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Abstract

We investigate the use of permutation tests for the analysis of parallel and stepped-wedge cluster 

randomized trials. Permutation tests for parallel designs with exponential family endpoints have 

been extensively studied. The optimal permutation tests developed for exponential family 

alternatives require information on intraclass correlation, a quantity not yet defined for time-to-

event endpoints. Therefore, it is unclear how efficient permutation tests can be constructed for 

cluster-randomized trials with such endpoints. We consider a class of test statistics formed by a 

weighted average of pair-specific treatment effect estimates and offer practical guidance on the 

choice of weights to improve efficiency. We apply the permutation tests to a cluster-randomized 

trial evaluating the effect of an intervention to reduce the incidence of hospital-acquired infection. 

In some settings, outcomes from different clusters may be correlated, and we evaluate the validity 

and efficiency of permutation test in such settings. Lastly, we propose a permutation test for 

stepped-wedge designs and compare its performance to mixed effect modeling, and illustrate its 

superiority when sample sizes are small, the underlying distribution is skewed, or there is 

correlation across clusters.
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1. Introduction

Permutation tests have been used in parallel cluster-randomized trials to test the null 

hypothesis of no treatment effect [1, 2]. Gail et al. discussed randomization-based inference 

for matched and unmatched cluster intervention trials[3]. They considered both a strong null 

hypothesis that treatment has no effect on any cluster as well as a weak null hypothesis that 

treatment does not affect the average community response. Permutation tests have several 

advantages over parametric approaches: they are non-parametric and maintain size even if 
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the test statistic is derived from a mis-specified model. For analysis of paired cluster 

intervention trials with person-time data, Brookmeyer and Chen compared the performance 

of permutation tests to that of the standard Mantel-Haenszel type of statistics ignoring 

intraclass correlation and the paired t-tests; they found that permutation tests performed well 

when the number of cluster pairs is small [4]. Murray et al. compared the performance of 

permutation test with the mixed-model regression methods for the analysis of simulated data 

in the context of a cluster-randomized trial for a wide range of settings including in the 

presence of measurable confounding and violations of normality assumptions underlying the 

mixed-effects models [5]. Their results indicated that permutation methods and model-based 

methods have similar performance in terms of size and power in most situations; when the 

normality assumptions are violated and the intraclass correlation is not small, say, greater 

than 0.01, the permutation test maintains the nominal type I error while the model-based test 

can be conservative.

The validity of permutation tests in cluster-randomized trials relies on the random allocation 

of treatment, and methods exist to assure validity in the presence of variable selection [6]. 

Many applications of permutation tests in other contexts do not begin with a randomized 

experiment, but rather with an assumption that the observations are statistically independent 

with certain symmetry properties. If a permutation test is justified by an assumption of 

independence, and if that assumption is false (e.g., unequal variance in two comparison 

treatment groups), then the nominal level of the test may be erroneous (see for examples, [7–

9]). However, tests derived solely from randomization have the correct level whether or not 

potential responses under comparison treatment arms are independent [10–14].

The efficiency of permutation tests is affected by the choice of test statistic. Braun and Feng 

[15] develop optimal permutation tests for parallel cluster randomized trials with exponential 

family alternatives where the test statistic is a weighted sum of cluster errors with weights 

equal to the inverse of the total variance for each cluster. The total variance is a function of 

within cluster variation and intraclass correlation. They show that the weighted permutation 

test (i.e., the permutation test using a weighted test statistic) with properly chosen weights is 

more powerful than the unweighted permutation test, especially when cluster sizes vary 

substantially. However, optimal weights need to take into account the intraclass correlation. 

Weighting by cluster sizes alone does not guarantee improvement of the performance of the 

test.

In this paper, we investigate the use of permutation tests for the analysis of cluster-

randomized trials in the following three areas. First, we consider matched and unmatched 

parallel cluster randomized trials with time-to-event endpoints and discuss choices of test 

statistic to achieve better efficiency. The optimal tests developed in Braun and Feng [15] do 

not apply to time-to-event endpoints because they require information on the intraclass 

correlation – a quantity has not been defined for time-to-event endpoints. In the setting of 

paired-matched trials, we consider the class of test statistics formed by taking a weighted 

average of estimated pair-specific treatment effect.We assess power associated with different 

choices of weights (with constant weights representing the unweighted test statistic) and 

offer practical recommendations on the choice of weights. This approach can be applied to 

unmatched trials by considering all possible treatment-control pairs.
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In addition, we consider the setting where observations from different clusters may be 

correlated. While standard mixed-effects modeling methods take into account correlation 

among observations within the same cluster, they usually assume independence of 

observations from different clusters. This assumption may be violated in practice; for 

example, clusters that are physically near each other may share similar characteristics that 

induce correlation of outcomes from them. In cluster-randomized trials for HIV prevention, 

treatment contamination due to sexual relationships formed between communities 

randomized to opposite treatment arms can occur. We investigate the validity and efficiency 

of permutation tests in the presence of correlated outcomes across clusters.

Finally, we propose permutation tests for stepped-wedge designs and demonstrate their 

validity and, in some settings, superiority over parametric model-based modeling. In contrast 

to the parallel design for cluster-randomized trials discussed above where clusters are 

randomized to different treatment conditions at baseline, the stepped-wedge design allows 

clusters to cross over to the experimental intervention arm in a unidirectional manner at 

different times. The time of this crossover to the intervention arm is randomized. At each of 

the pre-selected time points, some clusters initiate the intervention; the response to the 

intervention in all clusters is measured. As discussed in Hussey and Hughes [16], this type 

of design can be especially useful when limited resources or geographical constraints make 

it logistically difficult to implement the intervention simultaneously in many communities. 

In addition, all clusters eventually receive the intervention - a feature that may reduce ethical 

concerns about evaluating the population-level impact of an intervention shown to be 

effective in an individually-randomized trial. Methods have been described to analyze the 

resulting data through the use of a mixed effects model where random effects model the 

correlation between individuals within the same cluster and the fixed effects model the time 

effects [16]. The use of permutation tests for cluster randomized trials with stepped-wedge 

designs have not been studied. The permutation tests for parallel designs rely on the random 

allocation of communities into treatment and control arms and cannot be applied to stepped-

wedge designs because all communities will cross-over to the treatment arm over time. To 

overcome this challenge, we propose to construct permutation tests where the permutation 

distribution is generated by permuting the random order of the treatment assignment and 

compare the performance of such tests to their parametric counterparts.

The rest of the paper is organized as follows. In section 2, we investigate permutation tests 

for parallel cluster-randomized trials with time-to-event endpoints. In Section 2.1, we 

propose a class of test statistics based on pair-specific treatment effect estimates and 

investigate the impact of the choice of test statistic on efficiency. In Section 2.2, we evaluate 

the validity and efficiency of permutation tests when outcomes from different communities 

are correlated, and in Section 2.3, we describe the construction of such test statistics for 

unmatched parallel cluster-randomized trials and illustrate its use using data from a cluster-

randomized trial evaluating effect of an intervention to reduce the incidence of hospital-

acquired infection. In Section 3, we propose a permutation test for stepped-wedge designs 

and compare their performance with mixed-effects modeling. Section 4 provides a 

Discussion.
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2. Parallel cluster randomized trials with time-to-event endpoints

Suppose that we have J pairs of communities in a matched-pair cluster-randomized trial to 

assess the effect of intervention versus control. We pair communities on the basis of 

demographic or other characteristics that are expected to be correlated with the outcome of 

interest and then randomly assign communities with each pair between two treatment arms. 

Let i = 1, 2 denote the intervention and control arms respectively. Let Tijk, Cijk, Uijk = 

min(Tijk, Cijk) and δijk = 1(Tijk ≤ Cijk) denote the time to event, the censoring time, the 

observed time to event or censoring, and the event indicator for individual k in community j 
on treatment i, j = 1, . . . , J, and k = 1, . . . , Kij, where Kij denote the sample size in jth 

community on treatment i. Here we use 1(·) to denote the indicator function. Let β denote 

the treatment effect and β̂j denote the estimated treatment effect based on data from the jth 
pair. For example, β̂j might be the estimated treatment effect obtained from a Cox model 

applied to data from individuals in the jth pair of clusters.

We consider the class of test statistics of the form

where wj’s are weights allocated to βĵ. Under the null hypothesis of no treatment effect, i.e., 

H0: β = 0,

for any choices of γj = ±1. Here we use f(·) to denote the joint density function. The 

permutation distribution is formed by a collection of Sp = Σ wjγjβ̂j. Under the null 

hypothesis of no intervention effect in any community, H0 : β = 0, the observed treatment 

effect can be viewed as a random sample of size 1 from the permutation distribution 

generated by randomly permuting the allocation of community between treatment arms [17]. 

The p-value is given by the proportion of test statistics resulting from permuted datasets that 

are more extreme than the observed test statistic among all possible permutations:

The number of all possible permutations M increases quickly with the number of units and is 

in general quite large so that enumerating all the possibilities becomes computational 

prohibitive. In practice, we take a random sample of permutations and approximate the p-

value by
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We add 1 to both the numerator and denominator to account for the observed test statistic. 

Gail et al. [3] considered a special case of this type of test statistics for continuous outcomes 

Yijk in analyzing parallel cluster randomized trials. More specifically, they considered pair-

specific treatment effect estimate β̂j as the difference in the sample average 

 and all weights wj = 1 for j = 1, . . . , J. Here, to handle time-

to-event endpoints, β̂j can be the estimated log-hazard ratio from Cox proportional hazard 

models as described below.

The choice of test statistic does not affect the validity of permutation test, which is ensured 

by randomization. However, the efficiency of permutation test is affected by the choice of 

test statistic. Analysis of data from cluster-randomized trials based on cluster-level 

summaries requires selection of weights used to create weighted averages of these 

summaries. Hayes and Moulton [17] discuss the trade-off between the weighted and the 

unweighted approaches, and recommend the latter in general for its robustness. The 

weighted approach may improve precision, but only when the weights are based on accurate 

unconditional variance estimates of the cluster-level summaries, which requires an accurate 

estimate of intraclass correlation[17]. Although optimal test statistics have been proposed for 

exponential family endpoints (e.g., continuous, binary, counts etc) [15], it is unclear how to 

construct the optimal test statistic for time-to-event endpoint. The optimal test statistic 

proposed in Braun and Feng [15] makes use of intraclass correlation – a quantity not yet 

been defined for time-to-event endpoint. Motivated by the uncertainty in choice of weights 

to improve efficiency and lack of optimal weights for time-to-event endpoints, we conduct a 

simulation study to compare two specific test statistics, unweighted and weighted according 

to the conditional within-cluster sampling variances of pair-specific treatment effect 

estimates.

2.1. Comparison between unweighted and weighted test statistics

We compare the performance of the permutation tests with various test statistics of the form 

Σj wjβ̂j, where j = 1, ⋯ , J and β̂j denotes the estimated pair-wise treatment effect. In the first 

setting, we consider J = 10 pairs of communities, with sample sizes ranging from 100 to 

1000, in increments of 100. The underlying clustered failure time data (e.g. times to 

infection) are generated by adding a frailty term in an accelerated failure time (AFT) model. 

Let Tik denote the failure time of interest for the kth subject from the ith cluster, and Xi 

denote the treatment assigned to the cluster i.

where β measures treatment effect;  introduces correlation within 

communities. We first consider the setting where εik follows an extreme value distribution 

, with μ = 0 and σ = 1. The censoring times are simulated 

from a uniform distributions with probability mass on interval [1, 2], thereby causing 

outcomes to be right-censored.
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Communities with same sizes are pair-matched. We calculate a treatment effect estimate 

within each pair, βĵ, using a Cox proportional hazard model. In this setting, Tik follows an 

exponential distribution conditional on bi and proportional hazards assumption is satisfied. 

For the unweighted permutation test, we use the sum of pair-wise treatment effect estimates 

(i.e., log hazard ratio) as the test statistic. For the weighted permutation test, we use the 

weighted sum, where the weights are based on the estimated sampling variance of β̂j within 

each pair. For the null hypothesis of no treatment effect, β = 0, we can find the null 

distribution of this statistic by randomly re-assigning treatment to each of the paired 

communities and re-calculating the treatment effect. In pair-matched settings, re-assigning 

treatment to each of the paired communities only leads to a possible sign change in β̂j. 
Figure 1 below compares size and power for permutation tests using the unweighted and 

weighted test statistics.

As shown in Figure 1, the relative performance of the unweighted and weighted test 

statistics depends on the magnitude of intraclass correlation. The weighted test statistic 

achieves greater power than the unweighted when the between-cluster heterogeneity θ is 

small – in this simulation setting, < 0.1. The difference is substantial, especially for the 

effect sizes that are of practical relevance, i.e., those associated with power around 80%. For 

example, when θ = 0.01, for effect size β = 0.076, the weighted test statistic achieves 80% 

power for the given sample size whereas the unweighted test statistic is only associated with 

70% power. As θ increases to values close to 0.1, their performances become almost 

identical – suggesting that unweighted test statistics may be preferable because of their 

simplicity. As θ becomes very large, e.g. 0.5, the unweighted test statistic is associated with 

greater power than the weighted test statistic.

We also evaluate a test statistic where the pairwise treatment effect estimate was obtained 

using a Cox proportional hazards model and its associated robust variance estimate that 

takes into account the correlation among time to event endpoints [18]. Our results revealed 

that this test statistic is associated with lower power than both the unweighted and weighted 

test statistics considered above, regardless of the magnitude of intraclass correlation. This 

may result from the fact that this robust variance approach was developed for settings with a 

large number of small clusters and does not work well for the settings with a small number 

of large clusters.

The relative performance of the unweighted and weighted test statistics depend crucially on 

the magnitude of intraclass correlation and the level of heterogeneity in cluster sample sizes. 

If the sample sizes for all clusters are equal, then the unweighted and weighted test statistics 

will lead to the same results irrespective of the magnitude of intraclass correlation. When 

sample sizes vary across clusters, the relative performance of these two test statistics may 

change depending on the magnitude of intraclass correlation. In these simulated settings, the 

intraclass correlation ρ for the underlying failure time (log-transformed) is given by . 

The results suggest that, for smaller ρ, e.g. ρ < 0.01 in the current setting, the weighted test 

statistic tends to be associated with greater power than the unweighted one; as ρ increases to 

greater than 0.01, the advantage of the weighted test statistic decreases. For larger ρ such as 

0.2, the unweighted test statistic yields greater power than the weighted one. The results are 
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not surprising as the optimal weight would likely be the inverse of accurate unconditional 

variance estimates for each pair of comparison as in other similar settings with exponential 

family endpoints [15, 17]. When the intraclass correlation is small, the effect of ignoring it 

tends to be small and the weights based on within cluster variances only are close to being 

optimal; when the intraclass correlation is large, weights based on within cluster variances 

alone would be further away from the optimal weights. For CRTs with a binary or 

continuous outcome, the optimal weights to be used in a weighted t-test are [17]

where ρ denotes the intraclass correlation and mi represents the sample size for cluster i. As 

can be seen from this formula, if the clustering effect is small so that ρ is close to 0, weights 

based on individual cluster sizes are close to the optimal weights; on the other hand, if ρ is 

large, the weights tend to be constant so that equal weights may be closer to the optimal 

weights.

We also considered the setting where εik follows a normal distribution N(0, 1), implying that 

Tik follows a log-normal distribution conditional on bi. The results are similar (Figure 2) 

irrespective of the underlying failure time distributions.

With right-censored time-to-event endpoints, we can not calculate the intraclass correlation 

ρ directly because the underlying failure times are not completely observed. We investigate 

the usefulness of estimating ρ based on the binary event indicator as an approximation of the 

ρ for the underlying log-transformed failure time. Note that when estimating ρ, only data 

from the control communities will be used to avoid the possible extra heterogeneity in 

outcomes caused by the treatment. Let p denote the overall proportion computed from all 

control clusters, mH̄ denote the harmonic mean of the individual cluster sizes, and s2 denote 

the empirical variance of cluster proportions. The between-cluster variance  can be 

estimated as [17]:

We can then estimate the intraclass correlation ρ as follows:

For the settings we consider, we find that the estimated ρ based on the binary event indicator 

is generally smaller than the true ρ, and the difference between them increases as ρ increases 

(Figure 3). Therefore, when prior knowledge of ρ is not available, we may in practice 

estimate ρ based on the binary event indicator data, but must recognize that this will 

underestimate the true ρ.
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In addition to right-censored endpoint, we also consider interval-censored endpoints by 

setting two observational times, both distributed as uniform, on intervals [1, 2] and [2, 3], 

respectively. The pair-wise treatment effect estimates are obtained using Cox proportional 

hazards model for interval-censored observations using an R package “frailtypack”. Results 

are summarized in Figure 4. As before, when the between-cluster heterogeneity θ is small, 

the weighted test statistic achieves greater power than the unweighted test statistic, and their 

relative performance reverses when θ becomes large.

2.2. Correlated outcomes across communities

In some settings, outcomes from different communities may be correlated. For example, 

communities geographically near each other or clusters that share similar community 

characteristics may have outcomes that are more correlated with each other than they are 

with others. In the context of HIV prevention studies, outcome differences between the 

treatment arms may be diluted as a result of sexual contacts formed between intervention 

and control communities. The customary main aim of a CRT is to measure the overall 

treatment effect, defined as the difference in outcomes among interventions if they are 

implemented throughout populations under study. If there is a single intervention and a 

control condition, mixing between communities assigned to different treatment policies will 

tend to attenuate this overall effect. The term interference between units has been used to 

describe the phenomenon that outcomes of one unit may be affected by the treatment 

assignments of other units (see for example, [19]). Under the null hypothesis of no treatment 

effect, the permutation test has the correct type I error and remains valid as randomization is 

the sole basis for inference and no treatment effect implies no interference between units 

[14].

We investigate the validity and power of the permutation test in such settings by simulating 

outcome data from 10 pairs of communities and specifying correlated cluster-specific 

random effects bis within and between pairs of communities. More specifically, we group 10 

pairs into 5 blocks, where each block contains 2 pairs of communities and

where

We generate the times to infection in community i from an exponential distribution with 

hazard rate λ0 · exp(bi)exp(βXi), where X denotes the treatment indicator and exp(β) 

represents the treatment effect (hazard ratio comparing treatment with control). Throughout 

we fixed λ0 = 0.2. Censoring times, C, were generated from a Uniform distribution with 

support [1,2]. Generated infection times were compared to the censoring times to create the 

time to event outcomes (U, δ), where U = min(T,C) and δ = 1(T ≤ C). Within each pair, we 
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fitted a Cox proportional hazard model h(t) = h0(t)exp(βX), where X denoted the treatment 

indicator, and obtained an estimate for β, β̂i, and its standard error estimate si = ŝ(β̂i). The 

unweighted and weighted test statistic considered were Tu = Σi β̂i and  as 

before. Table 1 summarizes the size and power of the permutation test using unweighted and 

weighted test statistics for varying treatment effect β and correlation structure. The 

permutation test has the correct Type I error and remains valid when the outcomes from 

different communities are corrected. When θ is small (e.g. intraclass correlation ρ < 0.01 in 

the current setting), the weighted test statistic is associated with greater power; as θ gets 

larger, the unweighted test statistic yields increasingly greater power.

2.3. Unmatched parallel cluster randomized trials

The class of test statistic we consider is based on pairwise treatment effect estimates. In 

matched-pair cluster-randomized trials, the pair-specific treatment effect estimates are 

obtained from data generated by each pair. We next consider extension of this approach to 

unmatched cluster randomized trials. Suppose that there are J1 communities randomized to 

treatment and J2 communities randomized to control. Let Zj = 1 if cluster j is assigned to 

treatment and Zj = 0 if this cluster is assigned to control so that . Let Z = 

(Z1, . . . , ZJ1+J2) denote the vector of treatment status for the J1 + J2 clusters. Let D = (U, δ, 

X, Z) denote the data matrix consisting of the time-to-event outcomes (U, δ), covariates X, 

and treatment assignment Z. Let dobs denote the observed data matrix for the realized 

assignment. Let D(ℓ) = D(Zℓ) = (U, δ, X, Zℓ) denote the permuted data matrix where Zℓ 

denote a re-randomization of Z. Under the null hypothesis H0 of no treatment effect,

where we use  to denote “is a permutation of” and M is the total number of 

permutations (J1 + J2)! (or ) if only distinct treatment assignments are 

considered). That is, the observed data matrix, dobs, can be viewed as a randomly selected 

element from the set ∏, consisting of M matrices d(zℓ). It follows that if T = T(D) is any test 

statistic, the observed value of T can be viewed under H0 as a random sample of size 1 from 

the resulting permutation distribution of values {T(d(zℓ)) | d(zℓ) ∈ ∏}. This provides the 

basis for valid inferences about H0.

Here we consider a specific type of test statistic to be the weighted average of all pair-wise 

treatment effect estimates. More specifically, let θ̂jj′ denote the treatment effect estimate 

based on data from jth community from the intervention arm and j′th community from the 

control arm. The test statistic we consider is Σj,j′ wjj′θ̂jj′. That is, we will estimate a 

treatment effect based on data from each of the all possible treatment-control pairs and use a 

weighted average of these pair-wise treatment effect estimates as the test statistic. Each 

permuted dataset is obtained by randomly allocating J1 communities out of J1 + J2 

communities to the intervention arm. The permutation distribution is then generated by 

evaluating the same test statistic on each permuted dataset. A p-value can be obtained as 
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above. We note that alternative test statistics can also be used. For example, we can use 

treatment effect estimated from models for correlated failure time data. Commonly-used 

approaches include a pseudo-likelihood approach with a working independence assumption 

[20] and a frailty model approach where parametric random effects are used to capture the 

correlation among clustered data [21]

To illustrate, we use this permutation test to analyze data from a cluster-randomized trial 

evaluating the effect of surveillance for methicillin-resistant Staphylococcus aureus (MRSA) 

and vancomycin-resistant enterococcus (VRE) colonization and of the expanded use of 

barrier precautions compared with existing practice on the incidence of MRSA or VRE 

colonization or infection in adult ICUs [22]. This study enrolled 18 ICUs, 10 of which 

received intervention. Data on times to MRSA or VRE colonization or infection were 

collected. The total number of subjects included in the analysis was 3447; the sample sizes 

for individual ICUs varied from 105 to 315. For each pair of intervention-control ICUs, we 

calculate a treatment effect estimate using Cox proportional hazard model and its associated 

robust variance estimate [18]. We consider two test statistics, unweighted and weighted, with 

weights proportional to the inverse of the conditional within-cluster variance estimates. 

Usually the number of possible permutations is too large to enumerate all possibilities and p-

values obtained from permutation tests are based on a sample of possible permutations. 

Therefore we present summary statistics of p-values from 100 permutation tests rather than 

one single p-value to reduce the reliance on the random seed. The p-values, each based on a 

sample of 2000 permutations, are fairly consistent across 100 permutation tests. The 

resulting p-values (median, [25th, 75th percentiles]) were 0.38 [0.37, 0.39] and 0.45 [0.44, 

0.46] respectively, suggesting that the intervention under evaluation did not significantly 

reduce times to MRSA or VRE colonization or infection.

3. Cluster randomized trials with stepped-wedge design

In contrast to the parallel design for cluster-randomized trials mentioned above, the stepped-

wedge design allows clusters to cross over to the experimental intervention in a 

unidirectional manner at different times. The time of this crossover to the intervention is 

randomized. At each time point, some clusters initiate the intervention; the responses in all 

clusters are measured. Permutation methods for parallel cluster-randomized trials involve 

random allocation of treatment assignment to clusters and do not apply to stepped-wedge 

design because clusters in a stepped-wedge cluster-randomized trials will all receive the 

intervention over time. Instead of randomly allocating treatment assignment, we propose to 

randomly assign the order of receiving the intervention.

Suppose there are J periods, each of which is denoted by j, j = 1, . . . , J. We let the first 

period (j = 1) serve as the the baseline period for all clusters. Suppose that at each 

subsequent period, j = 2, . . . , J, Ij clusters are randomized to initiate the intervention. Under 

the null hypothesis of no intervention effect, we can obtain the null distribution of the test 

statistic by permuting the order in which clusters start receiving intervention; we then 

compute the test statistic using the permuted order of assignment. We can then compare the 

observed test statistic to its permutation distribution under the null hypothesis. That is, we 

randomly assign each cluster to initiate treatment at one of possible periods while preserving 
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the number of clusters assigned to the different treatment initiation periods as the observed 

data. Operationally, this is done by creating a vector of length I (the total number of 

clusters), denoted as ℐ. Each element of this vector indicates the period in which treatment 

is initiated; the elements of this vector ℐ are permuted to conduct the test. Permuting the 

elements of vector ℐ ensures Ij clusters assigned to each possible treatment starting points in 

the re-randomized datasets. The test statistic we consider is the estimated treatment effect 

from the mixed effect model for correlated outcomes with fixed period effects.

We simulate data from a stepped-wedge design with I clusters, J periods, Ij clusters are 

randomized to receiving the intervention at each period, and N individuals sampled per 

cluster per time interval. Let Yijk denote the response corresponding to individual k at time j 
from cluster i, and let Yij denote the mean for cluster i at time j. Yijk is generated under the 

model:

(1)

where αi is a random effect for cluster i, γj is a fixed effect for time interval j (j = 1, ⋯ , J, 

and γ1 = 0), Xij is an indicator of the treatment assignment for cluster i at time j and β is the 

treatment effect. We consider four distributions for eijk, including 1) Normal: eijk ~ N(0, 1); 

2) Cauchy with location parameter 0 and scale parameter 1, i.e., ; 

3)Lognormal where the mean and standard deviation of the logarithm were 0 and 1; and 4) 

Pareto with location parameter 1 and shape parameter 3, i.e., , for eijk > 1.

Tables 2 − 3 summarize the empirical size (columns corresponding to β = 0) and power 

(columns corresponding to non-zero β) comparing two approaches: 1) fitting a mixed effect 

model for correlated outcomes with fixed time effects (MM); and 2) permutation test with 

the estimated treatment effect from the mixed effect model (TMM). We first consider the 

settings where  (see Table 2). When sample sizes are relatively large with I = 

10 and N = 100, the usual mixed-effects model (MM) performs well, even when the error 

distributions deviate from the normal. TMM has similar performance as MM. As sample size 

decreases to I = 5 clusters and N = 50 subjects per cluster at each time interval, the 

permutation tests generally control type I errors better than does MM. Comparing the 

settings where I = 5 and N = 50 to those where I = 10 and N = 25 (which preserves total 

sample size), the improvement in control of type I error associated with the permutation test 

is more evident when the number of clusters is small, rather than when the number of 

subjects within each cluster is small. This phenomenon is likely due to the fact that in the 

settings we considered, wherein θ = 0.1, the effective sample size accounting for intraclass 

correlation for I = 5 and N = 50 is smaller compared that for I = 10 and N = 25. In the 

settings we examined in Table 2, the power estimates associated with Cauchy distributed 

errors for both MM and TMM remain very low even as the treatment effect β increases. This 

is due to the fact that Cauchy distribution has large spread leading to a very low signal to 
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noise ratio for the range of β (from 0 to 0.3) considered here. Power will increase with 

substantial increases in β.

Model (1) implies that observations in the same cluster at different periods have the same 

correlation as two in the same cluster in the same period. To reflect the setting where 

observations in the same cluster in the same period have stronger correlation than those in 

different periods, we can include a random interaction term in the model:

(2)

where (αγ)ij ~ N(0, ν2). We also consider the settings in which data from different clusters 

may be correlated; here (α1, . . . , αI)T ~ MV N(0, Σ) and Σ is an exchangeable variance-

covariance matrix with variance θ2 and covariance ρ * θ2. In such settings, the permutation 

test approaches control type I error better than MM regardless of sample size (see Table 3). 

If the true data generating process includes an additional random interaction term that is 

ignored in data analysis, testing based on mixed effects model can lead to severely inflated 

type I error; in contrast, the permutation test remains valid.

4. Discussion

We consider a class of test statistics formed by a weighted average of pairwise treatment 

effect estimates and evaluate the effect of weights on efficiency. Accurate estimates of the 

unconditional variance of pairwise treatment effect estimates incorporating intraclass 

correlation would improve efficiency of the permutation test, but these are generally difficult 

to obtain. Therefore, using equal weights is an attractive approach, in terms both of 

efficiency (it may be closer to the optimal weights) and ease of implementation. If the 

individual cluster sample sizes vary substantially and the intraclass correlation is negligible, 

the weighted version of the test statistic may lead to greater power than the unweighted test 

statistic. This advantage decreases as the intraclass correlation increases. To guide the choice 

of test statistic, we may use prior knowledge on the intraclass correlation or estimate the 

intraclass correlation using a binary event indicator to provide a lower bound for the true 

intraclass correlation of the underlying failure time. Inference based on the same data set as 

that used for model selection may be subject to inflated type I error. In this case, we would 

expect the effect to be minimal because the selection is done based on second-order 

association parameters (ICCs) and does not target treatment effect. Furthermore, even if the 

estimated intraclass correlation is imprecise (e.g., in the case of time-to-event endpoints) and 

the weighted test statistic is in fact associated with lower power than the unweighted test 

statistic, it affects only the efficiency, not the validity, of the permutation test. For unmatched 

trials, we can construct the test statistic by considering all pairwise treatment-control 

comparisons. Taking into account correlation among β̂ij and β̂ij′ may further improve the 

efficiency of the test and is worthy of further investigation.

If we postulate a semiparametric or parametric model for the treatment effect, the 

permutation tests can be inverted to obtain point and interval estimates for the model 

parameters. For time-to-event outcomes, we may consider an accelerated failure time model. 
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More specifically, let T1 and T2 denote survival times sampled from F1(·) and F2(·), the 

survival distributions of two treatment groups respectively and β > 0 is some positive 

constant. According to this model, T1 has the same distribution as βT2; or equivalently, F2(t) 
= F1(βt). Let β0 be some specified value and consider testing H(β0) : β = β0. A point 

estimate for β is given by the value for which there is the least evidence against H(β0) : β = 

β0, say, by giving the largest p-value. A confidence interval of size 100(1 − α)% for β can be 

formed by the set of β0 which are not rejected at the α level of significance. It is important 

to note that, for censored observations, the transformed data arise from two groups with 

equal underlying survival distributions but, in general, different underlying censoring 

distributions. The methods described in [23] can be used to construct the permuted datasets 

that are equally likely as the observed data to form the null distribution for the test statistics. 

Confidence intervals obtained by inverting the permutation tests will be similarly affected as 

the p-value in the sense that more efficient tests will be associated with narrower confidence 

intervals. Similar approach can be used for continuous outcomes generated under the model 

described in Section 3 to obtain confidence intervals. In this case, the test for H(β0) : β = β0 

can be readily constructed by transforming the original outcomes Yij to .

Test statistics of the class we consider are easy to implement, flexible, and useful in a variety 

of settings. Although motivated by analysis of cluster-randomized trials with time to event 

endpoints, the class we discuss applies to any type of endpoint. When estimating pairwise 

treatment effect, we can incorporate covariates, conduct variable selection on covariates, and 

accommodate missing data. For example, in the presence of missing data, the pairwise 

treatment effect estimate may be obtained from inverse probability weighted generalized 

estimating equations [24]. Variable selection can be done based on combined data from both 

arms. In addition, valid permutation tests are available by incorporating variable selection 

procedure in permutation tests [6, 25, 26]. One limitation of this approach arises in settings 

where the cluster-randomized trial includes a large number of small clusters. In this case, 

treatment effect estimates based on pairwise estimates may not be stable, and sometimes 

cannot be estimated due to sparseness of data.

In analyzing cluster-randomized trials, the permutation test provides an attractive alternative 

to its parametric counterparts for testing the null hypothesis of no treatment effect. It 

remains valid in small samples and in the presence of correlation across different clusters 

regardless of underlying data distribution, and is robust to mis-specification of the models 

used to construct the test statistic.
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Figure 1. 
Empirical size/power estimates for 0.05 level test of the null hypothesis H0: β = 0 using the 

unweighted (solid lines) and weighted (dotted lines) test statistics, for right-censored 

endpoints and varying magnitude of treatment effect β and standard deviation of between-

cluster variation θ, based on 1000 experiments. The underlying failure times Tik’s were 

generated according to log(Tik) = bi + α + βXi − εik, where bi ~ N(0, θ2) and εik ~ 

exp{−exp(−ε)}. The censoring times were assumed to follow a uniform distribution with 

support on [1, 2].
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Figure 2. 
Empirical size/power estimates for 0.05 level test of the null hypothesis H0: β = 0 using the 

unweighted (solid lines) and weighted (dotted lines) test statistics, for right-censored 

endpoints and varying magnitude of treatment effect β and standard deviation of the 

between-cluster variation θ, based on 1000 experiments. The underlying survival times Tik 

were generated according to log(Tik) = bi + α + βXi + εik, where bi ~ N(0, θ2) and εik ~ 

N(0, 1)}. The censoring times were assumed to follow a uniform distribution with support 

on [1, 2].
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Figure 3. 
True intraclass correlation for the underlying log-transformed failure time (solid lines) and 

estimated intraclass correlation based on binary event indicator (dotted lines) for varying 

magnitude of standard deviation of the between-cluster variability θ, based on 1000 

experiments. The underlying failure times Tik were generated according to log(Tik) = bi + α 
+ βXi + εik, where bi ~ N(0, θ2) and εik ~ N(0, 1). The censoring times were assumed to 

follow a uniform distribution with support on [1, 2].
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Figure 4. 
Empirical size/power estimates for 0.05 level test of the null hypothesis H0: β = 0 using the 

unweighted (solid lines) and weighted (dotted lines) test statistics, for interval-censored 

endpoints with varying magnitude of treatment effect β and standard deviation of the 

between-cluster variability θ, based on 1000 experiments. The underlying failure times Tik 

were generated according to log(Tik) = bi + α + βXi − εik, where bi ~ N(0, θ2) and εik ~ 
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exp{−exp(−ε)}. Interval-censored observations were generated by comparing the failure 

times to two observational times, both distributed as uniform, on intervals [1, 2] and [2, 3].
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