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SUMMARY

Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to 

respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak 

amplitudes vary across fields, and the mean spacing between fields is larger than in 2D 

environments. We ask whether such 1D responses are consistent with the system’s 2D dynamics. 

Combining analytical and numerical methods, we show that the 1D responses of grid cells with 

stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D 

responses of comodular cells are well described by parallel slices, and the offsets in the starting 

points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From 

these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a 

common computation during both types of navigation behavior.

In Brief

Grid cells exhibit striking periodic spatial responses in open fields, but their responses on 1D paths 

are non-periodic. Yoon et al. show that 1D responses are slices through a periodic lattice and 

provide evidence of a common computation in both cases.

INTRODUCTION

Over the course of navigation in real environments, animals traverse open fields and run 

along paths defined by natural trails and boundaries such as underground burrow systems, 
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streams, and rock faces. If grid cells demarcate spatial coordinates in 2D open fields, as 

seems possible, it is important to learn whether they perform a similar function during 

navigation along stereotyped 1D paths.

Arena experiments in the lab mimic open field exploration, while 1D track experiments 

approximate runs along predefined paths. In arenas, individual grid cells of the mammalian 

entorhinal cortex exhibit spatially periodic tuning, in the form of increased firing at every 

vertex of a virtual triangular lattice overlaid on the floor of the enclosure (Hafting et al., 

2005) (Figures 1A and 1B). As a population, cells from the same module (Stensola et al., 

2012) exhibit essentially the same spatial firing patterns or spatial tuning curves, up to a 

global phase offset (Figure 1C). The offset in phase between cell pairs, also known as the 

relative phase, remains stable across time and environmental conditions (Fyhn et al., 2007; 

Yoon et al., 2013).

Many grid cells also exhibit spatially specific responses when recorded on 1D tracks of 

various shapes (Derdikman et al., 2009; Yoganarasimha et al., 2011; Newman et al., 2014; 

Gupta et al., 2014; Lipton et al., 2007). On linear 1D tracks, the spatial tuning curves of grid 

cells consist of multiple firing fields with non-periodic spacing and a large range of field 

heights (Figures 1D and 1E). The average spacing between fields is typically several times 

larger than in the same cell’s 2D response, and the spatial tuning of different cells is not 

related by simple shifts (Figure 1F). At present, there is little understanding of the detailed 

structure of these 1D responses. In particular, it is unclear whether there is a relationship 

between the characteristic properties of 2D grid cell recordings—their hexagonal patterning, 

their similar tuning up to rigid shifts within a module—and the observed 1D responses. One 

wonders whether the cells continue to perform a similar underlying computation when the 

animals navigate in environments of dimension different than two (F.M. Kempf et al., 2012, 

Front. Comput. Neurosci., abstract; Yoganarasimha et al., 2011; Newman et al., 2014; 

Mathis et al., 2015; Hayman et al., 2011; Gupta et al., 2014; G. Ginosar et al., 2015, Soc. 

Neurosci., abstract). Here we seek to address this question by elucidating whether, and to 

what extent, the 1D responses of grid cells reflect the underlying structure of their 

population responses in 2D.

In this paper, we consider the hypothesis that grid cell responses on 1D linear tracks are 

generated by slicing linearly through an underlying 2D triangular lattice (Domnisoru et al., 

2013; F.M. Kempf et al., 2012, Front. Comput. Neurosci., abstract). We begin by 

considering what this slice hypothesis predicts for the Fourier transform and power spectrum 

of an ideal 1D spatial response. We present analytical methods and numerical refinements 

for extracting the best slice and grid parameters from the Fourier transform of a general 1D 

spatial tuning curve. We then apply these methods to their 1D responses of grid cells with 

stable 1D and 2D fields and show that the resulting slices yield excellent fits to their 1D 

spatial responses. We further show that the 1D responses of comodular cell pairs (defined as 

simultaneously recorded cells deemed to be from the same module [Stensola et al., 2012], 

based on the similarity of their 2D responses) have similar power spectra despite the 

apparent dissimilarity in their spatial tuning and are therefore well fit by parallel slices 

through a triangular lattice. We next predict the 2D phase offsets between comodular cells 

based on their 1D responses and show that these closely match the recorded 2D phase 
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offsets. Finally, while the 1D response can gradually reshape over the course of an 

experiment, this remapping can be interpreted as a drift in the slice parameters and slice drift 

appears to occur in tandem across cells from the same putative network, preserving cell-cell 

relationships. We conclude that the data strongly support the hypothesis that 1D responses 

can be generated by slicing through a regular underlying 2D triangular lattice. Finally, 

because the group relationships of comodular cells recorded on 1D tracks remained the same 

as the group relationships measured in 2D, we conclude that the network remains in the 

same dynamical regime during navigation in 1D and 2D environments.

RESULTS

The Fourier Power Spectral Density Reveals Underlying Periodic Structure

We find that the 1D tuning curves of simultaneously recorded grid cells (Domnisoru et al., 

2013) exhibit a shared “fingerprint” that hints of an underlying periodic structure. To see 

this, first consider the 2D responses of these cells, in which this fingerprint—the power 

spectral density (PSD) of the spatial response—is easy to understand and interpret (Figure 

1G). The periodic 2D response of a grid cell generates six discrete peaks forming a hexagon 

around the origin in the PSD (these peaks form part of a triangular lattice in spatial 

frequency space that is “dual” to the spatial triangular lattice, see Figure S1). Spatial phase 

information is lost in the PSD, thus co-modular cells, which exhibit the same spatial tuning 

parameters up to phase (Fyhn et al., 2007; Yoon et al., 2013), exhibit the same spectra 

(Figure 1G). Intriguingly, the PSDs of the 1D spatial responses of co-modular grid cells 

(determined to be co-modular on the basis of their 2D responses) also closely resemble each 

other (Figure 1H). We next explore this phenomenon and its possible implications for how 

1D grid cell responses are generated.

The PSD of a generic linear slice through an idealized 2D triangular lattice has exactly three 

dominant peaks of equal height (Figures 2A–2C). As the angle of the slice varies, the 

locations of these three peaks shift (Figures 2A–2C). These peak locations are independent 

of the origin (or spatial phase) of the linear slice for generic slices, thus parallel 1D lattice 

slices have nearly identical PSDs (Figures 2D–2F). Non-generic slices are those parallel to 

one of the primary lattice vectors (Figure 2B) or at the half-lattice angle of 30°; in these 

cases the PSD is predicted to exhibit only one or two major peaks, respectively (Figure 2C). 

Even in generic slices for which one would expect to see three PSD peaks, if the sampled 

slice segment is short (only 1–3 times the underlying period), finite length effects broaden 

the PSD peaks, potentially causing one or more of them to merge. In summary, linear slices 

through a 2D lattice should exhibit three or fewer major peaks in their PSDs, with most of 

the mass of the PSD residing in those peaks. We will quantify the fraction of the mass of a 

PSD that is concentrated in three or fewer peaks by a three peakiness score (p3) 

(Experimental Procedures).

Our frequency-space characterization provides a concise description of the particular 

heights, spacing, and ordering of firing fields in a lattice slice in terms of the constrained 

peak structure of the corresponding PSD. To illustrate the specific nature of these 

constraints, we compare lattice slices to two sets of statistically matched random controls: 

given a 1D response, we generate corresponding gap-randomized controls by randomly 
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shuffling the order of the firing fields then assigning the fields new positions chosen 

randomly from a uniform distribution (Figure S2 and Experimental Procedures). We 

generate gap-shuffled controls by simply shuffling the gaps between fields (Figure S2 and 

Experimental Procedures). Examples of these two random controls and their PSDs can be 

seen in Figure 2B (reddish-gray and bluish-gray, respectively), with PSDs in Figure 2C. The 

tuning curves for both random controls can look very similar to slices, but generically their 

PSDs differ: they have variable numbers of PSD peaks and usually more than three (Figures 

2C and S2; three-peakiness score p3 = 0.63 for the gap-randomized and p3 = 0.69 for the 

gap-shuffled controls, compared to p3 = 1 for ideal lattice slices, Experimental Procedures). 

We will return to these controls to statistically test our conclusions throughout this work.

It is useful to note that the 1D PSD of a 1D slice through a 2D lattice is equivalent to a 1D 

projection of the 2D PSD of the 2D lattice onto a “slice line” taken at the same angle starting 

at the origin in frequency space (Figures 2G–2H and Experimental Procedures). This 

equivalence allows us to predict the PSD of a 1D slice at any angle by simply projecting the 

three closest-to-the-origin spectral peaks from the 2D PSD onto a line running through the 

origin at the desired angle (Figures 2G and 2H). Conversely, given the locations of two 

major PSD peaks from the 1D response, we can solve analytically for the angle of the slice 

(Figure S1 and Experimental Procedures). The slice angle obtained in this way is exact if the 

1D slice extends to infinity.

Using similar techniques (Figure S1 and Experimental Procedures), we can infer the scale 
factor of a cell, which is the ratio of the inferred 2D lattice period underlying the 1D 

response to the recorded period in 2D enclosures. From the Fourier transform of the 1D 

response, we can furthermore deduce the starting point or 2D spatial phase of the slice 

(Figure 2D; Experimental Procedures). By taking the difference of the inferred 2D spatial 

phases for a pair of cells, we can predict their 2D relative phase. We can alternatively, and 

more directly, estimate the 2D relative phase for a cell pair through the Fourier transform of 

the cross-correlation of their 1D spatial responses (Experimental Procedures).

These four parameters, slice angle (θ), scale factor (α), and 2D phase (φ⃗), fully describe a 

linear slice that starts at the given phase within a unit cell in the canonical 2D grid and 

continues out to infinity at the given angle (like the schematic slices in Figure 2D). Once the 

scale factor has been determined, the length of the slice through the 2D grid is fully 

determined by the scale factor and the length of the track run by the animal.

Finite size effects induce uncertainty in the inferred slice parameters (Figures S3C–S3G), as 

does noise in the neural response (Figures S3H–S3L). In the presence of such uncertainty, 

supplementing the analytical estimates with numerical optimization can result in improved 

parameter estimates (Figures S3M–S3R and Experimental Procedures).

In summary, the mathematical duality between the spatial response domain and the Fourier 

spectral domain for slices through regular lattices allows us to determine, up to estimation 

uncertainty, whether the 1D spatial responses are consistent with an underlying 2D lattice 

and, if so, to infer the parameters of the slice relative to the lattice.
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The Distribution of Gaps in a 1D Response Reveals Underlying Periodic Structure

A second signature of lattice slices, complementary to the 1D PSD, is the distribution of the 

gaps between 1D firing fields. A linear slice through a 2D lattice cuts across several bumps, 

with a distinct sequence of gaps (spacing between bumps) depending on its angle (Figures 

3A and 3B). The smallest gap occurs when the slice hits adjacent bumps in the 2D lattice; a 

larger gap occurs when the slice misses a 2D bump and hits the next-nearest bump, and so 

on. Thus, the set of possible gaps is restricted to the set of distances between a reference 

bump and all other bumps in the 2D lattice that can be reached by a straight line that does 

not cross any other bumps. (The bumps have some width, thus the slice can hit a bump “off-

center.” Therefore, the actual measured distance between two bumps in a 1D slice will 

typically be slightly but systematically smaller than the analytically described gaps.) By 

contrast, the gaps in gap-randomized controls (Figure 3C) can be of arbitrary size; thus, the 

distribution of gaps is unimodal and smooth (Figure 3D, bottom), rather than multimodal 

with a few discrete peaks as predicted for slices (Figure 3D, top). (The gap-shuffled controls 

preserve the full gap distribution of the original data by construction.)

Up to an overall scale factor to account for the lattice period, the gaps in lattice slices are 

entirely specified by the geometry of the 2D lattice. Thus, the ratios between gaps will 

exhibit relationships characteristic of an underlying triangular lattice: 

; and so on (Figure 3E), and will be the same 

across modules with different spatial tuning periods and orientations, and different slice 

angles, so long as the underlying grid geometry is the same.

The distribution of gaps collected by pooling across 100 slices of an idealized triangular 

lattice with varying angle and starting position (phase) is shown in Figure 3E (bottom; the 

lattice period is a = 20 cm). The gaps (Figure 3D, top) from the two slices of Figures 3A and 

3B are simply samples from this gap distribution (Figure 3E), and a particular slice may 

sample only a subset of possible gaps from the lattice. To take an extreme example, a slice 

along one of the primary lattice vectors samples only the nearest-neighbor bump distances in 

the 2D lattice, thus the gap distribution consists of a single peak (Figure S4).

It is possible to extract gaps on a trial-by-trial basis from neural recordings and then pool the 

gap samples across trials. Even if the 1D firing field locations drift from trial to trial (Figure 

S4), the gaps in every trial will be drawn from the same small set governed by the 2D lattice 

geometry, assuming that all trials are linear (but possibly changing) slices through that 

lattice. Moreover, because gap ratios are independent of slice angle, grid period, and scale 

factor, it should be possible to pool gap ratios across modules. By contrast, PSDs depend on 

slice angle and cannot be similarly pooled. On the other hand, the gap analysis focuses on 

adjacent bumps, while the PSD contains information about relationships between all bumps, 

not just adjacent ones. Thus, gap analysis and PSDs provide complementary measures of a 

slice.
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Grid Cell Responses on 1D Tracks Are Well Fit by Linear Slices through a Triangular 
Lattice

We applied the methods described above to the 1D virtual track responses of 25 neurons 

identified as well-isolated grid cells with stable 1D spatial responses from the experimental 

dataset (see Experimental Procedures). Examples of the 1D response are shown in Figure 4A 

(three cells from different experiments), with 30-trial firing rate averages in Figure 4B (black 

curves). The PSDs of the spatial tuning curves in Figure 4B (Figure 4C, black) exhibit three 

or fewer major peaks, with most of the PSD mass concentrated in these few peaks (p3 = 

0.95, 0.99, and 0.66, respectively), as expected for lattice slices.

Our Fourier-based slice analysis method (Experimental Procedures) returned slice 

parameters (inset values, Figure 4B) that produced the best fit (in the sense of Pearson’s 

correlation coefficient) to the measured 1D spatial tuning curve. For each neuron, the slice 

angle was confined (without loss of generality) to the interval [0°, 30°], the phase could fall 

anywhere within a predefined unit cell of the lattice, and the scale factor could take values 

between 1 and 8 (Experimental Procedures).

The 1D tuning curves predicted by the slice hypothesis (Figure 4B, green) provide excellent 

matches to the recorded 1D spatial tuning curves (average correlation value of 0.92 and 

average p value of 0.04 for these three cells). The best-slice PSDs, shown superimposed on 

the data PSDs (Figure 4C, green), are also very close to the data PSDs. The gap histogram 

obtained from pooling gaps between adjacent bursts across individual trials (Figure 4D; see 

Experimental Procedures) displays a small set of distinct peaks. Moreover, most gaps and 

gap ratios (inset numerical values, Figure 4D) are within 5% of the values predicted for a 

regular triangular lattice (Figure 3E). By contrast, for the gap-randomized controls, each gap 

ratio will be independently drawn from a smooth, broad unimodal distribution (Figure 3D, 

bottom).

We augment our virtual track recordings with data obtained by Brun and colleagues on a 

long linear 1D track (Brun et al., 2008; http://www.ntnu.edu/kavli/research/grid-cell-data). 

The track is punctuated by discrete visuospatial landmarks like doorways, and the spatial 

response statistics of a majority of cells change visibly roughly halfway into the track and 

persist to the track’s end. For this reason, we analyze responses on the first half of the linear 

track (Figure 4E).

Applying the same analysis as in Figures 4B–4D to two cells from Brun et al. (2008) yields 

striking agreement between their track responses and the linear slice hypothesis (Figure 4F, 

green; average slice correlation value of 0.89, and average p value of 5 × 10−4 for the cell 

pair; the p values, computed from the correlation coefficient and the number of above-

threshold firing fields, are even more significant than for our virtual track data because of the 

greater track length and consequently larger number of fields).

Statistical Analysis of Slice Hypothesis across Linear Track Data

As we have seen, the 1D responses of some grid cells are extremely well fit by the slice 

hypothesis: the average fit correlation coefficients of the cells in Figure 4A are high (〈ρ〉 = 
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0.92), the PSD mass is largely concentrated in three or fewer peaks (〈p3〉 = 0.87), and the 

gap distribution has peaks close to the predicted values for slices of triangular lattices.

To what extent is it generally true that the 1D responses of grid cells in our dataset can be 

well described by slices? To answer this question, we focus closely on dataset-wide 

statistical analyses of cells recorded on the virtual track, because there we possess 2D 

recordings, from which we can extract ground-truth information on whether the cells are 

grid cells, on their 2D periods, and their co-modularity.

We generate the best-fit slice for each cell in the dataset (e.g., Figure 5A, top row, green; fit 

in black), together with large samples of corresponding gap-randomized and gap-shuffled 

controls (one sample of each shown in Figure 5A, middle row, reddish-gray and bluish-gray, 

respectively) and their best-fit slices (green). We can now compare metrics of the cell against 

the metrics of its two random controls (Figure 5A, bottom row). Typically, the correlation 

coefficients between the data and a slice are well to the right of those for the two matched 

control distributions; the same is true for the three-peakiness scores (Figure 5A, bottom 

row). We standardize the correlation score and PSD three-peakiness score of each cell (by 

subtracting the mean and dividing by the SD of the distributions of these scores from 

matched controls, illustrated in Figure 5A, bottom row), so that the standardized scores 

reflect how many SDs away the data lies from the control distributions. Standardization 

allows us to collapse together results across all grid cells in the dataset. The resulting 

quality-of-fit distributions for the dataset are significantly to the right of both matched 

controls (Figure 5B; testing to see whether the data are drawn from a distribution with zero 

mean, as in the control distributions, yields p = 3 × 10−4; t = 4.28; df = 24 and 2 × 10−4; t = 

4.49; df = 24, respectively, on a one-sample t test), as are the three-peakiness scores (Figure 

5C; p = 1 × 10−3; t = 3.65; df = 24 and 8 × 10−4; t = 3.85; df = 24 respectively; one-sample t 

test). (The mean fit quality for non-standardized data is 0.786 and that for the controls is 

0.729 [gap-randomized] and 0.730 [gap-shuffled]. The raw fit-quality distribution is also 

significantly to the right of both matched controls: p = 0.0039 for non-normalized fit quality 

of real data versus gap-randomized controls and p = 0.0046 versus gap-shuffled controls; 

one-sample t test.) Note that the controls are extremely conservative (not overly random), in 

that they preserve many higher-order statistics of the data; this is particularly true for the 

gap-shuffled controls on non-generic slice angles where the distribution of gaps is very 

narrow and thus the random controls closely resemble the original slice (see Figure S2); 

nevertheless, the slice hypothesis fits the data significantly better than it does the controls.

Finally, the combined histogram of gaps, normalized by the inferred period (scale factor 

times 2D grid period) for each cell and pooled across all cells in the dataset, yields a 

distribution with a small set of distinct peaks (Figure 5D). The peaks in the gap distribution 

lie very close to the predicted values for an underlying regular triangular lattice (see Figure 

3E). The slight, systematic leftward shift in all the peaks relative to the prediction can be 

attributed to the fact that each firing field has a finite width, and so the measured spacing 

from field to field will be reduced by an amount proportional to the field width.

Lacking access to 2D data for cells recorded on 1D real tracks (Brun et al., 2008), we 

instead identified putative grid cells from their 1D responses alone using a modified version 
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of criteria used in Domnisoru et al. (2013) (Experimental Procedures). An analysis of all 

passing cells (40 out of 97 cells, or 41%) yields excellent agreement with the preceding 

results: the 1D responses of putative grid cells are well fit by the slice hypothesis (average 

fit-quality of 0.72, close to that for virtual track data, Figure 6) and are better fit than are the 

statistically matched controls (Figures S5A–S5C); their gap distribution is consistent with 

slicing through a regular triangular lattice (Figure S5D); and slice parameters tend to cluster 

into groups, indicating the presence of comodular cells (Figure S5E).

Cell-Cell Relationships: Pairs from the Same Module Are Well Fit by Parallel Slices

We next examine relationships in the 1D slice parameters of comodular cells. If the 1D 

responses of different cells from a module were generated by the coherent displacement 

(driven by animal motion) of an underlying 2D population pattern, we would expect their 1D 

tuning to correspond to parallel slices of the 2D population pattern with the same scale 

factor. As a consequence, their PSDs should also look similar (prediction in Figures 2D–2F). 

Indeed, the scale factors, slice angles, and PSDs of comodular cells can be very similar, as 

we can see for an example cell pair on the linear virtual track and another pair on a long 

linear track (Figures 6A–6D).

However, the best-fit slice parameters obtained individually for each cell in the dataset are 

not always very similar for comodular cells (Figure 6E, left). One reason for this 

discrepancy is the existence of an effective degeneracy in the solution for the best-fit slice of 

each cell, which arises because of data limitations. Because of response variability and the 

finite length of the track, there are sometimes two or three discrete good slice solutions for a 

cell (see Experimental Procedures). These solutions are not near each other in parameter 

space because the relationship between fit quality and slice parameters is non-convex—they 

tend to take the form of well-separated, similarly deep local optima in the solution landscape 

and correspond to a large step in slice angle and scale factor. Thus, there is an inherent 

uncertainty in estimating the best slice parameters, and cell responses actually generated 

from parallel slices may not yield similar parameters with our procedure if we choose 

different minima for each.

The question instead should be whether there exist parallel slice solutions for comodular 

cells that yield good fits. We refit cells using the same procedure, but after enforcing the 

constraint that a roughly consistent set of PSD peaks are selected across comodular cells to 

predict their slice parameters (Experimental Procedures and Figure S3). Not too surprisingly, 

the slice parameters for comodular cells are now well clustered (Figure 6E, right). Imposing 

constraints on a fit will generally worsen the quality of the fit, especially if the constraints 

are inconsistent with structure in the data. The mean quality-of-fit does decline when cell fits 

are fit consistently (Figure 6F, white histogram) than when individually optimized (Figure 

6F, gray), but notably the drop is slight (the difference in means is not significant, p = 0.2; t 
= 1.30; df = 48; paired t test) and imposing consistency still produces slice fits that are much 

better than for the controls (p = 2 × 10−3; t = 3.72; df = 24 for average fit quality after 

imposing consistency versus matched gap-randomized controls and p = 1 × 10−3; t = 3.68; df 
= 24 versus gap-shuffled controls; one-sample t test). We conclude that the constraint is 

consistent with the underlying structure of the data: that is, comodular cells in 2D are well 
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described by parallel grid slices through a common 2D grid. We will see below that a 

parallel slice description leads to accurate prediction of the 2D spatial tuning phase 

relationships between comodular cells on the basis of 1D track data.

Finally, the angles selected by the grid networks for generating 1D responses are well 

distributed relative to the underlying 2D lattice: there is no clustering around 0° or 30°, 

which would indicate roughly periodic 1D responses, and there is no other preferred slice 

angle for generating 1D responses (Figure 6G).

Cell-Cell Relationships: 2D Relative Phases Are Predicted by 1D Slice Fits

If the 2D response of grid cells is generated by rigidly translating an underlying population 

activity pattern according to animal movements, then the phase offset in the 2D spatial 

tuning of a pair of comodular cells (called their relative phase) should equal their phase 

offset with respect to the underlying population pattern. If the 1D response is generated in 

the same way, the same should be true, and the 2D phase offset between a pair of predicted 

1D slices should equal the measured 2D relative phase. A stringent test of the slice 

hypothesis, then, is to ask whether a predicted 2D relative phase from fitting slices to the 1D 

tuning curves of grid cells on tracks agrees with the 2D relative phase measured in box 

environments.

The predicted 2D relative phase from the slice analysis is the offset in the starting points of 

the two slices within a unit cell of the unit lattice (Figure 7A, inset; there is 12-fold 

degeneracy in the relative phase prediction intrinsic to the symmetry of the lattice, see 

Figure S6 and Experimental Procedures for how we obtain a unique solution and also apply 

similar procedures to generate fair controls). We generate 2D relative phase predictions from 

1D track responses for all pairs of comodular cells (Experimental Procedures) and test them 

against the measured 2D relative phases obtained from 2D trajectories in boxes. We find 

very good agreement between the 2D relative phases predicted from the 1D slice analysis 

(under the consistency-imposed slice fits described above) and those measured in 2D (Figure 

7B, left), up to the estimation uncertainty inherent to the prediction due to spiking variability 

(estimated by bootstrap sampling of spikes, Experimental Procedures): in other words, the 

predicted and measured 2D phases are not distinguishably different from one another (n = 25 

total comodular pairs from the 3 comodular pairs, 2 comodular quadruples, and 1 comodular 

quintuple in the dataset).

The errors in predicted relative phase (predictions generated pairwise) are significantly 

smaller than if guessed at random (p = 10−5; χ = 4.62; df = 24 from a chi-square test; the 

errors in the random predictions are themselves not large because each random pair is also 

given the benefit of a 12-fold degeneracy in solutions, as noted above; see Figure S6 and 

Experimental Procedures). If the relative phase predictions for cells from a comodular K-

tuple are generated by selecting a common solution domain out of the 12-fold degenerate 

domains across all (K choose 2) pairs (rather than allowing a different choice for each pair 

as above), the 2D relative phase prediction error barely increases. Importantly, the random 

predictions become worse because they are subject to the same constraint (see Figure S6 and 

Experimental Procedures), leading to a greater separation between the predicted relative 
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phase errors and errors from random guessing (p = 6 × 10−9; χ = 2.26; df = 24 from a chi-

square test).

The 1D slice analysis prediction of the phase offset between cells yields substantially more 

information about the 2D relative phase vector from 1D track data than can be obtained from 

the Pearson cross-correlation of the 1D responses (Figure 7C). The latter is a scalar measure 

that provides no information about 2D relative phase beyond its magnitude (On the other 

hand, if the goal is to predict only the magnitude of 2D relative phase from the 1D data, 

Pearson cross-correlation and slice analysis yield comparable results; Figure S6.)

Grid Expansion from 2D Real Environments to 1D Real and Virtual Environments

The spatial tuning period of grid cells expands ≈4-fold in going from 2D real open fields to 

1D virtual tracks (Figure 6E). What factors contribute to this expansion? One factor is the 

move from real to virtual environments: the same cell, recorded first in 2D real open fields 

then in 2D virtual reality, undergoes a ≈2.5-fold expansion in its spatial tuning period 

(Aronov and Tank, 2014). Nevertheless, nearly 40% of the expansion in our results remains 

unexplained by this factor (note however that the virtual reality setup and mammalian 

species used in Aronov and Tank [2014] [rats] differed from those in the present experiments 

[mice], so under the same environmental transition, the expansion factor might differ in our 

setup). We hypothesize that even within real environments, the move from 2D to 1D induces 

a change in period. This possibility was already noted in Brun et al. (2008), but the 1D 

period estimation methods used, it was also observed, might overestimate the 1D period 

because of the propensity of grid cells to entirely “miss” fields, or fail to fire in a field. Thus, 

it remained unclear whether there is an expansion in going from 2D to 1D.

The slice hypothesis is not sensitive to missed fields: the PSD method and especially the gap 

distribution reveal the underlying grid period even with missed fields: missed fields will 

reduce the height of the gap distribution at the peak corresponding to the smallest gap, but so 

long as that peak is present, it provides a good estimate of period. Even without missed 

fields, inferring 2D parameters from 1D tracks using the slice hypothesis provides more 

information than gained by 1D correlation analyses (Figure S7A). Using the slice method, 

therefore, it is possible to more closely answer the question of 2D to 1D grid expansion. We 

estimate the 2D spatial tuning periods of cells based on their dorsoventral locations (Brun et 

al., 2008) (Figure S7B) and compare these to the inferred 2D lattice periods underlying 1D 

track runs (Figure S7C). The 2D lattice period during navigation on real 1D tracks expands 

by a factor of ≈2 (Figure S7D) relative to that for familiar 2D enclosures. With this finding, 

it is worth noting that the largest inferred underlying 2D grid period for the putative grid 

cells (those passing our gridness criteria) recorded on 1D tracks in Brun et al. (2008) is less 

than 1 m. Therefore the largest verified 2D grid period for grid cells anywhere along the DV 

axis is ≈1.3 m, as reported in Stensola et al. (2012).

To return to the question of expansion from 2D real environments to 1D virtual tracks, we 

conclude that both the 1D and virtual reality aspects of the environment independently 

contribute to the overall expansion (scale factor) we observe.
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Shifting 1D Responses May Be Consistent with Drifting Slices

Occasionally, we observed systematic shifts across trials in the 1D spatial tuning of cells 

(Figure 8A). Averaging over trials in such cases yields a spatial tuning curve with broader 

firing bumps, extra bumps, and lower signal-to-noise ratio; indeed, this pair of cells was 

responsible for some of the worse relative phase predictions and slice fits in previous figures.

The single trial responses during drift, however, do not appear to differ statistically from 

trials in which there is little drift. While it is difficult in general to perform statistical tests 

and the PSD analysis to extract slice parameters on rapidly drifting responses, on cells with 

moderate drift (Figure 8A), we may average small sets of adjacent trials and perform a more 

temporally resolved analysis. Our aim is to determine whether the drifting response can still 

be described by the slice hypothesis locally in time, so that each small group of trials is well 

described as a slice, but more separated trials are described by slices with different 

parameters.

We first generate a gap histogram (Figure 8B), which we know should be invariant to 

changes in slice angle and phase, if the response is generated from a 2D lattice with invariant 

scale. Notice that the distribution has a few distinct peaks. The locations of the peaks (Figure 

8B, green), scaled by the location of the third peak, closely coincide with the predicted ratios 

for a triangular lattice.

The PSDs of the two cells over small block of trials (5-trial averages; Figure 8C) are quite 

similar, even though the PSD of each cell changes considerably over trials. This indicates 

that the slice parameters of both cells are similar to each other locally in time, even as the 

slice parameters change over time. These PSDs tend to have more than three large peaks, an 

indication that, if the slice hypothesis is true, the slice has already drifted over the course of 

the 5-trial average (the PSD over a sum of drifting slices is the sum of the PSDs of those 

different slices).

Finally, we directly fit slices to 5-trial moving window average firing rates (with a 1-trial 

shift between windows) of the two cells (Figure 8D). We find that the best-fit slice solutions 

have a constant angle and scale-factor across trials (Figure 8D, rows 1–2). The main change 

across trials is in the 2D phases of the slices (Figure 8D, rows 3–4). Note that the quality of 

fit does not vary substantially over trials despite the drift in firing patterns (Figure 8E, dark 

red and blue) and remains reasonably high despite the smaller SNR in the 5-trial averaged 

firing rates (the SNR in the spatial responses from 30-trial averages over non-drifting 

responses is substantially higher), suggesting that the slice hypothesis is equally valid locally 

in time in this set of drifting trials as it is for cells that exhibit little drift. By way of control, 

slices 5° and 10° away from the optimal slice produce much poorer fit quality (Figure 8E, 

pale curves).

For visualization, we plot the moving slices directly on the underlying 2D lattice (Figure 

8F). Note that the drift in slice parameters is largely coherent for both cells (the slices drift 

roughly in parallel with each other, Figure 8D). The predicted relative phase from the 1D 

responses, generated in this time-resolved way from slice fits, remains unchanged across 

trials up to the uncertainty inherent in the noisy spiking responses (Figure 8G, different 
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black triangles for the moving 5-trial window averages; red dashed circle is the bootstrap 

estimation uncertainty from spikes), and all these estimates are close to the recorded relative 

phase from 2D environments (Figure 8G, red dot).

While the drift in slice parameters across trials for this pair is mostly confined to the slice 

phase, in other experiments the drift can be in angle or some combination of slice parameters 

(data not shown).

DISCUSSION

Summary of Findings

We characterized the responses of grid cells on 1D tracks by studying the Fourier transform 

of linear slices through a triangular lattice. In previous work, it was noted that spatially 

periodic 2D responses are characterized by their Fourier components, in particular a 

triangular bump pattern should have exactly three components of maximal amplitude, 

corresponding to plane waves at 60° angles (Krupic et al., 2012). We established that despite 

their aperiodic appearance, 1D slices through idealized 2D lattices have a 1D Fourier power 

spectrum which inherits this peaked structure, and their responses exhibit a characteristic 

gap distribution with gap ratios determined by the 2D lattice geometry. We further showed 

how to use the amplitude and phase of the Fourier components to analytically infer the 

parameters of the slice. The analysis of lattice slices via their Fourier properties arises in 

crystallography, as well as in the characterization of quasicrystals (Suck et al., 2013).

We applied these theoretical methods to 1D grid cell responses and demonstrated that their 

(non-periodic) spatial firing rates are well fit by slices through triangular lattices. Moreover, 

cells from the same module are well fit by parallel slices through the same triangular lattice 

and it is possible to predict the 2D relative phase of cells from slice fits of their 1D 

responses. These population-level findings have important implications for network 

mechanism during 1D navigation, as discussed below.

Together, our results provide the first direct evidence that the central defining property of 

grid cells—namely, a 2D lattice representation of space—is maintained on linear tracks, 

despite the specific 1D nature of the environment and running behavior. At the same time, 

the expansion of the spatial tuning period in 1D relative to 2D suggests that certain 

quantitative properties of the representation of space are environmentally dependent, similar 

to the stretching of grid cell tuning in rescaled 2D environments (Barry et al., 2007). (Since 

the scale factor can vary independently for the two spatial dimensions [Barry et al., 2007], 

one should not expect to predict the period of spatial tuning in the orthogonal direction on 

the basis of strict 1D experiments without further modeling of how environments determine 

scale.)

The PSD and gap characterization of 1D grid cells, and the ability to generate accurate slice 

fits, should allow for more accurate classification of entorhinal cells recorded in 1D 

experiments (Brun et al., 2008; Heys et al., 2014; Domnisoru et al., 2013; Hafting et al., 

2008). In principle, responses on longer tracks provide more constraints on the parameters of 

a slice fit. At the same time, there may be a greater tendency toward remapping partway 
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along longer tracks, complicating the slice analysis. It is possible that 1D tracks free of 

spatial landmarks could inhibit landmark-anchored remapping and thus permit parameter 

estimation and relatively rapid inference of cell-cell relationships like comodularity and 2D 

relative phase from short experiments involving <40 s of data (10 runs down an 8 m track at 

a running speed of 0.2 m/s).

Finally, our methods could be applied to characterize the structural characteristics of grid 

cell responses in three spatial dimensions (Hayman et al., 2011; G. Ginosar et al., 2014, Soc. 

Neurosci., abstract), by constructing 1D and 2D slices of the acquired 3D data then 

analyzing the resulting projections.

Mechanism: Implications for Recurrent Dynamics during 1D Navigation

Comodular grid cells with stable 1D responses retain the same cell-cell relationships as 

when they are recorded in 2D arenas: their relative spatial phase remains invariant across 1D 

and 2D despite the large change in the period of spatial tuning across all comodular cells. 

Thus, the instantaneous states of the neural population with stable 1D tuning are drawn from 

the same set of population states observed in 2D, even if the forward mapping from these 

instantaneous states to external spatial coordinates is stretched. In this sense, since the 

internal population states remain invariant across 2D and 1D navigation, we say that the 

system remains in fundamentally the same low-dimensional computational and dynamical 

regime that characterizes its 2D response (Yoon et al., 2013).

This finding aligns with a previous result and prediction (Burak and Fiete, 2009; Yoon et al., 

2013) that non-unity scale factors in the spatial tuning of grid cells across environments are 

not due to a change in the population-level states and thus are expected to be caused by some 

change in the feed forward inputs to the system, including for instance visually derived 

spatial cues, border cells, or the effective strength of velocity inputs to the network. The 

effective strength of velocity input might be reduced in 1D environments either because of a 

reduced perception of speed or because of a down-regulation in the gain of the speed input 

to the system even for an unchanged speed percept.

Potential Exceptions to the Slice Hypothesis and Future Work

Single linear lattice slices cannot always describe the 1D responses of grid cells. As already 

noted, 1D response characteristics can sometimes change partway down a long track with 

landmarks (from our analysis of Brun et al., 2008): a frequently firing cell may become 

more sparse, the field spacings may go from more periodic to less, and so on. Similarly, in 

1D tracks with hairpin turns and alternating linear segments, the grid cell responses across 

all segments run in one direction are nearly identical to each other (Derdikman et al., 2009). 

These kinds of effects might be explained within an expanded version of the slice 

hypothesis, according to which 1D track responses are piecewise compositions of different 

linear slice segments. Thus, a response remapping partway down a track would correspond 

to a change in the slice from that point onward. This is a topic for future empirical and 

theoretical tests.

A closely related observation is that grid cells can exhibit different spatial tuning in the 

outbound and return directions on a physical track (Brun et al., 2008), even when the spatial 
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tuning in one run direction is consistent with the slice hypothesis (our analysis). An 

interesting question for future study is whether spatial tuning on the return journey is also 

well fit by a slice and, if so, how the two slices are related. If the slice hypothesis is a good 

description also of the return response, a shift in the grid cell slice parameters for different 

run directions or run contexts (Lipton et al., 2007) could explain the direction and context 

specificity of place cell tuning in similar experiments.

Spatial tuning curves obtained by averaging together blocks of trials tend to not be well fit 

by slices if there is a rapid drift in the spatial responses across trials. In such cases, it is 

possible that the single trial responses are generated by slicing a lattice, but the slice 

parameters shift rapidly across trials. Data limitations arising from the length and duration of 

an individual trial in the existing data means that further experiments and analysis will be 

required to properly resolve this question as well as to better characterize what drives the 

shift in slice parameters.

The ability of animals to solve starburst mazes (Olton and Samuelson, 1976) suggests that 

they can learn the geometrical relationships between 1D paths. To understand how animals 

use 2D coordinate frames when navigating along 1D trails, it will be interesting to study the 

selection of slice angles: supplied with two linear paths in a 2D arena starting from the same 

point but diverging at an angular separation angle δ, are the slice angles chosen by the 

animal along those paths consistent with δ and, if so, how does the slice angle difference 

converge to δ with experience?

A broader question related to 1D navigation is whether responses along nonlinear 1D tracks 

are based on corresponding nonlinear lattice slices. If grid cell activity is generated by a 

velocity input that shifts an underlying 2D population pattern around in tandem with animal 

motion (Burak and Fiete, 2009), we would expect the answer to be affirmative.

Indeed, according to existing analyses, grid cell responses on circular 1D tracks 

(Yoganarasimha et al., 2011; Newman et al., 2014) may be consistent with a circular slice 

through a 2D lattice, while remapped responses on the annular track may result from shifts 

in the phase of the circular slice (Neunuebel et al., 2013). Analytical Fourier parameter 

extraction is much more complex for circular tracks, but there are ways in which it can be 

generalized (K.Y. and E.L. Newman, unpublished data).

Finally, a suggestive but still anecdotal (because of the small sample size: n = 1 cell pair) 

observation from our analysis is that grid cells from the same animal but different grid 

modules can exhibit different 2D-to-1D scale factors and slice angles (Figure S8). If this 

result proves to be statistically significant when augmented by additional data and similar 

analyses, it would suggest that different grid cell modules (Stensola et al., 2012) are 

functionally independent.
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EXPERIMENTAL PROCEDURES

Cell Selection

We analyzed units from Domnisoru et al. (2013) (real 2D arena and virtual linear track data 

for each cell) and Brun et al. (2008) (linear real tracks).

From Domnisoru et al. (2013), our starting sample consisted of 126 units (137 recorded; 126 

passed the sorting criterion that no more than 0.25% of spikes in each unit were emitted with 

interspike intervals [ISIs] shorter than 1 ms [Domnisoru et al., 2013]). We applied the 

intersection of three criteria on spatial tuning (2D gridness, 1D stability across trials, 1D 

entropy to exclude cells with high background noise), then excluded duplicates based on 

similarity of tuning. The detailed methods are given in Supplemental Experimental 

Procedures. The final sample was 25 grid units (6 singles, 3 pairs, 2 quadruples, and 1 

quintuple).

We identify putative grid cell responses in Brun et al. (2008) by adapting criteria from 

Domnisoru et al. (2013). Adjustments simplify the criteria slightly and account for the large 

difference in track length (Supplemental Experimental Procedures). We used only the first 

half of each run. Responses on opposite direction runs were treated as two independent 

spatial responses. We are left with 51 putative grid cells with 65 passing spatial responses, 

out of 97 recorded cells with 194 spatial responses. We applied slice fits to all passing 

responses with ≥3 fields on the half-track. (This condition is necessary for generating 

meaningful slice fits: two 1D fields are mathematically not enough of a constraint to specify 

a slice by any method. Excluded cells tend to be from the ventral end of the dorsolateral 

MEC.) This leaves 40 putative grid cells and 53 responses.

Trial Selection

Different cells were recorded for different numbers of trials and some cells showed 

substantial drift in their spatial tuning across trials. We adopted a trial-selection procedure to 

equalize the number of trials used per cell and obtain the most stable block of 30 trials for 

each cell, for Figures 1, 2, 3, 4, 5, 6, 7, and 8 (Supplemental Experimental Procedures). For 

comodular cells, we selected a common 30-trial block with the largest stability score 

averaged across cells.

Fourier Spectral Analysis for Inferring 2D Lattice Slice Parameters from a 1D Response: 
Theory

Consider a semi-infinite line in a 2D coordinate space, with line origin at c = (c1, c2) and 

angle θ relative to the x axis. Consider an equilateral triangular lattice firing rate profile with 

period λ and smooth bumps at the vertices, and consider how the rates will vary along the 

semi-infinite line. The Fourier transform of the firing rates along the semi-infinite line will 

have spectral peaks at the frequencies f1(λ,θ) < f2(λ,θ) < f3(λ,θ), which satisfy:
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and f3 = f1 + f2.

In addition, the phases of the Fourier transform, δ1(c) and δ2(c) at f1 and f2, relate to the 

offset (c1, c2) via

The derivation is contained in Supplemental Experimental Procedures. From these 

relationships, it is straightforward to extract the slice parameters from the measured Fourier 

peak frequencies and their phases.

Fourier Spectral Analysis for Inferring 2D Lattice Slice Parameters from a 1D Response: 
Practice

For each cell recorded in 1D (or for each random control response), we compute the PSD of 

its response, identify the two highest PSD peaks, then apply the theory described above, 

equating the found peak locations with two of the analytically defined values of f1, f2, or f3 

from above (see Supplemental Experimental Procedures). We further numerically refined the 

analytical solution to optimize the fit (quantified by Pearson’s correlation coefficient, ρ) 

between the recorded 1D rate response and predicted rate from the slice theory (see 

Supplemental Experimental Procedures).

Imposing Consistency in the Slice Fits across Comodular Grid Cells

For a K-tuple of comodular cells, we imposed consistency in slice fits across the K cells as 

follows: first, compute the product of all K PSDs obtained from the spatial tuning curves of 

each cell. Select the spatial frequencies corresponding to the two highest peaks from the 

PSD product; call these q1 and q2. For each cell, we now pick the two peaks from their 

individual PSDs that lie closest to q1, q2. The rest of the procedure for finding the best slice 

for each cell is as described in Supplemental Experimental Procedures. This procedure 

corresponds to selecting the same local minimum in the solution landscape across all cells in 

the K-tuple.

When reporting relative phases between a pair of cells (or doing a K-tuple analysis for K 
comodular cells), the 2D period was set from 2D recordings to the average value along the 

two lattice vectors, and averaged across cells in the pair (or the K-tuple).

Measure for “Three-Peakiness” in PSD

To quantify to what extent a given PSD has a three-peaked structure as predicted for lattice 

slices (Figures 2C and 2F), we define a “three-peakiness score” (p3): it is computed as the 

sum of the areas under the three largest peaks in the PSD, divided by the total area of the 

PSD, followed by a normalization step. The normalization step involves dividing the result 

by the same score for an ideal linear slice with parameters equal to the best-fit slice 

parameters—it leads to a score of p3 = 1 for all ideal lattice slices. In general, the resulting 
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three-peakiness score is high for a PSD with three or fewer major peaks and little area under 

the rest of the PSD curve.

Gap Analysis

We collected gap statistics for each cell as follows: per trial, we identified bursts of spikes 

(described next). A gap is the distance between the centers of mass of consecutive bursts. 

Per cell, we compile the combined histogram of all such gaps within and across all 30 

selected trials (see above for Trial Selection).

To define a burst, we slide a small time-window of width w across a spike train. The window 

contains a burst if at least nspk spikes occur in that window. We used nspk = 3 and w = 0.1 s. 

When tabulating gaps, we ignored inter-burst distances smaller than the 2D grid period 

(counting these as gaps is the same as artifactually segmenting one burst into two, when a 

burst within one field contains a chance pause).

For any 1D responses that contain no spiking records (this includes random control 

responses, which are rates), we define gaps based on rates. We compute the inter-peak 

distances between all adjacent firing rate peaks of height >25% of the maximum firing rate 

(Figure 3C).

Generating Matched Random Control Data

For each spatial tuning curve, we generate two kinds of matched control: gap-randomized 

and gap-shuffled. For both types of control, we first define intervals in the spatial tuning 

curve as in-field (a threshold criterion for a firing field) and non-field (all regions not in-

field); see Supplemental Experimental Procedures. To obtain a gap-randomized control 

sample, we randomize the ordering of in-field intervals and select gaps between in-field 

intervals at random (see Supplemental Experimental Procedures). This defines one gap-

randomized sample for a given response. This procedure was used in Figure 5A (reddish-

gray) to generate 100 random samples based on the response in Figure 5A (top). For Figures 

5B and 5C (reddish-gray), we generated 100 random samples for each cell in our virtual 

track dataset; this pooled dataset was our full random sample.

To generate gap-shuffled controls, we tabulate the gaps between in-field intervals in the 

recorded response. We randomize the ordering of in-field intervals insert between fields a 

randomized ordering of the tabulated gaps (see Supplemental Experimental Procedures). 

The result of this procedure is to preserve the set of all gaps from the data in each random 

control sample. As described above, in Figure 5A (bluish-gray) we generated 100 random 

samples based on the response in Figure 5A (top). For Figures 5B and 5C (bluish-gray), we 

generated 100 random samples for each cell in our virtual track dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Grid cell responses on 1D tracks are well fit by slices through triangular 

lattices

• Cells from the same module are well fit by parallel slices through the same 

lattice

• Co-modular cells exhibit the same cell-cell relationships in 1D and 2D

• Thus, grid cells remain in a similar dynamical regime during 1D and 2D 

navigation
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Figure 1. The Fourier Power Spectral Density Reveals Underlying Periodic Structure in 2D and 
1D
(A) Trajectory (gray) of an animal foraging in a square enclosure, with spike locations (red 

dots) for two comodular cells (top and bottom, respectively).

(B) Smoothed firing rate maps, with a decomposition of the triangular grid response into 

three 2D sinusoidal waves (three colors and the labels I, II, and III).

(C) Contour plot of the firing fields of cell 1 (red) overlaid on the fields of cell 2 (blue), after 

a rigid shift. Black arrow, relative phase.

(D and E) The same cell pair on a linear virtual track (D, trajectory and spikes; E, firing 

rates).

(F) Spatial tuning of cell 1 (red) overlaid on that of cell 2 (blue; after rigid shift).

(G) Fourier power spectral densities (PSDs) of the 2D responses. The peaks represent the 

three constituent planar sinusoidal waves (I–III as in B; see also Figure S1).

(H) PSDs of the 1D responses, with the highest three peaks marked by red symbols; note the 

similarity of the 1D PSDs.
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Figure 2. Features of the PSD for Linear Slices through a 2D Triangular Lattice
(A and B) Different-angle slices (A, black) result in different 1D responses (B, black).

(C) The PSDs (dashed black) also differ, yet have commonalities: they are characterized by 

three main peaks (red symbols) (at θ = 0° and 30°, a pair of PSD peaks coalesce, for a total 

of two peaks). Two statistically matched random control tuning curves (reddish- and bluish-

gray, B) with corresponding PSDs (C), for the 20° slice.

(D–F) Parallel linear slices with different starting points or phases (D) (inset: magnification 

of the starting points) exhibit different 1D responses (E) but identical PSDs (F).

(G) Linear slice through a 2D triangular lattice (left), the 2D PSD of the lattice with a slice 

through the origin at the same angle (black; right).

(H) Left: 1D response from the linear slice in (G, left). Right: PSD of the 1D response at 

left. This 1D PSD equals the projection (red arrows in G, right) of the 2D PSD onto the same 

linear slice (also see Figure S1).
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Figure 3. Distribution of Gaps in 1D Slices through a 2D Triangular Lattice
(A and B) Linear slices (black) at different angles and spatial phases generate different 

sequences of inter-field distances or gaps (gaps delineated by horizontal lines with vertical 

ticks in A; equal gaps are marked by the same letter; only peaks with amplitudes above a 

threshold are considered in B).

(C) Matched random 1D responses (gap-randomized controls) for the responses in (B).

(D) Histogram of gaps for the slices in (B) (black) and the random controls in (C) (reddish-

gray). Line: smoothed version of the histogram (gray) and a full gap distribution generated 

from 100 gap-randomized controls for each of the two slices in (A) and (B) (reddish-gray).

(E) Top: numeric values of the gaps are determined by the specific geometry of the 2D 

lattice (up to overall scaling by the lattice period), independent of slice angle and phase; gap 

ratios depend only on lattice geometry. Bottom: a histogram of gaps generated from pooling 

across 100 linear slices of the same length as in (B), with random angles and phases.
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Figure 4. 1D Spatial Tuning Curves Can Be Well Fit by Lattice Slices
(A) Spike rasters of three cells on a linear virtual track (right: same cell as in Figure 1D, top; 

center, left: cells recorded from different animals on different dates [Domnisoru et al., 

2013]).

(B–D) Smoothed trial-averaged rate (B, black), PSD (C, dashed black), and gap histogram 

(D, black bars; smoothed histogram indicated by solid gray line) for the same three cells. 

Gaps are computed from adjacent bursts per trial and pooled across trials. Red symbols in 

(C) indicate the PSD peaks used to generate the best-fit slice. The rate prediction from the 

slice is shown in (B, green), with fit quality (Pearson’s correlation coefficient between lattice 

slice prediction and neural tuning curve) and slice parameters noted at top. PSD of the slice 

(C, green). Green dashed line in (D): predicted peak locations for the gap distribution 

obtained by multiplying the ideal predicted gap ratios by the scale factor of the best-fit slice; 

green symbols: ideal gap ratios multiplied by the position of the actual rightmost peak in the 

gap distribution.

(E–H) The same as (A)–(D), for two cells from animals running on a long linear track (Brun 

et al., 2008).
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Figure 5. Statistical Validation of Slice Fits Compared to Chance
In all spatial tuning plots, the slice prediction is given in green.

(A) Top: Cell firing rate (black). Middle: A gap-randomized (reddish-gray) and a gap-

shuffled (bluish-gray) control sample of cell response above. Slice fit quality (ρ) noted 

above. Bottom left: quality of slice fit histogram for 500 gap-randomized control samples 

(reddish-gray), and for 500 gap-shuffled controls (bluish-gray). Red/blue vertical lines: 95% 

percentile level of the random/shuffle control fit score. Black line: slice fit value of the 

response at top. Bottom right: distribution of three-peakiness scores for the PSDs of random/

shuffle controls (reddish- and bluish-gray histograms, respectively), compared to the score 

for the response at top (black vertical line). Red/blue vertical lines: 95% percentile level of 

the random/shuffle distributions.

(B) Top: distribution of fit-quality scores for all cells in the dataset (black), with each cell’s 

score standardized by the distribution for its matched gap-randomized controls (as in A); the 

randomized control distribution (reddish-gray) has zero mean and unit variance because of 

the standardization procedure. Bottom: the same as above, but the standardizing distributions 

are from gap-shuffled controls (bluish-gray); data in black as above. The difference in the 

means of the data and control histograms is highly significant (p values noted in text, one-

sample t test).
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(C) Same as (B), but the distribution quantifies the statistics of three-peakiness scores in the 

data PSDs compared to PSDs from both types of control.

(D) Aggregate gap distribution (black), pooled across all cells in the dataset, after the gaps in 

each cell’s response are normalized by the lattice period underlying the 1D response. Gray, 

smoothed version.
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Figure 6. Comodular Cells Are Best Fit by Nearly Parallel Slices and Similar Scale Factors
(A) Left: firing rates of a pair of comodular cells, recorded on a virtual track (black). Best-

predicted firing rates from lattice slices, found separately for each cell (green). The slice 

angle θ, and scale factor α, are noted above. Right: PSD of the 1D response (black dashed) 

with the PSD of the predicted slice (green).

(B) The best-fit linear slices for the cell pair from (A), with the starting points of the slices 

magnified in the inset. The starting point of a slice defines the 2D spatial phase of the cell 

(with respect to the rhomboidal unit cell, black), as inferred from the 1D response.

(C and D) Same as (A) and (B), for a pair of putatively comodular cells recorded on a long 

linear track, data from Brun et al. (2008).

(E) Left: the best-fit slice parameters for all cells in the dataset, obtained for each cell 

individually. Cells classified as comodular are plotted in a common color and single (non-

comodular) cells are colored in gray (12 groups, 25 cells). Crosshair: error bars, ± 1 SD (n = 

100 bootstrap samples). Right: same as left, but the PSD peaks selected for the slice fits are 

chosen consistently for comodular cells (see Experimental Procedures). Slice parameters for 

comodular cells now cluster together.

(F) Histogram of fit-quality between measured 1D tuning and predicted slice fit, when fits 

are generated individually (as in E, left; gray histograms) and when they are obtained by 

imposing consistency across comodular cells (as in E, right; white histograms). Fit quality 

does not suffer in a way that is statistically significant when consistency is imposed (p 

values noted in text, paired t test).

(G) Grid orientation measured in 2D versus slice angle estimated from 1D responses of the 

same cells (same color codes as in E).
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Figure 7. Relationship of Relative Phase Predicted from 1D and Measured in 2D
(A) Top inset: the offset in a pair of parallel slices, within a rhomboidal unit cell of the unit 

lattice, equals the predicted relative phase from the 1D slice analysis. Bottom inset: 

schematic of how the relative phase above is plotted as a symbol (blue triangle) within the 

unit cell. Main: relative phases predicted from 1D responses (colored triangles) and actual 

relative phases measured from 2D recordings (circles in matched colors). Shown are the best 

predictions from across 12 degenerate solutions per pair. Black “x” symbols: differences 

between the predicted and measured 2D relative phase values. Red circle: relative phase 

estimation uncertainty (expected error) obtained by bootstrap (Experimental Procedures).

(B) Left: Histogram of relative phase prediction error magnitudes for best pairwise slice fits 

(gray bars; Rayleigh distribution fit in black), inherent estimation uncertainty from bootstrap 

(Rayleigh distribution fit in red), and random prediction error magnitudes (Rayleigh fit in 

bluish-gray). Right: the same as left, but best fits constrained so that all pairs in a K-tuple of 

comodular cells were constrained a common solution domain from across the 12 

possibilities (rather than a free choice per pair; Experimental Procedures and Figure S6). 

Left and right: p values that the slice prediction errors are from the same distribution as the 

estimation uncertainty (red), or the same distribution as random (bluish-gray).

(C) How much information (Shannon’s mutual information, abbreviated MI) the correlation 

coefficients between cell pairs’ 1D responses convey about their measured 2D relative 

phases (abscissa) versus the mutual information between measured 2D relative phases and 

the predicted values from slice analysis on the 1D responses (ordinate). The latter exceeds 

the former by a factor of 1.7.
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Figure 8. Relationship of Relative Phase Predicted from 1D and Measured in 2D
(A) Spike rasters for a pair of comodular cells show field drift, field splitting, and field 

merging across trials.

(B) The gap histogram for the data in (A), pooled across both cells, contains three peaks. 

The three peaks are at the predicted values (green dashed lines; obtained from 200 randomly 

oriented and shifted slices through a triangular lattice), given the estimated slice period.

(C) Top: the PSDs of the two cells computed from a 5-trial block centered on lap 5. Bottom: 

the same, centered on lap 11. The across-cell PSDs for a given block of trials are more 

similar than the PSD of a given cell across trials.

(D) Slice parameter (slice angle, scale factor, and the two components of phase, 

respectively) evolution (estimated from 5-trial averages sliding one trial at a time). The best-

fit slices have constant angle and scale factor, but the phase of the slice is drifting across 
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trials. Since phase is a periodic variable, it is equivalent to plot it between [−0.5, 0.5] or 

equivalently, [0,1], as done in some plots here.

(E) The quality of fit for the slice hypothesis (red, blue cells) over the drifting trials. Light 

red/light blue: the quality of fit between the data and slices with angle 5 (triangle) or 10 

(square) degrees from the best-fit slice. Dashed line: the quality of fit between a single data 

response by concatenating all individual trials and the best-fit linear slice.

(F) Depiction, on the 2D lattice, of the inferred drifting best-fit slices from (D). Black, 

green: best-fit slices from near the beginning and end of the block of trials, respectively.

(G) The estimated relative phase between cells across inferred slices over time (different 

black triangles) remains close to relative phase estimate obtained from 2D environments (red 

dot). The scatter in different time-resolved relative phase estimates is about equal to the 

inherent estimation uncertainty due to finite spike sampling (estimated by bootstrap), red 

dashed circle.
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