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Abstract

Objective—This work investigates the problem of clinical coreference resolution in a model that 

explicitly tracks entities, and aims to measure the performance of that model in both traditional in-

domain train/test splits and cross-domain experiments that measure the generalizability of learned 

models.

Methods—The two methods we compare are a baseline mention-pair coreference system that 

operates over pairs of mentions with best-first conflict resolution and a mention-synchronous 

system that incrementally builds coreference chains. We develop new features that incorporate 

distributional semantics, discourse features, and entity attributes. We use two new coreference 

datasets with similar annotation guidelines – the THYME colon cancer dataset and the DeepPhe 

breast cancer dataset.

Results—The mention-synchronous system performs similarly on in-domain data but performs 

much better on new data. Part of speech tag features prove superior in feature generalizability 

experiments over other word representations. Our methods show generalization improvement but 

there is still a performance gap when testing in new domains.

Discussion—Generalizability of clinical NLP systems is important and under-studied, so future 

work should attempt to perform cross-domain and cross-institution evaluations and explicitly 

develop features and training regimens that favor generalizability. A performance-optimized 

version of the mention-synchronous system will be included in the open source Apache cTAKES 

software.
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1 Introduction and Background

Coreference resolution is the task of grouping entity and event mentions in a discourse into 

the set of “chains” of real world entities or events they describe.1 Human beings perform 

this task naturally in the course of everyday linguistic processing, to track events, entities, 

and actors across time in conversation or writing. In the general domain, a newspaper article 

may refer to multiple people, organizations, events, dates, and locations, using a variety of 

names (United States, USA, ISIS, ISIL), pronouns (they), and terms (explosion, blast). 
Similarly, in the context of the clinical narrative, a disease (e.g., “colon cancer”) may be 

referred to dozens of times over the course of its progression, using different terms (cancer, 
adenocarcinoma) and pronouns (it), within and between different encounters and notes. Each 

of these mentions may introduce novel information about the cancer (e.g., primary site, 

tumor size, metastasis location) to the total picture of the disease, making it essential to 

reconcile the multiple mentions in order for an extracted representation to be accurate and 

complete.

Deep phenotyping of cancer patients in particular requires coreference for accurate 

phenotype representations; how many primary tumors, how many metastases, and which 

tumor is which size. Downstream research applications making use of deep phenotypes may 

depend on this information. For example, consider a clinical researcher who wants to 

conduct a retrospective study of patients with breast cancer that metastasized to the lungs, 

and study the importance of initial tumor size. Coreference resolution will need to correctly 

link the mention of the initial tumor's location to the mention of that tumor's size, and also 

detect a tumor mention in the lung and correctly infer that it is a different tumor altogether.

There are a variety of method types that have been applied to the coreference resolution 

problem. The earliest approaches focused on pronouns only and were rule-based,[1] 

navigating syntax trees using a hard-coded search algorithm to find the most likely 

antecedent. One of the most successful early machine learning approaches was the mention-

pair paradigm that used supervised classifiers.[2] In this paradigm, a coreference chain 

would be converted into a set of pairwise decisions between mentions, where the label of a 

mention pair was TRUE if the two mentions belonged to the same chain. A statistical 

classifier can be trained on these labels, and used to label new documents. This approach 

requires a reconciliation mechanism for resolving globally inconsistent local classifier 

decisions, since it is possible to make inconsistent pairwise decisions (e.g., f(A,B) = TRUE, 

f(B,C) = TRUE, f(A,C) = FALSE). More recent rule-based approaches have built on 

upstream statistical NLP components and have had some success. These so-called “sieve”-

based approaches[3] apply a series of rules ranked in order of how reliable (precise) they 

1While our system tracks clinically relevant entities and events, rather than referring to “entities and events” in every instance, we 
hereafter just say “entities” in the interest of brevity.
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are. For example, a rule linking both parts of appositive constructions such as The German 
Chancellor, Angela Merkel is very reliable and so is applied early in the process.

Coreference resolution has seen progress in the clinical domain recently, largely due to a 

shared task, the 2012 i2b2 challenge on coreference resolution[4], and shared datasets for 

the task.[5]–[7] Approaches used in the clinical domain include some of those mentioned 

above, including rule-based sieve approaches,[8], [9] traditional pairwise mention 

classification approaches,[10] and hypergraph factorization approaches.[11], [12] Before the 

recent release of shared datasets for training, machine learning approaches were uncommon.

[13]

Since the shared task, much work has been done in the general domain that has not yet 

filtered into the clinical version of this research topic. Some of the work has focused on 

improving the search through the possibility space. Instead of attempting to find links 

between a new mention and all previous mentions, some of these systems instead 

incrementally build chains, [14]–[16] and then attempt to find links between a new mention 

and partial chains created by previous decisions. These “entity-centric” approaches allow 

more global features to be considered by the classifier. In pairwise approaches, by contrast, 

global information can only be considered in the reconciliation post-process mentioned 

above. Some entity-centric approaches use agglomerative clustering, initializing the set of 

mentions as singleton clusters, and iteratively merging clusters until some stopping criterion 

is met. “Mention synchronous” approaches, including the work described in this manuscript, 

are entity-centric, but more specifically build chains by attempting to merge newly 

encountered mentions with already-built partial chains, processing the document in the same 

way a human reader does.

Coreference resolution is still an unsolved problem, with new features, approaches, and 

datasets being developed across domains. But even at the modest levels of published 

performance that currently represent the state of the art, systems trained in one domain do 

not always generalize to other domains. In fact, this work was motivated by preliminary 

experiments that found the existing cTAKES coreference resolution system [17] performed 

poorly on a new gold standard coreference dataset that our lab and collaborators created as 

part of the THYME (Temporal History of Your Medical Events) project.[7] It is worth 

considering whether clinical coreference resolution is a meaningful task that warrants 

domain-specific research, or whether clinical text should just be considered a domain to 

adapt generally-trained coreference systems to. There are reasons to consider the problems 

separate. In the general domain, there is a distinction drawn between entity and event 

coreference, where entity coreference performance is well-studied and has seen some 

improvements over time,[18] though it is still far from perfect. General domain event 

coreference, however, is still in its early stages of development and is considered a very 

difficult unsolved problem. In clinical texts, this distinction is not as clear, and the task is 

essentially mixed event and entity coreference. While anatomical sites and people behave 

like traditional entities, diseases, symptoms, and procedures are more like events, in that 

they have possibly finite time spans, can change state over time, and can have different 

attributes for different instances. They are potentially more tractable than general domain 

events, however, because most events in a given patient record will belong to that patient. 
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This is compared to, for example, the news domain where different mentions of the same 

explosion event might occur across articles, days, newspapers, etc.

If clinical coreference resolution task is indeed unique enough, then it will be even more 

crucial to continue developing and growing coreference corpora specific to the clinical 

domain. If not, it may be preferable to build ever-larger corpora in the general domain. In 

either case, however, questions of generalizability and domain adaptation loom large, as it is 

simply not feasible to develop labeled corpora for every clinical sub-domain on which one 

might want to extract coreference information.

In this paper, we begin to explicitly examine issues of generalizability in the development of 

a new coreference resolution system. We consider three research questions: 1) Can 

approaches that center on coreference chains rather than mentions improve performance? 2) 

How well do systems optimized for one domain generalize to new domains? And 3) How 

well do certain feature types perform when applied to new domains? We develop a new 

mention-synchronous coreference resolution system for the clinical domain, several new 

features focused on generalizability, and evaluate the system against existing baselines.

2 Materials and Methods

2.1 Methods

Mention-synchronous Coreference Resolution—The first step in any coreference 

resolution system is identifying the set of markables, or candidate phrases for membership in 

coreference chains. Many existing systems build chains using a mention-pair approach, 

computing pairwise scores for all markable pairs and adding a second pass to create chains 

using these scores and reconcile inconsistencies. In contrast, we use the mention-
synchronous approach, which was first described by Luo et al. [19] In the mention-

synchronous approach, coreference chains are incrementally built up as a document is 

processed from left-to-right. Coreference decisions involve comparing a new markable to the 

set of partial chains, and either adding the markable to an existing chain or starting a new 

chain. Many subsequent approaches following this approach have attempted to model this 

process as a search procedure, tracking multiple hypotheses through time. Here, rather than 

performing a search, we keep track of the one-best hypothesis for efficiency reasons. Figure 

1 formalizes our description of the mention-synchronous algorithm, while Figure 2 shows a 

schematic comparison of the mention-pair vs. mention synchronous approach. The two 

subsections below describe in detail how candidate markables are selected, and how 

candidate antecedent chains are selected, which determines the search order and thus 

impacts the greedy search.

Rule-based markable detection: The first stage in coreference resolution is finding 

markables, or candidate phrases for membership in coreference chains. Here we follow 

recent work[20] by focusing on recall at the markable detection stage. We start by running a 

dependency parser on the entire corpus (the clinically trained parser in Apache cTAKES). 

This builds a syntactic graph of the sentence in which every word is tagged with a part of 

speech and has an outgoing arc pointing to its syntactic head. We create a markable for every 

word tagged as a noun, expanding it to include all words with an arc into that word. For 
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example, in the phrase ascending colon cancer, both colon and cancer will be tagged as 

nouns, so we will create two markables. The first will include all terms syntactically 

dominated by the disease name (ascending colon cancer), and the second will include all 

terms dominated by the anatomical site name (ascending colon).

Time expressions may also be coreferent in THYME (see the Datasets section for a 

description of the THYME corpus), though they do not always include nouns (e.g., today, 
January 15). Thus, we also run the THYME-trained time expression recognizer[21] to tag 

time expressions and we deterministically add these as markables. While this may bias our 

training process because the THYME-trained system will be better at finding time 

expressions in our training data than we might expect on new data, there is no information 

leakage from the test set, because the system included in Apache cTAKES was not trained 

on any THYME test data.

Pair selection heuristics: One of the challenges in coreference resolution is the sheer 

number of potential coreference links that need to be evaluated. Besides the issue of system 

speed, the vast majority of proposed pairs are not coreferent, so the training data will be 

extremely unbalanced towards negative examples. In such cases a classifier can achieve high 

training accuracy by always predicting the majority class, but will be useless for the actual 

task.

These concerns led us to the conclusion that instead of exhaustively comparing markables 

and chains, we should use heuristic rules to create a smaller, but high-recall (sensitivity), set 

of comparisons to make for every markable. First, we consider links with any chains already 

consisting of two or more elements. This is motivated by the intuition that entities mentioned 

more than once are important and more likely to be mentioned again. Remaining singleton 

chains are considered for pairing first based on distance. We consider all singleton chains 

mentioned in the five sentences prior to the markable under consideration. We next consider 

singleton chains in which their markable element appears in a section header. We define 

section headers to be paragraphs that consist of single sentences. Paragraphs are defined as 

blocks of text starting and ending with two or more newline characters. Finally, we consider 

all singleton markables whose headwords match the headword of the candidate anaphor 

markable. In the pairwise baseline, we use the same sentence distance heuristic, section 

header heuristic, and headword matching heuristic. These heuristics are encapsulated in the 

getCandidateAntecedentChains() function in Figure 1.

System Features: We use a variety of manually engineered features to attempt to represent 

important aspects of the relationship between an anaphor and its antecedent. Many of these 

features are derived from earlier work, in particular, the seminal works of Soon et al.[2] and 

Ng and Cardie,[22] but also our previous work,[17] and the work of other recent systems. 

These features are summarized in Supplementary Table 1.

The strongest of the features taken from existing coreference literature are string matching 

features. These features take different configurations of each markable, including the whole 

string, the first word, last word, and whole string without determiners, and perform all these 

permutations against markables in candidate chains. String-matching features are valuable, 

Miller et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but the difficulty in coreference resolution is learning how to link markables without strong 

string matches. Additional standard features for the clinical domain use the Unified Medical 

Language System (UMLS). One strong feature indicates whether two markables map to the 

same UMLS Concept Unique Identifier (CUI). Another, weaker feature, indicates whether 

they map to any of the same Type Unique Identifiers (TUIs).

We first implement three new feature sets, attempting to model discourse, semantic, and 

entity attributes aspects of coreference. Our goal in defining these higher-level linguistic 

features is to move away from surface level features that are believed to be more domain-

specific. These new feature sets are summarized in Table 1, and Supplementary Table 1 

includes these as well.

Discourse features take into account the fact that our antecedents are chains instead of 

markables. While pairwise systems have features that count the number of markables 

between the two candidate pairs under consideration, we count the number of partial chains 

between the candidate anaphor and candidate chain. This converts an entity mention distance 
to an entity distance. One version of this feature counts all intervening chains, while a 

second version only counts intervening non-singleton chains. We also create a new feature 

representing the salience of entities in the discourse. For this, we borrow from existing work 

by Recasens et al. on detecting singleton mentions.[23] Detecting singletons has been used 

in previous work to filter mentions from the pair-matching stage. Here we invert the sign and 

call it a salience classifier. Our intuition is that salient discourse entities will be ones that are 

mentioned multiple times and singletons are not very salient. We incorporate the features 

from Recasens et al. with a few new features, including UMLS Semantic Group and a 

feature that encodes which third of the sentence the mention occurs in (beginning, middle, 

end).

To train the salience classifier we use gold standard coreference chains and the deterministic 

markable detector described above. Training data consists of positive examples that are 

members of chains (salient markables) and negative examples that are not in chains (non-

salient markables). We train a logistic regression classifier that outputs probabilities, and we 

treat this probability as the salience. We then extract two features, one for the salience of the 

candidate anaphor and one for the maximum salience of any markable in the candidate 

chain.

Entity attribute features attempt to enforce compatibility between entity attributes in 

anaphors and antecedents. We run the cTAKES assertion module[24] on each markable to 

classify four binary attributes (negation, uncertain, generic, historical) of each markable and 

one multi-class attribute (subject). There is one feature for each attribute category, whose 

value is TRUE only if the value of the anaphor for that category matches the value of some 

member of the candidate antecedent chain. For example, if the anaphor is marked as 

Negated by cTAKES, the feature will only fire if some member of the candidate antecedent 

chain is also marked Negated.

The first new semantic feature uses word embeddings to compute semantic similarity 

between the headwords of the candidate anaphor and the candidate chain. Word 
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embeddings[25] are continuous vector representations of words that are typically created by 

training a neural network to predict neighboring contexts, usually other words. The resulting 

vector representation of a word can then be used for a variety of purposes, including 

predicting similarity between two words. This can be done by simply computing the cosine 

similarity between the vector representations of two words. We create 200-dimensional 

vectors for each word type, training on all 1.2 million notes in the MIMIC II dataset (for 

details on MIMIC II and other datasets see the Datasets section below) using word2vec.[25] 

We use cosine similarity as a feature, computing the maximum cosine distance between the 

vector for the anaphor headword and any antecedent chain mention headword. Another 

semantic feature uses the IsA relation from SnomedCT that is present in the UMLS 

Metathesaurus. This feature encodes whether the candidate anaphor is connected via IsA 
relations to any mention in the candidate antecedent chain and the direction of that relation.

The final semantic feature attempts to model semantic group selectional preferences of 

pronouns. [26] Pronouns cannot be mapped to UMLS semantic groups, so they can be 

difficult to resolve when there are multiple candidate antecedents in previous sentences. One 

way to resolve these difficult cases is to look at what the pronoun is doing. For example, for 

it reoccurred the mention it is more likely to corefer to a disease or sign/symptom, while in 

tolerated it well, the pronoun it is more likely to be a drug or procedure. To model these 

selectional preferences we processed the entire MIMIC-II corpus (for details on MIMIC and 

other datasets see the Datasets section) with the cTAKES UMLS dictionary lookup and 

dependency parser and extracted tuples of (Governing verb, Dependency relation, Semantic 

group) – for example: (reoccurred, subject, sign/symptom) is extracted from the phrase the 

rash reoccurred, indicating an instance of a sign/symptom being the subject of the verb 

reoccurred. After compiling these counts for the whole corpus we estimated the distribution 

P(Semantic group | Verb, depRel). With this distribution, if we see a new pronoun as the 

subject to the verb reoccurred, we can estimate that the pronoun is most likely to refer to a 

procedure. This feature fires only for pronoun anaphor candidates, and its value is the 

maximum of the estimated probability of any semantic group found in the current candidate 

chain.

Finally, we introduce features to represent the surrounding context of a markable and 

experiment with different kinds of abstraction to represent this context. These feature types 

have been successful for us on other relation extraction tasks[27] and we found they were 

surprisingly effective on the development set. This is a potentially valuable representation 

for learning whether a candidate is coreferent at all, but surface features like tokens may 

overfit to the training domain, so we designed experiments attempting to measure this. This 

feature is also summarized in Table 1.

For this markable context feature, we only extract features for the candidate markable 

anaphor and not the candidate antecedent chain. We experiment with token identity, part of 

speech (POS) and vector features. For the token identity features we extract a feature for 

every token identity in the markable as a bag, as well as features for three words of context 

on either side of the markable. For the POS feature we use the system-tagged POS tags for 

the tokens instead of their token identities.
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We also experiment with word embeddings (described above) for the token context feature. 

For this feature, since it only attaches to the anaphor and not any potential antecedent, we 

simply use the dimensions of the word vector as continuous features. We represent words 

with 200-dimensional vectors, and we use one word of context on either side of the 

markable, as well as the headword of the markable, for a total of 600 continuous features.

Resolving Person Mentions: In the general domain, person mentions are frequent and 

important to resolve, as there may be ambiguity about who committed which actions. In the 

clinical domain, there is significantly less ambiguity – nearly all person mentions are of the 

patient, physician mentions can be handled with a few rules, and the bulk of the few 

remaining person mentions are in the family history section, which can be detected with 

other means. However, in our datasets (THYME and DeepPhe, described in more detail in 

the Datasets section), person coreference chains are annotated, so without some extraction 

mechanism, scores will appear artificially low. We built a simple pattern-based extractor for 

detecting person mentions without a name dictionary, and used this for resolving names in 

the THYME corpus. But while both corpora are de-identified, only the THYME corpus has 

realistic-looking fake names. The DeepPhe corpus does not always have realistic depictions 

of names due to the way de-identification was implemented. For example, a patient's name 

might be substituted with tags such as PERSON1. Because of this de-identification method, 

overall performance on DeepPhe may be lower due to poor performance on person 

mentions.

2.2 Datasets

In our work we used two datasets. The Clinical TempEval sets of the THYME corpus (both 

2015[28] and 2016 tasks[29]) annotated for coreference have already been made available to 

the research community. Of note, the THYME corpus is not exhaustively annotated for 

coreference -- the annotated set used here consists of 98 training documents, 32 development 

documents and 55 test documents. The documents are pathology and clinical notes from 

colorectal cancer patients at the Mayo Clinic. The training set contains 2216 coreference 

chains, the development set contains 1272 chains, and the test set contains 1343 chains. The 

corpus was double-annotated by a linguistics student and a domain expert, followed by an 

adjudication phase of the disagreements through a discussion between the two annotators. 

The inter-annotator agreement (IAA) for coreference is reported as a CoNLL F1 score (see a 

description of the CoNLL metric in the Evaluation Section below). The IAA between two 

annotators is 62.2, while average annotator agreement with the gold standard is 71.9. For 

final testing, the training and development sets were combined, so that the final tested 

system was trained using 3488 chains.

The second set consists of the documents (pathology, radiology, oncology, clinical notes) of 

breast cancer patients from the UPMC and is part of a bigger project on the topic of deep 

cancer phenotyping (DeepPhe2). The subset we used includes 48 documents for 4 patients 

(the DeepPhe training split), containing 191 chains. The DeepPhe corpus is single-annotated 

therefore no IAA is available. DeepPhe annotation used the THYME annotation guidelines 

2http://cancer.healthnlp.org
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as a starting point, so the annotation guidelines are quite similar. Some divergence was 

introduced to improve annotation speed and reliability. In particular, non-clinical entity 

chains were not annotated in DeepPhe, reducing the total number of chains. These were 

more difficult annotations to perform while also being less useful for downstream use cases 

than clinical events and entities.

The documents from both datasets are completely de-identified except for temporal 

expressions, which were left unchanged according to the THYME project limited data use 

agreement. The coreference annotation guidelines are posted on the THYME project page.3

We consider these datasets to be different domains since they represent different disease 

populations (colon vs. breast cancer) and are sourced from different institutions (Mayo 

Clinic vs. UPMC). While these two diseases are distinct, and there will undoubtedly be 

lexical variation, we also expect there to be some lexical overlap, as terms like tumor should 

be shared. Therefore, the generalizability experiments we perform probably represent a 

conservative estimate of the difficulty of adapting a coreference system to a new disease 

domain.

We use one large external data source, the MIMIC II corpus,[30] for training word 

embeddings as described above, to use as features in our classifiers. Learning these 

representations requires large unlabeled text datasets, typically several orders of magnitude 

larger than gold standard annotated coreference datasets. Therefore, the relatively large 

MIMIC corpus is more appropriate for this purpose than the THYME or DeepPhe corpora.

2.3 Research Questions

In our evaluation, we are concerned with several variables around coreference system 

development. Our first research question is whether consideration of chains (mention-

synchronous system) can improve performance over pairwise systems (mention-pair 

system). For the fairest possible comparison, we strive for feature parity. Since the two 

systems use different architectures they are not exactly the same, but this is part of what the 

experiment is meant to measure – whether the different form of features used by a cluster-

based system has value. For both systems we use Liblinear[31] for our machine learning, a 

fast, high-performing linear support vector machine implementation, with L2 regularization. 

Early experiments with non-linear kernels did not show any improvement and took 

substantially longer to train. We performed a grid search to find the best value for the 

regularization parameter C on the development set, then retrained the system on the training 

and development data with the optimal parameter, finally testing on the held out test data.

Our second research question is how systems optimized for one corpus perform on a new 

corpus, and whether relative rankings hold up. For this experiment we took the best 

performing THYME-trained systems from experiment one above and tested them on the 

unseen DeepPhe data. Since the DeepPhe corpus annotation guidelines focus on chains 

containing UMLS entities, if we run the THYME-trained system in end-to-end mode, 

precision on DeepPhe will appear artificially low. To eliminate this confusion, at test time 

3http://thyme.healthnlp.org
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we give the system only gold markables that are not singletons (i.e., those in chains). While 

this decision removes the ability to analyze the importance of discovering markables on 

DeepPhe, it allows us to do more meaningful cross-corpus comparisons and isolate the 

performance on the core coreference resolution task. Since DeepPhe corpus annotation is not 

complete, we do not yet have enough data to train a good system only on DeepPhe data. 

Therefore we cannot perform the reverse experiment where we train on DeepPhe and test on 

THYME, so we focus on how the trained system performs on brand new data compared to a 

baseline.

Our third research question is the effect that different features have on generalization 

performance. We hypothesize that token-level features are a cause of overfitting and 

removing them may improve generalization at the expense of some in-domain optimization. 

To test this we look at four separate token feature conditions: no token-level features, token 

identity features, POS tag token features, and word vector features. In each case we optimize 

a system on the THYME development set and evaluate it on the THYME test set and the 

DeepPhe set. For this experiment we give both THYME and DeepPhe systems non-singleton 

gold standard markables at test time so that we can compare across corpora.

2.4: Evaluation Methodology

Evaluating coreference resolution systems is difficult and there are a number of proposed 

metrics for doing so. The most prominent are MUC,[32] B3,[33] and CEAF.[34] While the 

original papers describing these metrics focused on gold standard mentions, they have 

recently been standardized[35] in the way that they handle end-to-end coreference for a 

shared task in the general domain sponsored by CoNLL (Computational Natural Language 

Learning – an NLP/machine learning conference)[36]. The standard scoring tool that was 

built for that shared task has been made a community standard, and computes these three 

metrics (in addition to BLANC[37]), as well as an average of the three metrics that was used 

as the official metric for the task. Here we report the MUC, B3, and CEAF score, as well as 

the “CoNLL score” that averages the F1 of those three metrics.

MUC computes recall by counting the percentage of inter-cluster links in the gold standard 

that are found by the system. Precision is computed by reversing the gold and system 

outputs. B3 computes precision and recall scores for each mention, as the number of correct 

elements in the chain containing that mention, divided by the number of elements in the 

system chain or gold chain, respectively. Document precision and recall are computed as 

weighted averages, with the weights determined by the size of the chains. CEAF first 

computes an optimal alignment between the reference and gold mention sets, and compares 

that alignment to an alignment of gold outputs to itself (for recall) and system output to itself 

(for precision). For details on these algorithms, especially how they apply to end-to-end 

coreference, see Pradhan et al.[35]

We test for statistical significance using a Wilcoxon signed-rank test. Testing for 

significance in coreference resolution is difficult because it is a structured prediction 

problem. We can't compare performance at each classification decision because two different 

systems will eventually diverge and encounter different classification decisions. The 

compromise test setting we consider is over document F1 scores. The standard CoNLL 
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scoring tool computes coreference metrics at the document level, so we can compare two 

systems for each document. The limitation of this approach is that it removes information 

about document length. For example, a 5% performance gain on a long document represents 

more decisions affected than a 5% loss on a short document, but this difference cannot be 

accounted for by a document-by-document significance test. This is not optimal, since 

coreference performance is probably correlated with document length (longer documents are 

harder). Nevertheless, given the difficulty of significance testing for coreference resolution, 

we find this to be the best method.

3 Results

The results to answer the first research question — how the mention-synchronous system 

compares to a mention-pair system – are in Table 2. They show that the both systems obtain 

similar F1 scores on the THYME test set (mention synchronous system CoNLL score of 

55.3 vs. mention-pair system CoNLL score of 54.7; p=0.9). The mention-synchronous 

system improves recall but precision decreases. This result makes clear that representing 

chains is not the panacea that will solve coreference resolution.

The results for the second research question — how well mention-synchronous and mention-

pair systems generalize — are in Table 3. Both systems see performance degradation on the 

DeepPhe data, despite being given gold standard markables, highlighting the need for 

domain adaptation. The mention-synchronous system performs much better than the 

mention-pair system (mention synchronous system CoNLL score of 52.5 vs. mention-pair 

system CoNLL score of 30.4; p < 0.0001), largely by having very high precision. This 

suggests that, given a domain-adapted markable detection strategy, the mention-synchronous 

system has a better chance of performing well in new domains than the mention-pair system.

The results supporting the third research question – what features are most generalizable – 

are in Table 4. The baseline system (no token features) is worse than the token identity 

feature condition on THYME (CoNLL score of 59.7 vs. 62.9; p < 0.001). POS features on 

the DeepPhe corpus were 3.6 points higher than token identity features at the corpus level, 

but this result was not found significant in the document-aligned test, likely due to high 

variation in performance between documents (CoNLL score of 52.6 vs. 56.2; p=0.42). 

Surprisingly, the vector features, which were included because they had a positive effect on 

development set performance in the end-to-end setting, did not have a positive impact in the 

setting where gold markables are provided (CoNLL score dropped from 54.2 to 51.9; 

p=0.16). This suggests that vector features play the role of detecting anaphoricity more than 

choosing the correct antecedent.

4 Discussion

Our results show that while system gains for within-document coreference resolution are not 

significant (mention synchronous system CoNLL score of 55.3 vs. mention-pair system 

CoNLL score of 54.7; p=0.9), they generalize better than existing approaches (mention 

synchronous system CoNLL score of 52.5 vs. mention-pair system CoNLL score of 30.4; p 

< 0.0001).
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4.1 Error Analysis

To further gain insights into our mention synchronous method performance, we conducted 

an error analysis on all mentions in all documents for one randomly chosen patient in the 

DeepPhe corpus, 14 documents in total. This is about the same number of documents as 

other patients, with slightly longer documents on average. We categorized errors into four 

mutually exclusive categories – false new (FN), wrong link (WL), false anaphor (FA), and 

annotator error (AE). [38] FN errors occur when the system creates a new chain for a 

markable when it should be added to an existing chain, WL errors are when the system adds 

an anaphoric markable to the wrong chain, and FA errors occur when the system adds a 

markable to an existing chain when it should start its own chain. We observed 54% of the 

errors were FN, indicating that our main problem was a failure to link (roughly, recall 

errors). These errors occur when two mentions have different headwords (e.g., tumor vs. 

mass), have very different modifiers (left breast cancer vs. cancer), or they are very far away 

from each other in the note. Recall is a common problem with coreference systems, with 

string matching features often being the only strong-enough features to create new links. 

One reason for the recall problem is that coreference has many more negative instances than 

positive, so coming up with features that are strong enough to overcome the number of 

negative instances to favor linking is a major challenge in a feature-engineering approach. 

Our features attempted to remedy this using UMLS CUI similarity and word-embedding-

based lexical similarity to link mentions with semantically similar words. Since this is still 

the main error source we clearly have a long way to go. One interesting possible next step is 

to make use of methods that merge word embeddings with ontologies [39], “retrofitting” 

learned word embeddings so that they align to a known hierarchy. This would presumably 

improve the quality of the embeddings for the task and may combine the strengths of UMLS 

and embedding features.

Over a third of the errors (35%) were FA links that should not have been created. In the 

patient whose notes we examined, there were multiple tumors, and the system falsely 

conflated them as the same tumor due to similarity of terms used to describe them, as well as 

their being located closely together in the document. Similarly, the multiple tumors 

necessitated multiple imaging studies, which were also sometimes conflated. While this is 

an important case for a coreference system to handle, its relative rarity means that this 

analysis perhaps overestimates the FA error type. This kind of error may be addressed by 

taking into account entity relations as well as attributes. While we currently use agreement 

between negation and other entity attributes as features, we find that this feature does not fire 

very frequently. A related feature type that may be useful is one that enforces agreement 

between, for example, location relations. In the example described above, each tumor has a 

location (right breast, lymph node, etc.) and the cTAKES relation extraction system can find 

relations between tumors and anatomical sites. The main difficulty is finding enough 

examples where this occurs for the system to learn this constraint properly (e.g., a relation to 

a right breast is incompatible with a left breast, but a relation between a right breast and 

breast is compatible). It may be necessary to collapse all constraints (attributes, relations) 

into a single feature for the feature to be strong enough to make a decisive difference.
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Annotator errors (AE), where the gold standard was judged by the authors to be erroneous, 

were next most common (8%), and these errors will be used to perform another pass of error 

correction on the gold standard. Finally, WL errors were rare (3% of errors).

4.2 Directions for Future Work

Future work will examine the degree to which using search procedures during learning can 

be made efficient and whether they improve performance. The core issue is that coreference 

resolution is a structured problem, where the inputs to a coreference decision later in the 

document are determined by the sequence of earlier decisions. By tracking only a single best 

hypothesis, a single incorrect early decision can lead to a “dead end” where there are no 

good decisions. If search is used during inference, the system can backtrack out of dead ends 

to return to an earlier decision and go down another path. The search space for the 

coreference resolution problem is quite large, so constraining this search is necessary for the 

system to run in an acceptable amount of time. The first step in this work will be a deeper 

error analysis looking at the impact of errors in the input to decisions.

This work also laid the groundwork for reasoning about entities rather than pairs of 

mentions. Future work will extract patient-level representations of entities and events, by 

performing the even more difficult task of cross-document coreference. Cross-document 

coreference is an elaboration of the coreference task that allows for tracking entities across 

multiple notes in the patient record. The cross-document setting is even more challenging 

because there are fewer linguistic cues that relate mentions in different documents. There are 

as of right now no publicly available clinical datasets annotated for cross-document 

coreference, so this work focused on within-document coreference. However, phase two of 

the THYME project is undertaking cross-document coreference annotations. The approach 

we described here is entity-centric, allowing the system to carry over entity representation 

from one document to another.

5 Conclusion

This paper has described a system for clinical coreference resolution that represents resolved 

entities as chains as it proceeds through the note. The mention-synchronous system 

developed to use chains as antecedents rather than individual mentions does not result in 

significant gains for within-document coreference resolution, but it generalizes better than 

existing approaches. A performance-optimized version of the mention-synchronous system 

will be included in the open source Apache cTAKES software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Coreference resolution is important for extracting information from clinical 

documents

• We implement and evaluate a model that tracks entities across a document

• We explore generalizability of some important coreference features
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Figure 1. 
Algorithm describing the greedy mention-synchronous coreference system for a single 

document D. c is the running set of coreference chains for the document that is built with the 

algorithm. The outer loop is over markables m, and the inner loop is over candidate chains c 
in c. The function extractFeatures(m, c) results in a feature vector f. At classification time, if 

the classifier returns True, the markable m is added to the current chain under consideration 

c. If the inner loop terminates without adding m to any chain, the variable singleton will be 

True and a new singleton chain will be created and appended to c.
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Figure 2. 
a) Mention-synchronous representation. Circles represent markables. Boxes represent 

explicit coreference chains being built. Dotted arrows indicate decision that mention-

synchronous model must make when evaluating markable 10.

b) Mention-pair representation. Solid arrows represent links between markables, implicitly 

defining chains. Dotted arrows indicate decisions a mention-pair system must make when 

evaluating markable 10.
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Table 1

The Type column is brief description of the feature class. The Name column is the specific feature description. 

Match type refers to how the feature is distributed over chains in the mention-synchronous model. Any means 

that any element of the chain can match the mention. Max means that the maximum match between a chain 

element and the mention is the feature value. Description gives a brief explanation or example of the feature 

where space allows.

Type Name Match type Description

Discourse Features Stack position (all)
Stack position (no singletons)
Antecedent salience
Anaphor salience

Max Number of intervening chains since last mention
Number of non-singleton intervening chains
See text
See text

Entity Attribute Features Negation
Uncertainty
Generic
Subject
History

Any No tumor
Possible tumor
Discussed chemotherapy
Breast cancer mother
Hx headaches

Semantic Features Cosine similarity
Selectional preferences
UMLS Ancestry

Max
Max

Similarity of headwords in word2vec (see text)
Probability of governing semantic type (see text)
Markables are in an ancestral relation (see text)

Surrounding Token Context Word
POS (Part of speech)
Vector

N/A Token identities within markable and context window
POS tags of markable and context
Word embeddings of markable head and context words
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Table 4

Results of different token feature configurations – coreference generalizability given gold markables. 

Significance tests were performed within each corpus, comparing each feature configuration against the 

baseline. The symbol * indicates significance at p < 0.001, while ˆ indicates significance at p=0.005.

CoNLL Scores THYME DeepPhe

Baseline (No token features) 59.7 54.2

Token identity only 62.9* 52.6

Token POS only 61.8ˆ 56.2

Token vector only 51.8* 51.9
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