (5’ GGACTACHVGGGTWTCTAAT’3) [42]. The produced fragments

were subjected to Illumina MiSeq sequencing process. The produced data were analyzed using

publicly available algorithms and analysis pipeline, Mothur, following the MiSeq standard

operating procedure (SOP) [43] (SOP accessed 23.5.2016). In short, the paired end reads were

joined together, and the produced sequences were quality checked. Chimeric sequences were

identified and removed, and the sequences were clustered into OTUs using average neighbour

algorithm. Taxonomic assignment is performed by querying the sequence reads against a silva

SSU 123 reference database [44] and various diversity indices and richness estimates were cal-

culated. Downstream data analysis was performed with Sigma Plot 13.0 and the online soft-

ware Calypso (http://cgenome.net/calypso/) [45]. Sequence data were deposited in the

European Nucleotide Archive (ENA) with the study accession number PRJE19599.

Abundance of bacterial and archaeal amoA genes

To screen for the presence and amount of bacterial and archaeal amoA genes, quantitative

PCR (qPCR) was employed. To identify bacterial amoA genes, primers amoA-1F (5’
GGGGTTTCTACTGGTGGT‘3) and amoA-2R (5’ CCCCTCKGSAAAGCCTTCTTC ‘3) were

used and genes amplified as previously described by Rotthauwe et al. [46]. To identify archaeal
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amoA genes, primers Crenamo1F (5’ AATGGTCTGGCTWAGACGC‘3) and CrenAmo1R (5’
GACCARGCGGCCATCCA‘3) were used and amplified as previously described by Könneke

et al. [47]. The qPCR was performed in an Opticon2 system (BioRad) using the PeqLab KAPA

Sybr FAST Kit, three replicates of each sample. Melting curve analysis (0.2˚C s-1) and agarose

gel electrophoresis (1% agarose) revealed single amplicons for all samples.

Results

Microclimatic conditions

Relative humidity at each site approaches 100% and the measured mean annual cave air tem-

perature is 14.8˚C (±0.18˚C). The altitudinal thermal gradient between the sampling sites is

0.05˚C/m, with values ranging between 16.0˚C at Piredda Hall and 13.9˚C at the Water Tower

sampling site. Air circulation inside the cave follows a diurnal and seasonal pattern showing a

change in direction of the movement of air masses depending mostly on outside temperature.

Airflow at the “Wind station” (4th Wind Branch, Fig 2) measuring point has a maximum speed

of 10 m/s in summer. During winter this speed ranges from 1 to 6 m/s and a temporary sump

can be filled with rain closing the passage completely, and stopping the cave ventilation for a

couple of days. Air pCO2 in cave atmosphere is different at the sampling areas showing values

of 4,000 ppm at Piredda Hall in the well-ventilated upper level and 2,680 ppm in the quiet

lower level of Ball Room.

Physico-chemical analysis of water

Two water samples collected during the expedition display the same temperature, a quite simi-

lar specific electrical conductivity (EC) and total dissolved solid (TDS), and an almost neutral

pH (Table 1). The concentration in Ca+ exceeds that of Mg+, and the predominant anion is

HCO3
-, so both are a calcium-bicarbonate type and have a negative calcite saturation index.

Na+ and Cl- concentration slightly increases in the Campo Chessa sample with respect to the

Lakes Branch one. Of notable exception is the slightly higher level of sulphate in this last site

and the slightly higher nitrate content at the Campo Chessa sampling site.

Sediment properties

The bulk chemical analyses of major elements in the sediments of the two main branches

(upper and lower) of the cave system is shown in Table 2, expressed as mass fraction (weight

percentage, wt%). Even though carbonate forms the essential part of the bedrock, the cave sed-

iments are allogenic fluvial deposits formed outside of the karst system and transported into it

by seasonal flow. Angular grains of quartz and feldspar mainly constitute the granite sand at

the Lakes Branch site whereas the red clay deposit at the 4th Wind sampling site is dominated

by phyllosilicates. It is not surprising that Si ions predominate in the chemical composition.

Absolute abundance ranges from 80% for the granite sand to 38% for the muddy clay, respec-

tively. The different silicate minerals are also the major carrier of Al, the second most abundant

element. The abundance of Fe is mainly coupled with the occurrence of oxides and hydroxides

incorporated in the crystal lattice of clay minerals. The amount of Ca is low compared to most

of the cave sediments and the greater part is related to carbonate residues in the clay fraction.

The volatile content (LOI) indicates low amount of organic matter in both samples.

Diversity and characteristics of the microbial community

The microbial diversity of the Su Bentu Cave in Sardinia has been investigated at several differ-

ent sampling locations (Fig 1). Based on the observed OTU’s, SO1 had the highest diversity
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(4771), while the lowest diversity was observed at SO6 (418) (Table 3). The Inverse Simpson

index as well indicates a high diversity at SO1 (140.94) compared to a very low diversity at SO6

(2.88). All other samples fall between these two values (Table 3). Rarefaction curves of alpha

diversity observed for all sampling opportunities are shown in Fig 3 and generally indicate

near saturation, except for SO1. Coverage was calculated using the Good’s algorithm and is

given in Table 3. All sampling efforts showed a coverage >90%, except for SO1 with a coverage

of 84.21%, indicating that the majority of microbial phylotypes present were recovered for the

other sampling sites, but not for SO1.

Taken together, a total of 37 bacterial and 3 archaeal phyla signatures have been recovered

from the different sampling sites. Results indicate that the microbial community (brackets

state the total amount of signatures recovered within the whole system) of this cave is predom-

inately composed of the phyla Proteobacteria (43.39%), Actinobacteria (16.21%), Acidobac-

teria (8.25%), Nitrospirae (7.62%), Firmicutes (7.46%), Chloroflexi (2.91%),

Gemmatimonadetes (2.65%), unclassified (2.49%), Planctomycetes (2.45%), and Thaumarch-

aeota (2.20%) (Fig 2). Notably, sampling point SO6 (a manganese oxide deposit deep inside

the cave) was almost exclusively inhabited by Proteobacteria signatures (Fig 2). A complete list

of recovered phyla is given in S1 Table. The dominance of Proteobacteria is also apparent

when looking at the core microbiome of this environment (Fig 4). SO1, SO2 and SO6 have

been omitted from the core microbiome analysis; SO1 and SO2 due to high human impact

and SO6 because of the overwhelming presence of Proteobacteria. The Proteobacteria account

for 47.27% of recovered phyla, followed by Nitrospirae with 29.76% and Actinobacteria com-

pleting the three most recovered phyla with 8.75%. A complete list of recovered core OTU’s

can be found in S2 Table.

The discovered phyla can be further refined at the class level into β –Proteobacteria

(15.38%) being the predominant class of these phyla. This class is followed by γ –Proteobac-

teria (13.01%), α –Proteobacteria (9.13%), Nitrospira (7.62%), Acidobacteria (7.54%), Actino-

bacteria (7.15%), Bacilli (7.06%), unclassified (6.30%) and the Thermoleophilia (5.87%) (Fig

5). A complete figure of all classes recovered is given in S1 Fig.

The presence of signatures of human associated microorganisms has been investigated and

results are given in Fig 6. According to research conducted by the Human Microbiome Project

Consortium in 2013 [48], we considered the following genera to be of human origin: Lactoba-
cillus, Propionibacterium, Streptococcus, Bacteroides, Corynebacterium, Staphylococcus, Morax-
ella, Haemophilus, Prevotella, and Veillonella. The highest amount of human associated

Table 1. Water chemical parameters from representative areas in the cave. SIcalcite was calculated using the Merlak algorithm [37].

Site pH T (˚C) EC (mS/

cm)

TDS

(ppt)

HCO3
- (mg/

L)

Cl- (mg/

L)

NO3
- (mg/

L)

SO4
2- (mg/

L)

Na+ (mg/

L)

K+ (mg/

L)

Ca2+ (mg/

L)

Mg2+ (mg/

L)

SIcalcite

4th wind

branch

7.6 13.9 0.37 0.18 110.9 11.26 2.07 3.57 8.36 0.31 34.38 1.89 -0.6

Lakes

branch

7.3 13.9 0.39 0.19 94.2 10.41 1.99 6.79 6.89 0.33 30.86 1.52 -0.7

https://doi.org/10.1371/journal.pone.0180700.t001

Table 2. Chemical composition (XRF) of the predominant cave sediments.

Description SiO2 (wt

%)

TiO2 (wt

%)

Al2O3 (wt

%)

Fe2O3 (wt

%)

MnO (wt

%)

MgO (wt

%)

CaO (wt

%)

Na2O (wt

%)

K2O (wt

%)

P2O5 (wt

%)

LOI

4th wind

branch

38.64 1.15 16.81 8.71 0.24 1.84 10.64 0.15 2.10 0.36 19.36

Lakes branch 80.05 0.20 7.56 2.57 0.04 1.28 2.39 0.51 1.95 0.04 3.42

https://doi.org/10.1371/journal.pone.0180700.t002
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microorganisms has been observed in a moonmilk sample (SO2 with 43.93%) obtained near

the campsite followed by the sample obtained from a calcite raft near the entrance of the cave

(SO1 with 5%). All other sampling points showed a negligible presence (<0.5%) of human

associated organisms (Fig 6). A complete list and distribution of all recovered and identified

genera is given in S3 Table.

To investigate the presence/abundance of bacterial and archaeal amoA genes within the

samples, qPCR analysis was conducted and results are presented in Fig 7. The amount of

ammonia (NH4
+) was determined as<0.2 mM for all sampling points. Results indicate that

Table 3. Bacterial and archaeal 16S rRNA gene diversity analyses of samples obtained from the Su Bentu Cave in Sardinia.

Sampling location Abbreviation No. high quality reads No. OTU Coverage (%) Inv. Simpson

Chaos SO1 15.651 4771 84.21 140.94

Piredda Hall (soil) SO2 17.781 534 99.01 14.79

Piredda Hall (swap) SO3 17.249 1718 95.14 99.15

Shaft SO4 16.541 2833 90.21 99.83

Water Tower (soil) SO5 17.096 2040 93.35 41.18

Water Tower (swap) SO6 17.714 418 98.42 2.88

Ball Room SO7 16.848 2503 91.64 55.81

https://doi.org/10.1371/journal.pone.0180700.t003

Fig 3. Rarefaction analysis of the microbial communities at the different sampling points. Curves were calculated by MOTHUR with

a 3% distance cutoff.

https://doi.org/10.1371/journal.pone.0180700.g003
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the archaeal ammonia-oxidizing gene is significantly more abundant in most of the samples

compared to their bacterial counterpart. Low amounts of amoA genes were recovered at SO2,

with only bacterial amoA genes present. Due to low amounts of DNA recovered at sampling

spot SO3, no analysis of the bacterial and archaeal amoA gene distribution was possible.

Discussion

In this study we investigated the microbiome of the Su Bentu Cave, Sardinia by Illumina

MiSeq analysis, focusing on the impact of human exploration on the indigenous microbial

community and on the ammonia-oxidizing potential as an energy source.

Geochemical & environmental parameters

Subterranean ecosystems are distinguished by a variety of physical (drip rate, temperature, rel-

ative humidity, carbon dioxide partial pressure, water conductivity, and pH) and chemical

(chloride, nitrate, sulfate, sodium, potassium, calcium, and magnesium) parameters. They

explain the greatest variance of the chemoautotrophic microorganisms that colonize the sub-

terranean realm [49]. The Su Bentu Cave ecosystem is characterized by high relative humidity

and a constant air temperature with a limited range of variation, typical of most cave systems

[50]. Its intense air circulation is a key microclimatic feature, as its Sardinian language name

indicates (“Su Bentu” means “The Wind”). Cave ventilation regulates gas exchanges between

underground atmosphere and its surrounding environment (mainly host rock and soil) [51].

Over a short time period investigated, a distinct value of air pCO2 in cave atmosphere is evi-

dent in the two main cave branches, with lowest values observed in the lower Lakes’ Branch

and an increasing concentration in the well-ventilated upper level of Bell Hall room in the 4th

Wind Branch, an opposite dynamic respect of the common cave atmosphere with higher CO2

values restricted to places with scarce air circulation [52]. Water samples collected during the

Fig 4. Venn diagram showing the number of core, unique and shared species among the different sampling

points. Due to the presence of human contaminations, SO1 and SO2 have been omitted. SO6 has been omitted due to

the almost sole presence of Proteobacteria.

https://doi.org/10.1371/journal.pone.0180700.g004
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expedition show no significant differences in the physico-chemical factors of the two different

sampling sites. Data related to the physical parameters point out that both waters are poorly

mineralized and reflect cave lithology. Hydrochemical content also suggests that in both sites

water is typically below saturation with respect to calcite. This means that the moonmilk pre-

cipitation is driven by evaporation due to air ventilation. Na+ and Cl- concentrations slightly

increase in the Campo Chessa area with respect to the Lakes Branch as a consequence of active

rainwater infiltration observed throughout the year. Moreover, the more likely sulphate source

for the Lakes Branch’s sediment is the oxidation of sulfur minerals (pyrite ores) hosted within

granite clasts. Finally, the nitrate contamination is in the range of Sardinian precipitations and

reaches the groundwater system as seeping water [53]. The Su Bentu Cave is an oligotrophic

ecosystems clearly limited not only by the input of carbon, but also by the availability of other

inorganic elements (especially nitrogen and sulfur). The physical parameters dictate the

dynamics of these elements that have strong influence on the magnitude and location of the

subsurface microbial communities [54].

Core microbiome

The core microbiome of this environment was assembled from data obtained from SO3, SO4,

SO5, and SO7. SO1 and SO2 have been excluded due to the detectable level of human interfer-

ence and SO6 due to the almost sole presence of the phylum Proteobacteria (Fig 4), discussed

Fig 5. Relative class abundance of A) the whole cave and B) separated into the different sampling

sites. Phylogenetic groups accounting for� 5% of all classified sequences are summarized in the artificial

group “others” (Part B). Full relative class abundance is given in Supplementary Table 3.

https://doi.org/10.1371/journal.pone.0180700.g005
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later in detail. Signatures of the phylum Proteobacteria are dominant (47.27%) with signatures

of the phylum Nitrospira next most abundant (29.76%). Microorganisms from the phylum

Proteobacteria are frequently recovered from other subterranean environments such as the

Llonin and La Garma caves [55] the Niu Cave [56], the Frasassi cave system [57], as well as on

basalt walls of lava caves [58]. Within this phylum the classes of α, β, and γ –Proteobacteria

were the most abundant sequences recovered, with β –Proteobacteria being the dominant

class (38.99%). Bacteria belonging to the β –Proteobacteria are obligate aerobes and facultative

anaerobes, chemoorganotrophs, as well as obligatory or facultative chemolithotrophs [2]. A

broad abundance of Nitrospira has been recovered in several other caves such as the Jinjia

Cave in China [59], Lechuguilla Cave [60] and Pajsarjeva jama in Slovenia [18]. Nitrospira are

capable of autotrophic C fixation [61] and are involved in the two-step autotrophic nitrifica-

tion, suggesting the presence of the CO2 fixation coupled ammonia oxidation process, which

likely is the source of primary production in other cave systems [59, 62]. The third phylum,

Actinobacteria, is also frequently observed in cave systems where they are known to be

involved in the formation of various types of speleothems [12]. Therefore, it is believed that

representatives of this phylum are involved in biomineralization processes in their environ-

ment [63]. While dominant in other caves such as the Carlsbad Cavern where 80% of

Fig 6. Impact of human exploration on the microbial diversity in a hypogean system. The most abundant human

associated genera (as previously described by The Human Microbiome Project Consortium) were used for this analysis

and include Lactobacillus, Propionibacterium, Streptococcus, Bacteroides, Corynebacterium, Staphylococcus, Moraxella,

Haemophilus, Prevotella, and Veillonella.

https://doi.org/10.1371/journal.pone.0180700.g006
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recovered population clustered with the phyla Actinobacteria [64], in the Su Bentu cave this

phyla seems to play a subordinate role. To end, Acidobacteria were found to be present in

moderate abundance (7.02% of core microbiome), with subgroup 6 dominant deep inside the

cave (SO4, SO5, and SO7) and subgroup 4 being foremost at SO3. Acidobacterial sequences

are commonly found in subterranean environments [65, 66]; however, their role within the

ecosystem remains unclear.

Calcite rafts (SO1)

The precipitation of CaCO3 in cave pools occurs because such waters become saturated with

respect to CaCO3 due to the loss of CO2 and evaporation at the air-water interface [67, 68]. By

this mechanism, thin crusts of calcite may grow from the walls of the pool across the surface or

may form floating calcite rafts [67]. The calcite rafts near the entrance of the cave show the

highest microbial diversity recovered from this environment, which is not surprising given the

annual flooding and therefore organic input at this site. Furthermore, the close proximity to

the entrance where every explorer has to pass increases the chance of external organic input as

well as the introduction of allochthonous organisms from the soil outside the cave (e.g. carried

in the cave on the shoe of a caver). It is well established that bacteria make a significant contri-

bution to the accumulation of carbonate in the environment [69–71]. Both autotrophic and

heterotrophic bacteria, including sulphur and nitrogen-fixing bacteria are involved in CaCO3

precipitation [69]. In particular, representatives of the family Bacillaceae have been shown to

Fig 7. Abundance of the bacterial and archaeal amoA genes. § indicates that no amplification was observed at this

sampling point for archaeal amoA genes. SO3 was not investigated due to the lack of DNA. Standard deviation is given

as Error Bars (n = 3).

https://doi.org/10.1371/journal.pone.0180700.g007
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be actively involved in calcium carbonate precipitation [72, 73], which have been recovered in

high numbers at this sampling location.

Moonmilk (SO2 & SO3)

Moonmilk refers to a variety of microcrystalline mineral aggregates ranging from soft and wet

to a dry and powdery appearance [74]. In contrast to moonmilk analyzed in the Altamira Cave

in Spain, where α-Proteobacteria were the major components [74], moonmilk recovered from

the Su Bentu Cave is dominated by the class of Thermoleophilia (Fig 5), with the dominant

order Solirubrobacterales. Members of the Thermoleophilia have been previously isolated

from extreme oligotrophic environments such as the Atacama Desert [75]; however, a further

classification is not provided. Currently all strains within the order Solirubrobacterales are

described as mesophilic and sometimes psychrotolerant [76], which may be part of the expla-

nation on to why members of this order were recovered within a cave with an average temper-

ature of ~14˚C.

Limestone walls & soil (SO4 & SO7)

The limestone samples obtained from this environment appear fairly similar with respect to

their relative phyla and class abundance (see Figs 2 and 5), even though both sites are not in

close proximity to each other. Similar to other caves [55, 62], Proteobacteria were again identi-

fied as the dominant phylum, with β and δ –Proteobacteria the most abundant representatives

at these two sites. Furthermore, a high number of Nitrospirales (with genus Nitrospira domi-

nant) was recovered from those two sampling sites. Nitrification has long been considered to

be a two-step process catalyzed by chemolithoautotrophic microorganisms oxidizing either

nitrite or ammonia; however, recent work by Daims and colleagues [77] reports the discovery

and cultivation of a complete nitrifying “comammox” (complete ammonia oxidizer) bacte-

rium from the genus Nitrospira. Although Nitrospira-like bacteria grow very slowly, with gen-

eration times up to 90 h for Nitrospira marina [78], cultivation attempts would be warranted

to further elucidate the nitrification process within this environment.

Manganese oxide(II) deposits (SO5 & SO6)

Sampling point SO6 revealed almost exclusively the presence of β and γ –Proteobacteria, how-

ever, SO5, which was just adjacent to SO6, showed a much higher diversity. The genus almost

exclusive recovered at SO6 was Pseudomonas (S3 Table). Representatives of this genus, such as

Pseudomonas putida strain MnB1 are known for their ability of Mn(II) oxidation to form man-

ganese oxide [79, 80]. A similar discovery was reported by Carmichael et al. (2013) [81] in fer-

romanganese deposits in caves of the upper Tennessee river basin, where Pseudomonas was, in

addition to Leptothrix and Flavobacterium-related organisms, the most abundant and detect-

able population. However, samples taken at the same location (SO5), revealed a far broader

diversity with similarities to the previously described diversity for ferromanganese deposits in

Lechuguilla and Spider caves [60]. SO5 revealed the presence of the genera Hyphomicrobium,

Pedomicrobium and Nitrospira, where its representatives are known for their metal oxidizing

abilities [60, 82, 83]. The difference between those results may be attributed to the sampling

technique. SO6 was taken with a sterile flocked swap, so only the organisms on the surface

were sampled, whereas SO5 was obtained by scraping the surface for a few millimeters with a

sterile metal spoon, therefore obtaining more material from different layers of the sampling

site.
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Human impact (SO1 & SO2)

The issue of human contamination of a pristine cave environment has been of interest since

several decades and numerous studies have shown the impact of tourism or exploration [29,

30, 84]. Cavers and tourists reverse the concentration and availability of organic carbon by

bringing fibers, lint, hair as well as human-associated microbes into a cave system [84, 85]. The

human microbiome project consortium published in 2012 a list of 16S-identified genera asso-

ciated with healthy humans [48] that were used to distinguish between human associated or

natural environments.

We found a high concentration of human associated organisms in the soil in the area

near the campsite (Fig 6). Propionibacterium was among the most abundant genera recov-

ered from this area, with Propionibacterium acnes being a major inhabitant of the adult

human skin, where it resides within sebaceous follicles, usually as a harmless commensal

bacterium, although it has been implicated in the formation of acne vulgaris [86]. Further-

more, a high abundance of 16S rRNA sequences belonging to the genera Staphylococcus and

Streptococcus were recovered in similar number compared to Propionibacterium (Supple-

ment S3 Table), which are both well-established human associated genera with representa-

tive species such as Staphylococcus epidermidis [87] and Streptococcus mutants [88].

Interestingly, swab samples taken from moonmilk (SO3) in the same location showed no

detectable signs of human contamination. Microorganisms in caves range from completely

invisible to colorful microbial mats [89], however, the same holds true for human impact. It

can be clearly seen as feces or hair, but touching a speleothem (by accident or on purpose)

may leave an invisible trace of human associated microorganisms. But this also indicates

that the human impact is localized and organisms are not, or only sparsely, transported by

wind throughout this system. The only other place where human-associated organisms were

retrieved was near the entrance (SO1, Fig 6), a passage everybody has to traverse when

exploring the cave, but is also seasonally flooded. This is an interesting scenario as it is well

established that water flowing into caves may either bring allochthonous material into the

cave yet may also help to wash away some human impact due to exploration [89]. Further

research is necessary to untangle this delicate environmental interplay between human

impact and natural restoring capabilities.

Ammonia-oxidizing potential

The microbial oxidation of ammonia is a key process in the global cycling of nitrogen. Nowa-

days we know that two groups of organisms are responsible for ammonia-oxidation, the

ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Previous

research has uncovered that AOA often outnumber their bacterial counterparts in marine and

terrestrial environments [90, 91]. Only recently was it discovered that ammonia oxidizing

archaea dominate over bacterial ammonia oxidizers within alkaline cave sediments of the

Heshang Cave in China [92] and the same holds true for the here investigated limestone cave

(Fig 7). This high abundance of ammonia-oxidizing archaea (AOA) is probably due to the

high substrate affinity, which enables them to grow under far lower ammonia concentrations

than other organisms [93]. The low availability of ammonia may be the reason for the higher

abundance of AOA in this particular environment. Other factors such as moisture and temper-

ature have also been demonstrated to influence the distribution and activity of Thaumarch-

aeota [20, 94]. In this study we found that areas with a high presence of human associated

bacterial 16S rRNA sequences (SO2) show very little to no presence of archaeal or bacterial

amoA gene sequences. It may be speculated that due to the increase of non-native microbes at

this site, the native microbiome was displaced and eliminated by the invasive microbes. By
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doing so, cells would have been lysed, releasing DNA and other cellular constituents, which in

turn can be used by the invasive species as nutrient source as described for extracellular DNA

by Vorkapic et al. (2016) [95]. This may explain the low copy numbers recovered at SO2.

Although human impact is detectable at SO1 (“Chaos” near the entrance), the copy number of

amoA genes was comparable to the other investigated sites. This may be explained by the pre-

viously made statement that the regular impact on the microbiome by seasonal water flow may

be responsible for this discrepancy.

In this study we elucidated the microbiome of the Su Bentu Cave in Sardinia as well as the

impact of exploration on the native microbiome. Similar to other investigated subterranean

environments, a broad diversity of different microorganisms was recovered with Proteobac-

teria being the dominant phyla. It can be concluded that infrequent exploration has a diminu-

tive impact on the indigenous microbial population, compared to higher impacts for touristic

caves [e.g. 29]. Further in-depth studies will certainly lead to the discovery of novel species

with yet unknown traits for survival in low nutrient environments.
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