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Summary

High-throughput genetic and epigenetic data are often screened for associations with an observed 

phenotype. For example, one may wish to test hundreds of thousands of genetic variants, or DNA 

methylation sites, for an association with disease status. These genomic variables can naturally be 

grouped by the gene they encode, among other criteria. However, standard practice in such 

applications is independent screening with a universal correction for multiplicity. We propose a 

Bayesian approach in which the prior probability of an association for a given genomic variable 

depends on its gene, and the gene-specific probabilities are modeled nonparametrically. This 

hierarchical model allows for appropriate gene and genome-wide multiplicity adjustments, and can 

be incorporated into a variety of Bayesian association screening methodologies with negligible 

increase in computational complexity. We describe an application to screening for differences in 

DNA methylation between lower grade glioma and glioblastoma multiforme tumor samples from 

The Cancer Genome Atlas. Software is available via the package BayesianScreening for R: 

github.com/lockEF/BayesianScreening.
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1. Introduction

Several technologies that are used for genomic research measure data that are high-

throughput and genome-wide. These data may be genetic or epigenetic. Technologies that 

measure genetic data include single nucleotide polymorphism (SNP) arrays, whole-exome 

sequencing, and whole-genome sequencing; technologies that measure epigenetic data 

include DNA methylation bisulphite arrays or bisulphite sequencing, and chromatin 

immunoprecipitation sequencing (ChIP-seq). These technologies all measure hundreds of 
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thousands of variables, each of which can be mapped to a location on the genome. In this 

article we use the general term “marker” to refer to any such variable.

A recurring objective in genomic research is to test each marker for an association with a 

given phenotypic trait, such as disease status. These are commonly conducted in a 

frequentist framework, where a p-value for the null hypothesis of no association is 

calculated independently for each marker. Several thousand such studies have been 

conducted for genetic associations alone (Welter et al., 2014). While these studies have 

revealed several important biomarkers, they have also been criticized for lack of power and 

lack of reproducibility (Visscher et al., 2012). The reliance on p-values and binary 

conclusions may be partly responsible for these criticisms. P-values are a poor proxy for our 

degree of confidence that a true association exists, because they depend on the power of the 

test (Stephens and Balding, 2009). Furthermore, standard corrections for multiple 

comparisons that control the family-wise error rate or false discovery rate for a single study 

typically require exorbitant effect sizes, leaving most associated markers undetected (Park et 

al., 2010).

As an alternative to frequentist-based approaches, several methodologies have been 

developed to screen for genome-wide associations in a fully Bayesian framework (for a 

review see Stephens and Balding (2009)), and these are increasingly used in practice. 

Bayesian approaches directly compute the posterior probability that a marker is associated 

with a given trait, under a full probabilistic model for both the null and alternative 

hypotheses. This provides a natural framework for meta-analyses that combine results from 

multiple studies (Verzilli et al., 2008; Wen et al., 2014), and for borrowing information 

across multiple related markers within a single study to compute more well-informed and 

accurate weights of evidence in the form of posterior probabilities. Bayesian techniques that 

combine multiple related tests need not treat the null and alternative hypotheses 

asymmetrically; this is in contrast to frequentist approaches to the multiple comparisons 

problem that typically require larger effect sizes for the alternative as the number of tests 

grows.

Despite their potential flexibility for borrowing information, standard practice for Bayesian 

genome-wide testing is to screen each marker independently. This involves specifying the 

prior odds for association, which is multiplied by the Bayes factor at each marker (Stephens 

and Balding, 2009; Wakefield, 2009; Xu et al., 2012). Alternatively, the prior probability of 

association at each marker can be treated as unknown (with, for example, a Beta(a, b) prior 

distribution) and inferred during posterior computation (Scott et al., 2010; Lock and Dunson, 

2015). However, this still relies on the over-simplified premise that the probability of 

association is the same for all markers.

We propose a computationally scalable and widely applicable approach to inferring null 

probabilities that depend on the genomic location of each marker. Specifically, we describe 

an approach in which the prior probability of association for a given marker depends on the 

gene it encodes. The gene-specific probabilities are modeled with a nonparametric 

distribution that allows for appropriate genome-wide adjustments for multiplicity. We 
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demonstrate how this approach can dramatically improve posterior accuracy and 

interpretation when there is gene-level dependence among tests.

We apply our approach to an epigenome-wide association study of cancerous brain tumors 

that develop from astrocyte cells. We use DNA methylation data from the Illumina 

HumanMethylation450 array to compare methylation profiles between lower-grade 

astrocytoma and glioblastoma multiforme samples from The Cancer Genome Atlas. These 

data include methylation measurements at 294, 093 genomic sites that map to 24, 358 

different genes. We apply our gene-level dependence model in conjunction with a previously 

described method for screening for differential distribution between groups in methylation 

array data based on shared kernels (Lock and Dunson, 2015). Our analysis reveals 

systematic differences in methylation distribution at a large number of genomic sites, and 

the proportion of sites with differential methylation varies substantially between genes.

1.1 Gene-wise Association Tests

Many methods have been developed that combine multiple markers within a single gene to 

test for an association at the gene level. For example, there is a rich literature on methods 

that aggregate genetic variants within a gene, via a direct sum or a regression model, to 

obtain a p-value for the null hypothesis that the gene has no association with the given 

phenotype (Pan et al., 2014; Wu et al., 2011; Liu et al., 2010). Similarly, there are methods 

that combine methylation markers within a given gene (or region) to obtain a composite p-

value (Wang et al., 2012). These methods can substantially increase power, as many markers 

within a gene have a weak association that cannot be detected independently (Wojcik et al., 

2015), and also reduce the number of overall tests for multiplicity correction. However, 

aggregating at the gene level may miss important marker-specific effects; for example, 

different mutations within the same gene can have very different phenotypic consequences 

(Rowntree and Harris, 2003).

In a Bayesian framework, Wilson et al. (2010) describe a genome-wide model for the 

association of genetic markers with an observed phenotype, in which the Bayes factor for 

model inclusion can be computed at the marker or gene level. In their implementation each 

marker has the same prior probability of association p genome-wide, with hyperprior p ~ 

Beta(a, b); a gene is considered associated with the observed phenotype if any marker within 

the gene is associated. Alternatively, Ruklisa et al. (2015) describe a class of Bayesian 

approaches to rare variant association testing in which the prior probability that a given 

marker is associated depends on the gene it encodes. For their approach the gene-specific 

probabilities are estimated independently based on training data, with no borrowing of 

information across the genes. Nevertheless, they illustrate that gene-specific probabilities 

outperform genome-wide approaches. Our proposed approach is a flexible compromise 

between genome-wide and gene-specific priors for marker associations.

2. Model

Here we describe our hierarchical model for gene-specific probabilities in general, to convey 

its applicability to a wide variety of data types and Bayesian models for association. Data are 

collected for M genetic or epigenetic markers from N individuals, where each marker maps 
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to one of G genes. Let Mg be the number of markers that map to gene g, so that 

. Let Xgmn denote data for marker m in gene g (m ∈ 1, …, Mg) for individual 

n, and let Yn define a phenotypic response for individual n. Let H0,gm define a probabilistic 

model of no association with Y for marker m in gene g, and Ha,gm define the alternative 

model of association. This framework is illustrated in Example 2.1.

Example 2.1—Assume markers represent SNPs and Xgmn is a binary indicator denoting 

the presence/absence of a minor allele at SNP m in gene g for sample n, Yn is a binary 

response indicating disease status (affected or unaffected), and λa,gm and λu,gm represent the 

rate of minor allele presence in gene g and marker m among affected and unaffected 

individuals, respectively. A simple model (Balding, 2006) specifies H0,gm : λa,gm = λu,gm = 

λgm where λgm has a Uniform(0, 1) prior, and Ha,gm : λa,gm ≠ λu,gm where λa,gm and λu,gm 

have independent Uniform(0, 1) priors. Marginalizing over λa,gm and λu,gm, the likelihoods 

under the null and alternative hypothesis are

and

where β is the beta function,  and  give the number of affected individuals without 

and with the minor allele, respectively, and  and  are defined similarly for 

unaffected individuals.

The approach that follows is general and may be used regardless of the specific form of the 

likelihood under H0,gm and Ha,gm. See Stephens and Balding (2009) for a review of 

Bayesian models for genetic association studies. Details specific to a methylation screening 

application with continuous data are given in Section 5 and Web Appendix A. The posterior 

probability of the null for the given marker is

Under our proposed model, prior probabilities are equal within a gene:
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We use a nonparametric hyperprior to infer the gene-level prior probabilities  and 

borrow information across the genes. Specifically, the distribution of the  is given a 

Dirichlet process prior (Ferguson, 1973) with a Beta(a, b) base distribution and 

concentration parameter α: pg ~ P where P ~ DP(Beta(a, b), α). Under this framework, each 

pg is drawn from a theoretically infinite number of realizations θh from Beta(a, b), with 

corresponding probability weights πh:

where δθh is a point mass at θh. A consequence of this model is clustering of the genes, as 

values θh with larger weights πh will correspond to the probability for several genes. This 

clustering property is useful for interpretation (e.g., to identify gene sets) but our primary 

motivation for using the Dirichlet process is to provide a sufficiently robust and flexible 

hierarchical distribution for the .

The concentration parameter α controls the dispersion of the weights πh and, hence, 

influences the sizes of the gene clusters. As α → 0 a single realization will correspond to all 

genes (e.g., p1 = … = pG = θ1); hence, the limit is equivalent to a genome-wide correction 

for multiplicity. As α → ∞ each gene will have its own realization (e.g., p1 = θ1, p2 = θ2, 

…); hence, the limit is equivalent to a separate, independently estimated probability for each 

gene. In practice we find that fixing α as a small positive value, such as α = 1, allows for 

sufficient posterior flexibility between these two extremes.

It is also informative to consider the choice of a, b in the Beta base distribution. In 

applications where a Beta(a, b) distribution is used for a shared prior probability, fixing b = 1 

is common (Scott et al., 2010). Choosing a = λM − 1 provides a natural multiplicity 

adjustment, as the expected number of associated markers under the prior model is then 1/λ 
regardless of the number of markers M (Wilson et al., 2010). This result extends to our 

context, as E(pg) = a/(a + b) and therefore the expected number of associated markers under 

the prior is

However, philosophically there may be little reason for the probability of association at each 

marker to be negatively effected by the number of markers measured. In practice we find 

that a simple uniform base distribution Beta(1, 1), while liberal as an a priori model, allows 

for substantial posterior flexibility and still performs well as a multiplicity correction under a 

global null. Alternatively, the beta hyperparameters can be determined subjectively, or 

empirically, from related association studies.
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The parameter pg should not be interpreted as the overall probability of association for gene 

g. Rather, it can be viewed as the inferred proportion of locations within the gene that are 

associated. This is one approach to prioritize genes, but more importantly the  can 

improve the accuracy of posterior inference at the marker level.

3. Inference

Here we describe a general Gibbs sampling scheme to compute the full posterior under the 

gene-level prior model specified above. This estimation approach is informative, illustrating 

how the marker parameters, gene parameters, and global parameters relate to each other. 

Fundamentally, the algorithm proceeds by sampling from the posterior of each marker, then 

updating the gene-specific probabilities and their corresponding Dirichlet process 

parameters.

We use the constructive stick-breaking representation of the Dirichlet process (Sethuraman, 

1994) to sample from its full conditional distribution. That is, the probability weights πh are 

generated by πh = Vh∏l<h(1 − Vl), where . In practice we truncate the 

infinite mixture by a large integer H, and perform blocked Gibbs sampling (Ishwaran and 

James, 2001). Thus, letting Cg define the cluster index for gene g (pg = θCg), Cg ∈ {1, …, 

H}. The weights πh usually decrease quickly to very small values, and thus the effect of 

truncation is negligible.

Assuming the marginal likelihoods under the null and alternative models can be computed 

for each marker, sampling from the full conditionals proceeds as follows:

1. Designate null markers H0,gm for g = 1, …, G, m = 1, …, Mg. The conditional 

probability of the null, P(H0,gm | X, Y, pg), is

2. Allocate indices Cg for g = 1, …, G:

for h = 1, …, H, where Sg is the number of null markers in gene g, 

.

3. Update the weights πh for h = 1, …, H. First, draw the stick-breaking weights 

V1, …, VH−1. The full conditional distribution of Vh is 

, with VH = 1. Then set πh = 

Vh∏l<h(1−Vl) for h = 1, …, H.
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4. Update the atoms θh for h = 1, …, H. The full conditional distribution of θh is 

Beta (a + S̃
h, b + M̃

h − S̃
h), where M̃

h is the total number of markers in genes 

allocated to cluster h, and S̃
h is the number of null markers:

Set pg = θCg for g = 1, …, G.

Point estimates for the gene-level probabilities pg and marker posterior probabilities P(H0,gm 

| X, Y) can be obtained by averaging their draws over the sampling iterations.

For some association models the likelihoods under the null and alternative hypotheses in 

sampling step (1) may not be feasible to compute directly. In Example 2.1 we integrate over 

the model parameters λa,gm and λu,gm to obtain the marginal likelihoods under H0,gm and 

Ha,gm, but for more complex models this integration may not be analytically tractable. If not, 

additional sampling steps can be incorporated to update model-specific parameters for each 

marker under H0,gm and Ha,gm, and then condition on these parameters in step (1). Such an 

approach is needed for the association model used in the two-group methylation screening 

scenario described in Section 5, and the additional sampling steps are given in Web 

Appendix A.

4. Simulation Study

Here we present a simulation study to illustrate the advantages of our hierarchical model for 

gene-level probabilities. We compare (1) our hierarchical approach for inferring marginal 

probabilities of the null at each marker with (2) separate estimation, in which a probability is 

inferred independently for each gene, and shared by all markers for that gene, (3) joint 

estimation, in which a probability is inferred globally and shared by all markers, and (4) 

simple estimation, in which the prior is fixed at 0.5 for all markers.

For simplicity, here we consider the setting of Example 2.1. We simulate data for two 

groups, each with 80 individuals (N = 160). For null markers, binary values are simulated 

under a common probability for both groups, where this probability is drawn from a uniform 

distribution. For alternative markers, binary values are simulated under a different 

probability for each group, where these probabilities are drawn independently from a 

uniform distribution. The Bayes factor for the null over the alternative for a given marker is 

then

where β defines the beta function, and s1 and s2 are the number of individuals for which the 

marker is present in groups 1 and 2, respectively. This is analogous to the prospective Bayes 

factor for SNP association testing introduced in Balding (2006). Data are simulated for G = 
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500 genes, where the number of markers within a gene Mg is drawn from {2, 3, …, 20} with 

equal probability. We again simulate gene-level probabilities for a global null hypothesis, a 

bimodal scenario where markers in 20% of genes are alternative and the other 80% are null, 

and where gene-level probabilities are generated from a Beta(1, 0.2) distribution.

We consider three different scenarios with dramatically different assumption on the 

distribution of null and alternative markers across the genes. For each scenario, we show the 

inferred distribution of the gene-specific probabilities pg under the four methods considered. 

We also compute the expected overall error in classifying null and alternative markers, as the 

average misclassification probability over all markers.

First, we simulate data where the null is true for all markers, to illustrate how the four 

methods perform as a multiplicity adjustment. Results are shown in Figure 1A. The simple 

model with fixed prior probability of 0.5 performs relatively poorly; in this and other 

simulations the average error in classifying markers independently is approximately 20%. 

The joint and hierarchical models have negligible error, as they both borrow information 

globally to enforce appropriately high prior probabilities of the null. The model with 

separately inferred priors for each gene does not perform as well, as its shift toward the null 

is relatively weak, especially for those genes with a small number of markers.

Second, we simulate data from a bimodal distribution in which the majority of genes (80%) 

are null for all markers, but for a subgroup of genes (20%) the alternative is true for all 

markers. Results are shown in Figure 1B. In this case the hierarchical model performs well, 

as it identifies both modes and allocates the appropriate genes to each mode. The separate 

model performs better than the joint model, as the joint model does not account for the 

heterogeneity in the genes. However, the separate model is not competitive with the 

hierarchical model, as again the gene-specific probabilities have substantial uncertainty and 

do not shrink toward the two modes if they are estimated independently.

Third, we simulate the gene-specific probabilities from a Beta(1, 0.2) distribution, which has 

a majority of its mass near 1 (corresponding to genes in which the vast majority of markers 

are null) but a long left tail. Results are shown in Figure 1C. The joint and separate models 

perform similarly, as the joint model ignores the gene heterogeneity and the separate model 

exaggerates gene heterogeneity. The hierarchical model serves as a flexible compromise 

between the two extremes, and closely approximates the true gene-specific probabilities.

To compare the Bayesian methods above with frequentist methods for multiple hypothesis 

testing, we compute a p-value for the null using Fisher’s exact test at each marker. We 

consider different multiplicity adjustments for these p-values, including (5) separate false-

discovery rate (FDR) corrections for each gene, using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995), (6) an overall FDR correction for all markers, and (7) a 

two-step hierarchical hypothesis testing framework (Li and Ghosh, 2014) that uses the 

Hochberg (Hochberg, 1988) and Benjamini-Hochberg methods. The latter method controls 

the overall FDR while allowing for dependence within sets of hypotheses. The overall FDR 

is defined as the rate of hypothesis sets that contain at least one false discovery. In our 

context, a set corresponds to markers within a gene.
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P-values and Bayesian posterior probabilities have fundamental differences in philosophy 

and interpretation, and are not directly comparable. Nonetheless, for illustration we compare 

the various approaches above by considering standard thresholds on the posterior 

probability, p-value or FDR that are used to classify markers as null or alternative. For 

Bayesian methods we use 0.5 as a threshold on the posterior probability, and for the 

frequentist methods we use a significance threshold of α = 0.05. The resulting 

misclassification rates under each simulation scenario are shown in Table 1A. Under the null 

model the hierarchical Bayesian approach gives very low error, similar to overall FDR 

corrections. Under the two scenarios with alternative markers the Bayesian hierarchical 

model performs substantially better than frequentist multiplicity corrections, which are 

overly conservative. For a more direct comparison to frequentist FDR methods we apply the 

Bayesian conditional FDR (Newton et al., 2004) to posterior probabilities from methods (1)–

(4), specifying a desired FDR of 0.05. The results are given in Table 1B; the hierarchical 

Bayesian approach has the greatest power while maintaining the desired FDR. The two-step 

FDR tends to be the most conservative, as controlling the marker-wise FDR is often not 

sufficient to control the overall gene-wise FDR.

Additional simulation details are available in the supplementary material. Web Appendix B 

gives an ROC curve for the various methods to further assess classification accuracy, Web 

Appendix C gives results under different hyperparameter choices, and Web Appendix D 

gives a simulation for continuous data analogous to the application in Section 5. A 

spreadsheet available online gives results for 99 additional simulated datasets with varying 

sample size, number of genes, and distribution of gene-level probabilities. These results 

demonstrate the robustness of the hierarchical model.

5. Application to LGG-GBM Methylation

We implement our hierarchical gene-level prior model in a screen for differences in DNA 

methylation between lower grade gliomas (LGG) and glioblastoma multiforme (GBM) 

tumor samples that develop from astrocyte cells in the brain. Methylation is an epigenetic 

phenomenon that occurs at cytosine-phosphate-guanine (CpG) dinucleotide sites in the 

genome. Methylation is thought to play a significant role in LGG pathogenesis (TCGA 

Research Network, 2015) and GBM pathogenesis (TCGA Research Network, 2013), but the 

differences between the two tumor classes have not been well-characterized on a genome-

wide scale. Both tumors are heterogenous and typically fatal, but a more complete 

understanding of their molecular differences is important, as LGGs often progress to GBMs 

and GBM patients have a much shorter survival time.

We use data from the Illumina HumanMethylation450 array, for 128 astrocyte derived LGG 

samples and 130 GBM samples (N = 258), from The Cancer Genome Atlas. Measured CpG 

sites that have any missing data are removed, as are sites that map to intergenic regions. 

After filtering, 294, 093 CpG sites remain, that map to 24, 358 distinct genes. The number of 

sites in a gene ranges broadly from 1 to 1017. Methylation measurement at each site are 

continuous between 0 (no methylation) and 1 (fully methylated across all cells in the tumor 

sample). The distribution of measurements at each site is commonly multimodal or skewed 
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and therefore not well characterized by parametric distributions (see, e.g., histograms in 

Figure 3).

Several computational methods have been developed to screen for differential methylation 

levels between groups, based on array data (Jaffe et al., 2012; Maksimovic et al., 2015) or 

sequencing data (Sun et al., 2014; Feng et al., 2014; Wu et al., 2015). However, the focus on 

differential methylation levels between groups may miss other important differences 

between group distributions; for example, certain genomic regions have been shown to 

exhibit more variability in methylation, and hence greater epigenetic instability, among 

cancer cells than among normal cells (Hansen et al., 2011). Therefore, we use a more 

flexible test for difference in the distribution of methylation measurements between GBM 

and LGG patients at each CpG site using a model with shared kernels previously described 

in Lock and Dunson (2015). The essential details of this model are given in Section 5.1, and 

its application with hierarchical gene-level priors is described in Section 5.2.

5.1 Shared kernel model for association

The shared kernel testing model is described in detail in Lock and Dunson (2015), where it 

is implemented on comparatively sparse methylation data (≈ 20, 000 sites) with a global 

prior and shown to compare favorably to frequentist and Bayesian parametric and non-

parametric alternatives. Briefly, the distribution of methylation measurements at each CpG 

site is modeled as a mixture of normal kernels F1, …, FK, truncated between 0 and 1, each 

with a different mean and variance. The number of kernels is determined by out-of-sample 

cross validation of the log posterior density. For the present application this yields K = 8 

kernels that span the measurement range from 0 to 1. The kernels are shared across CpG 

sites, and thus capture shared patterns of multi-modality and skewness that are typical in 

methylation array data.

Under the null the kernel mixing weights at each site are the same between two groups (e.g., 

LGG and GBM cancer), and under the alternative they are different. Specifically, let 

 be the kernel probability weights that define the generative 

distribution for gene g and site m for group 0. Let  similarly define the kernel 

probability weights for group 1. Then,

where Xgmn gives the methylation level for site m in gene g for sample n, and Yn ∈ {0, 1} 

indicates the group membership of sample n. for sample n in group 0, Let  similarly 

define the kernel probability weights for group 1. Under the null model H0,gm, the mixing 

weights are the same for both groups: . The kernel weights are assumed to be 

generated from a Dirichlet(λ) distribution, where λ is a hyper-parameter that is inferred 
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during the kernel estimation stage and fixed. Under Ha,gm,  and  are considered 

independent realizations from Dirichlet(λ).

This provides a robust and consistent framework for testing differential distribution, and can 

identify important differences that are not captured by simply comparing mean methylation 

levels. Furthermore, the method facilitates interpretation by modeling the full distribution, 

with uncertainty, for each class.

5.2 Results

We incorporate hierarchical gene-level priors within the shared kernel testing model, and 

compute the full posterior via Gibbs sampling. The full marginal likelihood under H0,gm and 

Ha,gm is not analytically tractable, and therefore the general approach of Section 3 must be 

extended to sample other model parameters. Details regarding posterior computation are 

given in Web Appendix A.

The estimated gene-level probabilities are shown in Figure 2. Their distribution resembles 

that in the simulation shown in Figure 1C. For the majority of genes the distribution between 

the two groups is inferred to be equal at most sites (pg ≈ 1). However, there is a substantial 

left tail, corresponding to genes in which a large number of sites are inferred to differ 

between the two groups. For illustration we focus on one such gene, BST2, which has 9 

measured CpG sites and an estimated gene-level probability of pg = 0.198. We select BST2 

because it has been considered as a tangible target for immunotherapy in the treatment of 

GBM (Etcheverry et al., 2010), an independent comparison of GBM and normal samples 

found differences in BST2 methylation that correlate with gene expression (Wainwright et 

al., 2011), and BST2 methylation may play a role in the pathonogenesis of other cancers 

(Mahauad-Fernandez et al., 2014). Figure 3 shows the genomic location and posterior 

probability of group equality for the nine CpG sites in BST2, as well as group histograms 

and posterior densities for methylation at three sites.

Given the large number of CpGs and corresponding genes with differential methylation 

distribution, we also investigate differences at a macro level. Figure 4 shows the site means 

and standard deviations within each group, for those sites with a posterior probability of a 

difference greater than 0.01 (24.6% of all CpGs). Mean methylation levels at these sites are 

generally greater in the LGG samples than the GBM samples; this is concordant with 

findings in a smaller comparison of 1536 CpG sites in 807 genes (Laffaire et al., 2011). The 

distribution of standard deviations is more curious, as LGG samples show a larger number of 

sites with either very high variability or very low variability in comparison to the distribution 

for GBM.

5.3 Validation

To assess the appropriateness of the hierarchical gene-level model, we consider the 

agreement of estimated gene-level probabilities and marker-level posteriors under cross 

validation. Specifically, we randomly select 10, 000 CpGs to leave out, and compute gene-

level probabilities using the remaining 284, 093 CpGs. For each left out CpG, we measure 

the Kullback-Leibler divergence of its estimated gene-level probability under the reduced 

Lock and Dunson Page 11

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data from its CpG-level posterior probability under the full data. This can be interpreted as 

the gain of information or degree of “surprise” between a CpG’s posterior probability and its 

gene-level prior (Lindley, 1956). We repeat this process using a separately estimated prior 

probability for each gene, a single inferred prior probability, and a prior probability of 0.5 

(corresponding to the separate, joint and simple models in the Simulation Study). The 

hierarchical model yields the greatest agreement, with a mean Kullback-Leibler divergence 

of 0.451; the separate model has a divergence of 0.482, the joint model 0.560, and the simple 

model 0.654.

We also conduct two permutation studies, to further assess the appropriateness and 

flexibility of our gene-level model. First, we randomly permute the gene labels for each 

marker, so that there is no true gene-level dependence. The subsequent posterior means for 

the gene level prior probabilities pg are shown in the top-left panel of Figure 5. The 

estimates converge appropriately to a single global probability near 0.72, in sharp contrast to 

the relatively dispersed estimates using the true data in Figure 2 of the main article. Second, 

we randomly permute the class labels but maintain the true gene labels, to generate a dataset 

with a global null but gene-level dependence. The subsequent posterior estimates are shown 

in the top-right panel of Figure 5, and cluster very close to 1. In fact, all 294, 093 estimated 

site-specific posterior probabilities of the null are greater than 0.5. Together, these results 

demonstrate that the hierarchical gene-level model appropriately shrinks gene-level priors 

toward a global pattern.

The estimated hierarchical gene-level probabilities closely approximate a single joint prior 

probability in Figure 5, where a joint prior is appropriate, but not for the true data. Thus, we 

conclude that a single joint model is an over-simplification for these data. We also compare 

the hierarchical gene-level prior probabilities under permutation with separate, 

independently estimated gene-level probabilities. The separately estimated probabilities are 

shown in the bottom row of Figure 5. These have a lot of variability under both permutation 

scenarios, illustrating how independent consideration of the genes sacrifices accuracy by 

exaggerating gene effects.

6. Discussion

Borrowing information and incorporating prior knowledge in a principled and 

computationally feasible way is an important challenge for Bayesian genome- and 

epigenome-wide screening methods. Here we present a flexible and generally applicable 

hierarchical model for inferring gene-specific probabilities, which may be extended in 

several ways. Under our prior all markers within a gene have an equivalent probability of 

association. The incorporation of other marker-level information, such as gene promoter 

status for DNA methylation (Weber et al., 2005) or functional annotation (e.g., synonymous 

vs. non-synonymous) for genotype markers (Kichaev et al., 2014; Ruklisa et al., 2015), may 

improve posterior precision and interpretation. For example, a Dirichlet process model may 

be used for gene-level intercepts within a regression model for marker probabilities that 

includes additional prior covariates (Lewinger et al., 2007). Incorporating additional gene-

level prior information, such as allowing greater dependence within known functional gene 

networks (Zhang et al., 2014), is also a promising direction of future work.
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Our focus is on association testing, illustrated with a simple likelihood model for binary 

markers and a shared kernel model for DNA methylation data. Other models for association 

may be used within the same framework, such as a regression approach that accounts for 

population stratification or other potential confounders. Moreover, markers that are 

statistically associated with a given phenotype may not affect the phenotype directly, 

especially if markers are correlated (e.g., linkage disequilibrium in genetic data). Our gene-

level model and other prior information can also be used in the context of model inclusion 

probabilities within a multi-marker regression approach (Wilson et al., 2010; Zhang et al., 

2014; Duan and Thomas, 2013), to select markers that have novel predictive power for a 

given phenotype and are therefore more likely to be causal. We have described a generally 

applicable approach to posterior computation in which sampling from the gene-level prior is 

incorporated into the sampling scheme for the specified association model. Computational 

scalability depends on the association model used. For example, in the methylation 

application of Section 5 less than 1% of computing time is spent on the draws for the gene-

level prior parameters. Gibbs sampling for a high-dimensional multi-marker regression 

approach can be computationally challenging because the dependence of the markers results 

in slow mixing; alternatively, markers identified via association testing may subsequently be 

included as phenotype predictors in a second stage model (Yazdani and Dunson, 2015).

We consider hypotheses that are grouped by markers within a gene, but there are similar 

scenarios in other areas of genomics research. For example, when screening multiple genes 

for a phenotypic association (e.g., via microarray or RNA-seq data) the genes can be 

partitioned into groups based on pathways or other prior information. Frequentist methods 

that provide appropriate type I error control over genes and gene sets have been developed 

(Benjamini and Heller, 2008; Heller et al., 2009; Li and Ghosh, 2014), and these methods 

can be generalized to other problems that involve testing hypotheses over multiple sets. 

Broadly, our proposed model defines a general prior for multiple hypothesis testing within a 

Bayesian framework when the hypotheses can be partitioned into sets.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Dr. Allison Ashley-Koch and Dr. Sandeep Dave for fruitful scientific discussions that motivated this 
work, and we thank the AE and three anonymous reviewers for helpful suggestions. This work was supported by 
the National Institute of Environmental Health Sciences (NIEHS) [R01-ES017436] and National Institutes of 
Health National Center for Advancing Translational Sciences (NIH/NCATS) [ULI RR033183 & KL2 RR0333182].

References

Balding DJ. A tutorial on statistical methods for population association studies. Nature Reviews 
Genetics. 2006; 7:781–791.

Benjamini Y, Heller R. Screening for partial conjunction hypotheses. Biometrics. 2008; 64:1215–1222. 
[PubMed: 18261164] 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society: Series B. 1995; 57:289–300.

Lock and Dunson Page 13

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Duan L, Thomas DC. A Bayesian hierarchical model for relating multiple snps within multiple genes 
to disease risk. International Journal of Genomics. 2013; 2013

Etcheverry A, Aubry M, De Tayrac M, Vauleon E, Boniface R, Guenot F, Saikali S, Hamlat A, Riffaud 
L, Menei P, et al. DNA methylation in glioblastoma: impact on gene expression and clinical 
outcome. BMC Genomics. 2010; 11:701. [PubMed: 21156036] 

Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci 
from single nucleotide resolution sequencing data. Nucleic Acids Research. 2014; 42:e69. 
[PubMed: 24561809] 

Ferguson TS. A Bayesian analysis of some nonparametric problems. The Annals of Statistics. 1973; 
1:209–230.

Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, 
Diep D, et al. Increased methylation variation in epigenetic domains across cancer types. Nature 
Genetics. 2011; 43:768–775. [PubMed: 21706001] 

Heller R, Manduchi E, Grant GR, Ewens WJ. A flexible two-stage procedure for identifying gene sets 
that are differentially expressed. Bioinformatics. 2009; 25:1019–1025. [PubMed: 19213738] 

Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika. 1988; 
75:800–802.

Ishwaran H, James LF. Gibbs sampling methods for stick-breaking priors. Journal of the American 
Statistical Association. 2001; 96:161–173.

Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, Irizarry RA. Bump hunting to 
identify differentially methylated regions in epigenetic epidemiology studies. International Journal 
of Epidemiology. 2012; 41:200–209. [PubMed: 22422453] 

Kichaev G, Yang W, Lindstrom S, Hormozdiari F, Eskin E, Price A, Kraft P, Pasaniuc B. Integrating 
functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genetics. 
2014; 10:e1004722. [PubMed: 25357204] 

Laffaire J, Everhard S, Idbaih A, Criniere E, Marie Y, de Reynies A, Schiappa R, Mokhtari K, Hoang-
Xuan K, Sanson M, et al. Methylation profiling identifies 2 groups of gliomas according to their 
tumorigenesis. Neuro-Oncology. 2011; 13:84–98. [PubMed: 20926426] 

Lewinger JP, Conti DV, Baurley JW, Triche TJ, Thomas DC. Hierarchical Bayes prioritization of 
marker associations from a genome-wide association scan for further investigation. Genetic 
Epidemiology. 2007; 31:871–882. [PubMed: 17654612] 

Li Y, Ghosh D. A two-step hierarchical hypothesis set testing framework, with applications to gene 
expression data on ordered categories. BMC Bioinformatics. 2014; 15:108. [PubMed: 24731138] 

Lindley DV. On a measure of the information provided by an experiment. The Annals of Mathematical 
Statistics. 1956:986–1005.

Liu JZ, Mcrae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, Hayward NK, Montgomery GW, 
Visscher PM, Martin NG, et al. A versatile gene-based test for genome-wide association studies. 
The American Journal of Human Genetics. 2010; 87:139–145. [PubMed: 20598278] 

Lock EF, Dunson DB. Shared kernel Bayesian screening. Biometrika. 2015; 102:829–842. [PubMed: 
27046939] 

Mahauad-Fernandez WD, Borcherding NC, Zhang W, Okeoma CM. Bone marrow stromal antigen 2 
(BST-2) DNA is demethylated in breast tumors and breast cancer cells. PloS One. 2014; 
10:e0123931.

Maksimovic J, Gagnon-Bartsch JA, Speed TP, Oshlack A. Removing unwanted variation in a 
differential methylation analysis of Illumina HumanMethylation450 array data. Nucleic acids 
research. 2015; 43:e106–e106. [PubMed: 25990733] 

Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a 
semiparametric hierarchical mixture method. Biostatistics. 2004; 5:155–176. [PubMed: 15054023] 

Pan W, Kim J, Zhang Y, Shen X, Wei P. A powerful and adaptive association test for rare variants. 
Genetics. 2014; 197:1081–1095. [PubMed: 24831820] 

Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N. Estimation of effect 
size distribution from genome-wide association studies and implications for future discoveries. 
Nature Genetics. 2010; 42:570–575. [PubMed: 20562874] 

Lock and Dunson Page 14

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rowntree RK, Harris A. The phenotypic consequences of cftr mutations. Annals of Human Genetics. 
2003; 67:471–485. [PubMed: 12940920] 

Ruklisa D, Ware JS, Walsh R, Balding DJ, Cook SA. Bayesian models for syndrome-and gene-specific 
probabilities of novel variant pathogenicity. Genome Medicine. 2015; 7:120. [PubMed: 26589591] 

Scott JG, Berger JO, et al. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection 
problem. The Annals of Statistics. 2010; 38:2587–2619.

Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica. 1994; 4:639–650.

Stephens M, Balding DJ. Bayesian statistical methods for genetic association studies. Nature Reviews 
Genetics. 2009; 10:681–690.

Sun D, Xi Y, Rodriguez B, Park HJ, Tong P, Meong M, Goodell MA, Li W. MOABS: model based 
analysis of bisulfite sequencing data. Genome Biology. 2014; 15:38.

TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013; 155:462–477. 
[PubMed: 24120142] 

TCGA Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade 
gliomas. New England Journal of Medicine. 2015; 372:2481–2498. [PubMed: 26061751] 

Verzilli C, Shah T, Casas JP, Chapman J, Sandhu M, Debenham SL, Boekholdt MS, Khaw KT, 
Wareham NJ, Judson R, et al. Bayesian meta-analysis of genetic association studies with different 
sets of markers. The American Journal of Human Genetics. 2008; 82:859–872. [PubMed: 
18394581] 

Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. The American 
Journal of Human Genetics. 2012; 90:7–24. [PubMed: 22243964] 

Wainwright DA, Balyasnikova IV, Han Y, Lesniak MS. The expression of BST2 in human and 
experimental mouse brain tumors. Experimental and Molecular Pathology. 2011; 91:440–446. 
[PubMed: 21565182] 

Wakefield J. Bayes factors for genome-wide association studies: comparison with p-values. Genetic 
Epidemiology. 2009; 33:79–86. [PubMed: 18642345] 

Wang D, Yan L, Hu Q, Sucheston LE, Higgins MJ, Ambrosone CB, Johnson CS, Smiraglia DJ, Liu S. 
IMA: an R package for high-throughput analysis of illumina’s 450k infinium methylation data. 
Bioinformatics. 2012; 28:729–730. [PubMed: 22253290] 

Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schuebeler D. Chromosome-wide and 
promoter-specific analyses identify sites of differential DNA methylation in normal and 
transformed human cells. Nature Genetics. 2005; 37:853–862. [PubMed: 16007088] 

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, 
Hindorff L, et al. The nhgri GWAS catalog, a curated resource of SNP-trait associations. Nucleic 
Acids Research. 2014; 42:D1001–D1006. [PubMed: 24316577] 

Wen X, Stephens M, et al. Bayesian methods for genetic association analysis with heterogeneous 
subgroups: From meta-analyses to gene–environment interactions. The Annals of Applied 
Statistics. 2014; 8:176–203. [PubMed: 26413181] 

Wilson MA, Iversen ES, Clyde MA, Schmidler SC, Schildkraut JM. Bayesian model search and 
multilevel inference for SNP association studies. The Annals of Applied Statistics. 2010; 4:1342–
1364. [PubMed: 21179394] 

Wojcik GL, Kao WL, Duggal P. Relative performance of gene-and pathway-level methods as 
secondary analyses for genome-wide association studies. BMC Genetics. 2015; 16:34. [PubMed: 
25887572] 

Wu H, Xu T, Feng H, Chen L, Li B, Yao B, Qin Z, Jin P, Conneely KN. Detection of differentially 
methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic 
Acids Research. 2015; 43:e141. [PubMed: 26184873] 

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data 
with the sequence kernel association test. The American Journal of Human Genetics. 2011; 89:82–
93. [PubMed: 21737059] 

Xu J, Yuan A, Zheng G. Bayes factor based on the trend test incorporating hardy–weinberg 
disequilibrium: more power to detect genetic association. Annals of Human Genetics. 2012; 
76:301–311. [PubMed: 22607017] 

Lock and Dunson Page 15

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yazdani A, Dunson DB. A hybrid Bayesian approach for genome-wide association studies on related 
individuals. Bioinformatics. 2015; 31:3890–3896. [PubMed: 26323717] 

Zhang X, Xue F, Liu H, Zhu D, Peng B, Wiemels JL, Yang X. Integrative Bayesian variable selection 
with gene-based informative priors for genome-wide association studies. BMC Genetics. 2014; 
15:130. [PubMed: 25491445] 

Lock and Dunson Page 16

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Comparison of four approaches to inferring prior probabilities, under three simulation 

scenarios (A,B, and C). Kernel density estimates of the resulting gene-specific probabilities 

are shown for continuous distributions; discrete distributions are shown by vertical lines. The 

distribution of the true gene-specific probabilities is colored black. The expected overall 

error in classifying null and alternative markers is also shown for each method and each 

simulation scenario.
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Figure 2. 
Histogram of estimated gene-specific probabilities for no association, pg.
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Figure 3. 
The top panel shows the estimated posterior probability of an association with GBM-LGG 

status for the 9 CpG sites measured in the gene BST2, with their corresponding genomic 

location. The lower panel shows the estimated densities for the GBM (blue) and LGG (red) 

groups for three sites; histograms of each group are shown, and their overlap is colored 

purple.
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Figure 4. 
Histograms of summary statistics for every CpG site with a posterior probability of the null 

less than 0.01, computed separately for the GBM (dark gray) and LGG (light gray) groups. 

Overlap between the two histograms is colored a neutral gray. The left panel show the site 

means, the right shows the site standard deviations.
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Figure 5. 
Histogram of hierarchically estimated and separately estimated gene-level priors after 

randomly permuting gene labels (left column), and after randomly permuting class labels 

(right column).
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Table 1

A: Error in classifying null and alternative markers, using 0.5 as a threshold for the posterior probability for 

Bayesian methods, and 0.05 as an FDR or P-value threshold for frequentist methods using Fisher’s exact test. 

The average over 50 replicate simulations is shown, and the resulting standard error is less than 0.05% for all 

cells. B: false discovery rate and true positive rate (FDR/TPR) using Bayesian or frequentist methods with 

specified FDR=0.05.

A: Classification Null Bimodal Beta (1, 0.2)

 Bayesian

(1) Hierarchical 0.01% 0.07% 3.92%

(2) Separate 0.50% 1.68% 4.87%

(3) Joint 0.01% 6.89% 5.34%

(4) Simple 5.07% 8.72% 7.82%

 Frequentist

(5) Separate FDR 0.23% 5.64% 5.41%

(6) Overall FDR 0.01% 7.15% 5.78%

(7) Two-step FDR 0.01% 7.73% 6.30%

No correction 2.91% 7.50% 6.49%

B: FDR Bimodal FDR/TPR Beta(1,0.2) FDR/TPR

 Bayesian

(1) Hierarchical 3.70%/99.9% 3.73%/76.0%

(2) Separate 1.12%/90.9% 6.72%/76.6%

(3) Joint 5.74%/69.3% 6.34%/67.0%

(4) Simple 13.0%/74.2% 15.6%/73.4%

 Frequentist

(5) Separate FDR 0.89%/73.3% 2.79%/69.2%

(6) Overall FDR 2.36%/65.9% 2.24%/64.0%

(7) Two-step FDR 0.30%/62.3% 0.98%/61.9%
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