
Variance Reduction in Stochastic Gradient Langevin Dynamics

Avinava Dubey*,
Department of Machine Learning, Carnegie-Mellon University, Pittsburgh, PA 15213

Sashank J. Reddi*,
Department of Machine Learning, Carnegie-Mellon University, Pittsburgh, PA 15213

Barnabás Póczos,
Department of Machine Learning, Carnegie-Mellon University, Pittsburgh, PA 15213

Alexander J. Smola,
Department of Machine Learning, Carnegie-Mellon University, Pittsburgh, PA 15213

Eric P. Xing, and
Department of Machine Learning, Carnegie-Mellon University, Pittsburgh, PA 15213

Sinead A. Williamson
IROM/Statistics and Data Science, University of Texas at Austin, Austin, TX 78712

Abstract

Stochastic gradient-based Monte Carlo methods such as stochastic gradient Langevin dynamics 

are useful tools for posterior inference on large scale datasets in many machine learning 

applications. These methods scale to large datasets by using noisy gradients calculated using a 

mini-batch or subset of the dataset. However, the high variance inherent in these noisy gradients 

degrades performance and leads to slower mixing. In this paper, we present techniques for 

reducing variance in stochastic gradient Langevin dynamics, yielding novel stochastic Monte 

Carlo methods that improve performance by reducing the variance in the stochastic gradient. We 

show that our proposed method has better theoretical guarantees on convergence rate than 

stochastic Langevin dynamics. This is complemented by impressive empirical results obtained on 

a variety of real world datasets, and on four different machine learning tasks (regression, 

classification, independent component analysis and mixture modeling). These theoretical and 

empirical contributions combine to make a compelling case for using variance reduction in 

stochastic Monte Carlo methods.

1 Introduction

Monte Carlo methods are the gold standard in Bayesian posterior inference due to their 

asymptotic convergence properties; however convergence can be slow in large models due to 

poor mixing. Gradient-based Monte Carlo methods such as Langevin Dynamics and 

Hamiltonian Monte Carlo [10] allow us to use gradient information to more efficiently 
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explore posterior distributions over continuous-valued parameters. By traversing contours of 

a potential energy function based on the posterior distribution, these methods allow us to 

make large moves in the sample space. Although gradient-based methods are efficient in 

exploring the posterior distribution, they are limited by the computational cost of computing 

the gradient and evaluating the likelihood on large datasets. As a result, stochastic variants 

are a popular choice when working with large data sets [15].

Stochastic gradient methods [13] have long been used in the optimization community to 

decrease the computational cost of gradient-based optimization algorithms such as gradient 

descent. These methods replace the (expensive, but accurate) gradient evaluation with a 

noisy (but computationally cheap) gradient evaluation on a random subset of the data. With 

appropriate scaling, this gradient evaluated on a random subset of the data acts as a proxy for 

the true gradient. A carefully designed schedule of step sizes ensures convergence of the 

stochastic algorithm.

A similar idea has been employed to design stochastic versions of gradient-based Monte 

Carlo methods [15, 1, 2, 9]. By evaluating the derivative of the log likelihood on only a 

small subset of data points, we can drastically reduce computational costs. However, using 

stochastic gradients comes at a cost: While the resulting estimates are unbiased, they do have 

very high variance. This leads to an increased probability of selecting paths with high 

deviation from the true gradient, leading to slower convergence.

There have been a number of variations proposed on the basic stochastic gradient Langevin 

dynamics (Sgld) model of [15]: [4] incorporates a momentum term to improve posterior 

exploration; [6] proposes using additional variables to stabilize fluctuations; [12] proposes 

modifications to facilitate exploration of simplex; [7] provides sampling solutions for 

correlated data. However, none of these methods directly tries to reduce the variance in the 

computed stochastic gradient.

As was the case with the original Sgld algorithm, we look to the optimization community for 

inspiration, since high variance is also detrimental in stochastic gradient based optimization. 

A plethora of variance reduction techniques have recently been proposed to alleviate this 

issue for the stochastic gradient descent (Sgd) algorithm [8, 5, 14]. By incorporating a 

carefully designed (usually unbiased) term into the update sequence of Sgd, these methods 

reduce the variance that arises due to the stochastic gradients in Sgd, thereby providing 

strong theoretical and empirical performance.

Inspired by these successes in the optimization community, we propose methods for 

reducing the variance in stochastic gradient Langevin dynamics. Our approach bridges the 

gap between the faster (in terms of iterations) convergence of non-stochastic Langevin 

dynamics, and the faster per-iteration speed of Sgld. While our approach draws its 

motivation from the stochastic optimization literature, it is to our knowledge the first 

approach that aims to directly reduce variance in a gradient-based Monte Carlo method. 

While our focus is on Langevin dynamics, our approach is easily applicable to other 

gradient-based Monte Carlo methods.
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Main Contributions—We propose a new Langevin algorithm designed to reduce variance 

in the stochastic gradient, with minimal additional computational overhead. We also provide 

a memory efficient variant of our algorithm. We demonstrate theoretical conversion to the 

true posterior under reasonable assumptions, and show that the rate of convergence has a 

tighter bound than one previously shown for Sgld. We complement these theoretical results 

with empirical evaluation showing impressive speed-ups versus a standard Sgld algorithm, 

on a variety of machine learning tasks such as regression, classification, independent 

component analysis and mixture modeling.

2 Preliminaries

Let  be a set of data items modeled using a likelihood function 

 where the parameter θ has prior distribution p(θ). We are interested in 

sampling from the posterior distribution . If N is large, standard 

Langevin Dynamics is not feasible due to the high cost of repeated gradient evaluations; a 

more scalable approach is to use a stochastic variant [15], which we will refer to as 

stochastic gradient Langevin dynamics, or Sgld. Sgld uses a classical Robbins-Monro 

stochastic approximation to the true gradient [13]. At each iteration t of the algorithm, a 

subset Xt = {xt1, . . . , xtn} of the data is sampled and the parameters are updated by using 

only this subset of data, according to

(1)

where ηt ~ N(0, ht), and ht is the learning rate. ht is set in such a fashion that 

and . This provides an approximation to a first order Langevin diffusion, with 

dynamics

(2)

where U is the unnormalized negative log posterior. Equation 2 has stationary distribution 

ρ(θ) ∝ exp{−U(θ)}. Let ϕ̄ = ∫ ϕ(θ)ρ(θ)dθ where ϕ represents a test function of interest. For 

a numerical method that generates samples , let ϕ̂ denote the empirical average 

. Furthermore, let ψ denote the solution to the Poisson equation ℒψ = ϕ − ϕ̄, 
where ℒ is the generator of the diffusion, given by

(3)
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The decreasing step size ht in our approximation (Equation 1) means we do not have to 

incorporate a Metropolis-Hastings step to correct for the discretization error relative to 

Equation 2; however it comes at the cost of slowing the mixing rate of the algorithm. We 

note that, while the discretized Langevin diffusion is Markovian, its convergence guarantees 

rely on the quality of the approximation, rather than from standard Markov chain Monte 

Carlo analyses that rely on this Markovian property.

A second source of error comes from the use of stochastic approximations to the true 

gradients. This is equivalent to using an approximate generator ℒ̃
t = ℒ+ΔVt, where ΔVt = 

(∇Ut − ∇U) · ∇ and ∇Ut is the current stochastic approximation to ∇U. The key contribution 

of this paper will be replacing the Robbins-Monro approximation to U with a lower-variance 

approximation, thus reducing the error.

To see more clearly the effect of the variance of our stochastic approximation on the 

estimator error, we present a result derived for Sgld by [3]:

Theorem 1—[3] Let Ut be an unbiased estimate of U and ht = h for all t ∈ {1, . . . , T }. 

Then under certain reasonable assumptions (concretely, assumption [A1] in Section 4), for a 

smooth test function ϕ, the MSE of Sgld at time K = hT is bounded, for someC > 0 

independent of (T, h) in the following manner:

(4)

Here ||.|| represents the operator norm.

We clearly see that the MSE depends on the variance term [||ΔVt||2], which in turn depends 

on the variance of the noisy stochastic gradients. Since, for consistency, we require h → 0 

as T → ∞,1 provided [||ΔVt||2] is bounded by a constant τ, the term T1 ceases to dominate 

as T → ∞, meaning that the effect of noise in the stochastic gradient becomes negligible. 

However outside this asymptotic regime, the effect of the variance term in Equation 4 

remains significant. This motivates our efforts in this paper to decrease the variance of the 

approximate gradient, while maintaining an unbiased estimator.

An easy to decrease the variance is by using larger minibatches. However, this comes at a 

considerable computational cost, undermining the whole benefit of using Sgld. Inspired by 

the recent success of variance reduction techniques in stochastic optimization [14, 8, 5], we 

take a rather different approach to reduce the effect of noisy gradients.

1In particular, if h ∝ T−1/3, we obtain the optimal convergence rate for the above upper bound.
2The datasets can be downloaded from https://archive.ics.uci.edu/ml/index.html
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3 Variance Reduction for Langevin Dynamics

As we have seen in Section 2, reducing the variance of our stochastic approximation can 

reduce our estimation error. In this section, we introduce two approaches for variance 

reduction, based on recent variance reduction algorithms for gradient descent [5, 8]. The first 

algorithm, Saga-Ld, is appropriate when our bottleneck is computation; it yields improved 

convergence with minimal additional computational costs over Sgld. The second algorithm, 

Svrg-Ld, is appropriate when our bottleneck is memory; while the computational cost is 

generally higher than Saga-Ld, the memory requirement is lower, with the memory overhead 

beyond that of stochastic Langevin dynamics scales as O(d). In practice, we found that 

computation was a greater bottleneck in the examples considered, so our experimental 

section only focuses on Saga-Ld; however on larger datasets with easily computable 

gradients, Svrg-Ld may be the optimal choice.

Algorithm 1

Saga-Ld

1:

Input:  for i ∈ {1, . . . , N}, step sizes 

2:

3: for t = 0 to T − 1 do

4:  Uniformly randomly pick a set It from {1, . . . , N} (with replacement) such that |It| = b

5:  Randomly draw ηt ~ N(0, ht)

6:

  

7:

   for i ∈ It and  for i ∉ It

8:

  

9: end for

10:

Output: Iterates 

3.1 Saga-Ld

The increased variance in Sgld is due to the fact that we only have information from n ≪ N 
data points at each iteration. However, inspired by a minibatch version of the Saga algorithm 

[5], we can include information from the remaining data points via an approximate gradient, 

and partially update the average gradient in each operation. We call this approach Saga-Ld.

Under Saga-Ld, we explicitly store N approximate gradients , corresponding to the 

N data points. Concretely, let  be a set of vectors, initialized as  for all i ∈ 

[N], and initialize  and . As we iterate through the data, if a 

Dubey et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2017 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data point is not selected in the current minibatch, we approximate its gradient with gαi. If It 

= {i1t, . . . int} is the minibatch selected at iteration t, this means we approximate the gradient 

as

(5)

When Equation (5) is used for MAP estimation it corresponds to Saga[5]. However by 

injecting noise into the parameter update in the following manner

(6)

we can adapt it for sampling from the posterior. After updating θt+1 = θt +Δθt, we let 

 for i ∈ It. Note that we do not need to explicitly store the ; instead we just update 

the corresponding gradients gαi and overall approximate gradient gα. The Saga-Ld algorithm 

is summarized in Algorithm 1.

The approximation in Equation (6) gives an unbiased estimate of the true gradient, since the 

minibatch It is sampled uniformly at random from [N], and the  are independent of It. 

Saga-Ld offers two key properties: (i) As shown in Section 4, Saga-Ld has better 

convergence properties than Sgld; (ii) The computational overhead is minimal, since Saga-

Ld does not require explicit calculation of the full gradient. Instead, it simply makes use of 

gradients that are already being calculated in the current minibatch. Combined, we end up 

with a similar computational complexity to Sgld, with a much better convergence rate.

The only downside of Saga-Ld, when compared with Sgld, is in terms of memory storage. 

Since we need to store N individual gradients gαi, we typically have a storage overhead of 

O(Nd) relative to Sgld. Fortunately, in many applications of interest to machine learning, the 

cost can be reduced to O(N) (please refer to [5] for more details), and in practice the cost of 

the higher memory requirements is typically outweighed by the improved convergence and 

low computational cost.

3.2 Svrg-Ld

If the memory overhead of Saga-Ld is not acceptable, we can use a variant that reduces 

storage requirements, at the cost of higher computational demands. The memory complexity 

for Saga-Ld is high because the approximate gradient gα is updated at each step. This can be 

avoided by updating the approximate gradient every m iterations in a single evaluation, and 

never storing the individual gradients gαi. Concretely, after every m passes through the data, 

we evaluate the gradient on the entire data set, obtaining , where g̃i = ∇log p(xi|θ̃) 

is the current local gradient. g̃ then serves as an approximate gradient until the next global 

evaluation. This yields an update of the form
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(7)

Without adding noise ηt the update sequence in Equation (7) corresponds to the stochastic 

variance reduction gradient descent algorithm [8]. Pseudocode for this procedure is given in 

Algorithm 2.

Algorithm 2

Svrg-Ld

1:

Input: θ̃ = θ0 ∈ ℝd, epoch length m, step sizes 

2: for t = 0 to T − 1 do

3:  if (t mod m = 0) then

4:   θ̃ = θt

5:

   

6:  end if

7:  Uniformly randomly pick a set It from {1, . . . , N} (with replacement) such that |It| = n

8:  Randomly draw ηt ~ N(0, ht)

9:

  

10: end for

11:

Output: Iterates 

While the memory requirements are lower, the computational cost is higher, due to the cost 

of a full update of g̃. Further, convergence may be negatively effected due to the fact that, as 

we move further from θ̃, g̃ will be further from the true gradient. In practice, we found Saga-

Ld to be a more effective algorithm on the datasets considered, so in the interest of space we 

relegate further details about Svrg-Ld to the appendix.

4 Analysis

Our motivation in this paper was to improve the convergence of Sgld, by reducing the 

variance of the gradient estimate. As we saw in Theorem 1, a high variance [||ΔVt||2], 

corresponding to noisy stochastic gradients, leads to a large bound on the MSE of a test 

function. We expand this analysis to show that the algorithms introduced in this paper yield 

a tighter bound.

Theorem 1 required a number of assumptions, given below in [A1]. Discussion of the 

reasonableness of these assumptions is provided in [3].

[A1] We assume the functional ψ that solves the Poisson equation ℒψ = ϕ − ϕ̄ is bounded 

up to 3rd-order derivatives by some function Γ, i.e., || kψ||≤ CkΓpk where  is the kth order 

Dubey et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2017 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



derivative (for k = (0, 1, 2, 3)), and Ck, pk > 0. We also assume that the expectation of Γ on 

{θt} is bounded (supt Γp[θt] < ∞) and that Γ is smooth such that sups∈(0,1) Γp(sθ + (1 − 

s)θ′) ≤ C(Γp(θ) + Γp(θ ′)), ∀θ, θ′, p ≤ max 2pk for some C > 0.

In our analysis of Saga-Ld and Svrg-Ld, we make the assumptions in [A1], and add the 

following further assumptions about the smoothness of our gradients:

[A2] We assume that the functions log p(xi|θ) are Lipschitz smooth with constant L for all i 
∈ [N], i.e. ||∇ log p(xi|θ)− ∇log p(xi|θ′)|| ≤ L||θ − θ′|| for all i ∈ [N] and θ, θ′ ∈ ℝd. We 

assume that (ΔVtψ(θ))2 ≤ C′||∇Ut(θ)−∇U(θ)||2 for some constant C′ > 0 for all θ ∈ ℝd, 

where ψ is the solution to the Poisson equation for our test function. We also assume that ||∇ 
log p(θ)|| ≤ σ and ||∇ log p(xi|θ)|| ≤ σ for some σ and all i ∈ [N] and θ ∈ ℝd.

The Lipschitz smoothness assumption is very common both in the optimization literature 

[11] and when working with Itô diffusions [3]. The bound on (ΔVtψ(θ))2 holds when the 

gradient ||∇ψ|| is bounded.

Loosely, these assumptions encode the idea that the gradients don’t change too quickly, so 

that we limit the errors introduced by incorporating gradients based on previous values of θ. 

With these assumptions, we state the following key results for Saga-Ld and Svrg-Ld, which 

are proved in the supplement.

Theorem 2—Let ht = h for all t ∈ {1, . . . , T }. Under the assumptions [A1],[A2], for a 
smooth test function ϕ, the MSE of Saga-Ld (in Algorithm 1) at time K = hT is bounded, for 
some C > 0 independent of (T, h) in the following manner:

(8)

A similar result can be shown for Svrg-Ld in Algorithm 2:

Theorem 3—Let ht = h for all t ∈ {1, . . . , T }. Under the assumptions [A1],[A2], for a 
smooth test function ϕ, the MSE of Svrg-Ld (in Algorithm 2) at time K = hT is bounded, for 
some C > 0 independent of (T, h) in the following manner:

(9)

The result in Theorem 3 is qualitatively equivalent to that in Theorem 2 when m = ⎣N/n⎦. 

In general, such a choice of m is preferable because, in this case, the overall cost of 

calculation of full gradient in Algorithm 2 becomes insignificant.

In order to assess the theoretical convergence of our proposed algorithm, we compare the 

bounds for Svrg-Ld (Theorem 3) and Saga-Ld (Theorem 2) with those obtained for Sgld 

(Theorem 1. Under the assumptions in this section, it is easy to show that the term T1 in 
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Theorem 1 becomes O(N2σ2/(Tn)). In contrast, both Theorem 2 and 3 show that, due to a 

reduction in variance, Svrg-Ld and Saga-Ld exhibit a much weaker dependence. More 

specifically, this is manifested in the form of the following bound:

Note that this is tighter than the corresponding bound on Sgld. We also note that, similar to 

Sgld, Saga-Ld and Svrg-Ld require h → 0 as T → ∞. In such a scenario, the convergence 

becomes significantly faster relative to Sgld as h → 0.

5 Experiments

We present our empirical results in this section. We focus on applying our stochastic 

gradient method to four different machine learning tasks, carried out on benchmark datasets: 

(i) Bayesian linear regression (ii) Bayesian logistic regression and (iii) Independent 

component analysis (iv) Mixture modeling. We focus on Saga-Ld, since in the applications 

considered, the convergence and computational benefits of Saga-Ld are more beneficial than 

the memory benefits of Svrg-Ld;

In order to reduce the initial computational costs associated with calculating the initial 

average gradient, we use a variant of Algorithm 1 that calculates gα (in line 2 of Algorithm 

1) in an online fashion and reweights the updates accordingly. Note that such a heuristic is 

also commonly used in the implementation of Sag and Saga in the context of optimization 

[14, 5].

In all our experiments, we use a decreasing step size for Sgld as suggested by [15]. In 

particular, we use εt = a(b+t)−γ, where the parameters a, b and γ are chosen for each dataset 

to give the best performance of the algorithm on that particular dataset. For Saga-Ld, due to 

the benefit of variance reduction, we use a simple two phase constant step size selection 

strategy. In each of these phases, a constant step size is chosen such that Saga-Ld gives the 

best performance on the particular dataset. The minibatch size, n, in both Sgld and Saga-Ld 

is held at a constant value of 10 throughout our experiments. All algorithms are initialized to 

the same point and the same sequence of minibatches is pre-generated and used in both 

algorithms.

5.1 Regression

We first demonstrate the performance of our algorithm on Bayesian regression. Formally, we 

are provided with inputs  where xi ∈ ℝd and yi ∈ ℝ. The distribution of the ith 

output yi is given by p(yi|xi) = (β⊤ xi, σe), where p(β) = (0, λ−1I). Due to conjugacy, 

the posterior distribution over β is also normal, and the gradients of the log-likelihood and 

the log-prior are given by ∇β log(P(yi|xi, β)) = −(yi − βT xi)xi and ∇β log(P(β)) = −λβ. We 

ran experiments on 11 standard UCI regression datasets, summarized in Table 1.2 In each 

case, we set the prior precision λ = 1, and we partitioned our dataset into training (70%), 

validation (10%), and test (20%) sets. The validation set is used to select the step size 
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parameters, and we report the mean square error (MSE) evaluated on the test set, using 5-

fold cross-validation.

The average test MSE on a subset of datasets is reported in Figure 1. Due to space 

constraints, we relegate the remaining experimental results to the appendix. As shown in 

Figure 1, Saga-Ld converges much faster than the Sgld method (taking less than one pass 

through the whole dataset in many cases). This performance gain is consistent across all the 

datasets. Furthermore, the step size selection was much simpler for Saga-Ld than Sgld.

5.2 Classification

We next turn our attention to classification, using Bayesian logistic regression. In this case, 

the input is the set  where xi ∈ ℝd, yi ∈ {0, 1}. The distribution of the output 

yi for given sample xi is given by P(yi = 1) = ϕ(βT xi), where p(β) = (0, λ−1I) and ϕ(z) = 

1/(1 + exp(−z)). Here, the gradient of the log-likelihood and the log-prior are given by ∇β 
log(P(yi|xi, β)) = (yi − ϕ(βT xi))xi and ∇β log(P(β)) = −λβ respectively. Again, λ is set to 1 

for all experiments, and the dataset split and parameter selection method is exactly same as 

in our regression experiments. We run experiments on five binary classification datasets in 

the UCI repository, summarized in Table 2, and report the the test set log-likelihood for each 

dataset, using 5-fold cross validation. Figure 2 shows the performance of Sgld and Saga-Ld 

for the classification datasets. As we saw with the regression task, Saga-Ld converges faster 

that Sgld on all the datasets, demonstrating the efficiency of the our algorithm in this setting.

5.3 Bayesian Independent Component Analysis

To evaluate performance under a Bayesian Independent Component Analysis (ICA) model, 

we assume our dataset  is distributed according to

(10)

where W ∈ ℝd×d, , and . The gradient of the log-likelihood 

and the log-prior are  where  for all j ∈ [d] 

and ∇W log(p(W)) = −λW respectively. All other parameters are set as before. We used a 

standard ICA dataset for our experiment3, comprisein 17730 time-points with 122 channels 

from which we extracted the first 10 channels. Further experimental details are similar to 

those for regression and classification. The performance (in terms of test set log likelihood) 

of Sgld and Saga-Ld for the ICA task is shown in Figure 3. As seen in Figure 3, similar to 

the regression and classification tasks, Saga-Ld outperforms Sgld in the ICA task.

5.4 Mixture Model

Finally, we evaluate how well Saga-Ld estimates the true posterior of parameters of mixture 

models. We generated 20,000 data points from a mixture of two Gaussians, given by 

3The dataset can be downloaded from https://www.cis.hut.fi/projects/ica/eegmeg/MEG_data.html.
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, where μ = −5, γ = 20, and σ = 5. We 

estimate the posterior distribution over μ, holding the other variables fixed. The two plots on 

the right of Figure 3 show that we are able to estimate the true posterior correctly.

Discussion—Our experiments provide a very compelling reason to use variance reduction 

techniques for Sgld, complementing the theoretical justification given in Section 4. The 

hypothesized variance reduction is demonstrated in Figure 3, where we compare the 

variances of Sgld and Saga-Ld with respect to the true gradient on regression and 

classification tasks. As we see from all of the experimental results in this section, Saga-Ld 

converges with relatively very few samples compared with Sgld. This is especially important 

in hierarchical Bayesian models where, typically, the size of the model used is proportional 

to the number of observations. Thus, with Saga-Ld, we can achieve better performance with 

very few samples. Another advantage is that, while we require the step size to tend to zero, 

we can use a much simpler schedule than Sgld.

6 Discussion and Future Work

Saga-Ld is a new stochastic Langevin method that obtains improved convergence by 

reducing the variance in the stochastic gradient. An alternative method, Svrg-Ld, can be used 

when memory is at a premium. For both Saga-Ld and Svrg-Ld, we proved a tighter 

convergence bound than the one previously shown for stochastic gradient Langevin 

dynamics. We also showed, on a variety of machine learning tasks, that Saga-Ld converges 

to the true posterior faster than Sgld, suggesting the widespread use of Saga-Ld in place of 

Sgld.

We note that, unlike other stochastic Langevin methods, our sampler is non-Markovian. 

Since our convergence guarantees are based on bounding the error relative to the full 

Langevin diffusion rather than on properties of a Markov chain, this does not impact the 

validity of our sampler.

While we showed the efficacy of using our proposed variance reduction technique to Sgld, 

our proposed strategy is very generic enough and can also be applied to other gradient-based 

MCMC techniques such as [1, 2, 9, 6, 12]. We leave this as future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance comparison of Sgld and Saga-Ld on a regression task. The x-axis and yaxis 

represent the number of passes through the entire data and the average test MSE, 

respectively. Additional experiments are provided in the appendix.
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Figure 2. 
Comparison of performance of Sgld and Saga-Ld for Bayesian logistic regression. The x-

axes and y-axes represent the number of effective passes through the dataset and the test log-

likelihood, respectively.
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Figure 3. 
The left plot shows the performance of Sgld and Saga-Ld for the ICA task. The next two 

plots show the variance of Sgld and Saga-Ld for regression and classification. The rightmost 

two plot shows true and estimated posteriors using Saga-Ld for the mixture modeling task
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