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Abstract

Synthetic microbial consortia are conglomerations of multiple strains of genetically engineered 

microbes programmed to cooperatively bring about population-level phenotypes. By coordinating 

their activity, the constituent strains can display emergent behaviors that are difficult to engineer 

into isogenic populations. To do so, strains are engineered to communicate with one another 

through intercellular signaling pathways. As a result, the regulatory networks that control gene 

transcription throughout the population are sensitive to the extracellular concentration of the 

signaling molecules, and hence the relative densities of constituent strains. Here, we use 

computational modeling to examine how the behavior of a synthetic microbial consortium results 

from the interplay between the population dynamics governed by cell growth and the internal 

transcriptional dynamics governed by cell-to-cell signaling. Specifically, we examine a synthetic 

microbial consortium in which two strains each produce signals that down-regulate transcription in 

the other. Within a single strain this regulatory topology is called a “co-repressive toggle switch” 

and can lead to bistability. We find that in a two-strain synthetic microbial consortium the 

existence and stability of different states depends on the population-level dynamics of the 

interacting strains. As the two strains passively compete for space within the colony, their relative 

fractions can fluctuate and thus alter the strengths of intercellular signals. These fluctuations can 

drive the consortium to alternative equilibria. Additionally, if the growth rates of the strains 

depend on their transcriptional states, an additional feedback loop is created that can generate 

relaxation oscillations. These findings demonstrate that the dynamics of microbial consortia 

cannot be predicted from their regulatory topologies alone, but also is determined by interactions 

between the strains.
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1 Introduction

A major goal of synthetic biology is the construction of genetic circuits that endow cells and 

organisms with novel functions. Synthetic gene circuits provide the basis for technologies 

such as gene therapy [1], biofuel and biopharmaceutical production [2], and have a range of 

environmental applications [3]. In addition, they allow for unprecedented control of 

biological systems thus opening new avenues in biological research [4]. The majority of 

currently available synthetic gene circuits have been built within a single strain and operate 

at the single-cell level. However, to realize the full potential of synthetic biology we need to 

be able to design consortia of interacting cells and organisms. Cooperating cells can 

specialize and assume different responsibilities within a consortium [5]. This allows 

bacterial consortia to be more efficient, and have a wider range of functions than 

monocultures. In such consortia, the signals within and between bacterial populations shape 

the response of genetic networks within cells. The activity of the population, in turn, arises 

from the coordinated activity of individuals [6, 7]. Consortia can thus perform computations 

and make decisions that are far more sophisticated than those of a single bacterium [8, 9].

To understand the behaviors of naturally occurring microbial consortia and to engineer 

synthetic consortia for practical applications, it is necessary to develop mathematical and 

computational models that describe their behavior. Such multi-scale models must 

simultaneously describe transcriptional dynamics within cells, interactions between cells due 

to cell-to-cell communication, and population-level dynamics that arise as different cell 

types compete for limited resources [10, 11]. To further complicate matters, each of these 

levels of organization is linked to the others. Transcriptional dynamics within single cells are 

affected by intercellular signaling molecules. The concentrations of signaling molecules, in 

turn, are determined by gene network activity and total strain density. Strain density is also 

affected by transcriptional dynamics, as protein production can affect the growth rate of cells 

[12, 13, 14]. Therefore, to understand and predict the dynamics of microbial consortia, one 

must consider the dynamic interplay of multiple levels of organization.

Here we introduce a class of models describing the dynamics of synthetic microbial 

consortia in which two strains transcriptionally repress each other. We first introduce a 

deterministic model to describe the average behavior of cells within each population, their 

global interactions, and the resulting emergent dynamics. Furthermore, we show how to 

extend this model to include stochastic effects due to small population size and small 

molecular counts within each cell. This stochastic model has the deterministic model as its 

mean field approximation while it is able to capture fluctuations within cells and across 

strains as well as strain extinctions.

The co-repressive microbial consortium is a generalization of the well-known synthetic 

toggle switch that operates in a single bacterium [15] (See Fig. 1a). In single cells, the co-

repressive toggle switch can exhibit transcriptional bistability with two mutually exclusive 

gene expression states: 1) expression of tetR and repression of lacI; or 2) expression of lacI 
and repression of tetR. The analogous synthetic co-repressive microbial consortium, shown 

in Fig. 1b, might be constructed with two strains using two orthogonal quorum sensing 

systems (here cinI/R and rhlI/R) [16, 17], and two transcriptional inverters [18]. When one 
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strain is active, it produces an intercellular signal that transcriptionally represses the 

opposing strain. Unlike its bistable single strain counterpart, the co-repressive consortium 

may exhibit more complicated behaviors. In particular, we show that the co-repressive 

consortium can oscillate if the growth rates of the strains depend on their transcriptional 

state, which can occur when heterologous protein is produced [12, 13].

While we only consider the dynamics of co-repressive microbial consortia, our modeling 

approach can be extended to any consortia of fixed size when spatial effects are negligible. 

Both our deterministic and stochastic models can be easily modified to describe different 

gene circuits and cell-to-cell interactions. We thus provide a general framework for 

modeling and analyzing the interplay between population and gene circuit dynamics that 

drives the behavior of microbial consortia.

2 The dynamics of the two-strain co-repressive consortium

We first consider the deterministic dynamics of a two-strain consortium growing in a small, 

well-mixed turbidostat, such as a microfluidic trap [19]. Since such traps have fixed volume, 

we assume that the total population size and cellular volume of the consortium remain 

constant. To maintain a fixed population size whenever a cell divides, we assume that a 

randomly chosen cell from the consortium exits the chamber. For simplicity, we assume that 

all cells in the consortium have equal size. The fraction of strain 1 within the chamber is 

then defined by the ratio r = V1/V = n1/N where V1 is the volume occupied by strain 1, V is 

the total volume, n1 is the number of cells in strain 1, and N is the total number of cells. 

Note that the ratio r is treated as a real number that can vary between 0 and 1. Moreover, 

denoting the volume occupied by strain 2 by V2 and the number of cells in strain 2 by n2, we 

have V1 + V2 = V and n1 + n2 = N. Therefore, the fraction of strain 2 in the chamber is given 

by 1 − r = V2/V = n2/N.

We model the dynamics of a single gene within each strain. We assume that the production 

of an enzyme that creates a signaling molecule is repressed by the presence of the signaling 

molecule produced by the other strain. Further, the concentration of a signaling molecule is 

assumed to be spatially homogeneous and directly proportional to the total concentration of 

its enzyme within the culture (i.e., the product of the average intracellular concentration of 

the enzyme and the number of cells containing it). Therefore the time evolution of the 

average concentrations x1 and x2 of the corresponding enzymes can be described by:

(1)

where

(2)
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Here α is the maximal production rate of the proteins, θ is a scaling parameter that 

determines half-maximal repression, and β1 and β2 are the growth rates of strains 1 and 2, 

respectively. The proteins are assumed to be stable and decrease in concentration only 

through cellular growth and division at a rate proportional to the growth rates. It is assumed 

that the volume is measured in units of single cells so that the total cellular volume is V = N. 
Moreover, we assume that there is a linear relation between the expression of the signaling 

molecule and protein within a single cell. Therefore protein production in strain 2 is 

repressed in proportion to the total protein signal V1x1 = rVx1 = rNx1 from strain 1. 

Similarly, the protein production in strain 1 is repressed by the total protein signal (1 − r)Nx2 

from strain 2. Note that this approximation for the amount of signaling molecule assumes 

that: 1) the transient dynamics of the signaling molecule are fast with respect to changes in 

the corresponding protein concentration xi, and 2) the quasi-equilibrium concentration of the 

signaling molecule is linearly proportional to the amount of enzyme making it. The first 

approximation is generally valid provided that the growth chamber is small enough and that 

diffusion across cell walls is fast. The second approximation is valid provided that the 

presence of the signaling molecule does affect the enzyme's ability to make it.

Next, we describe a deterministic model of the dynamics of the population ratio r assuming 

that the number of cells within each strain can be described by a birth–death process. A new 

cell is born at cell division, while a “death” occurs when a cell is removed from the chamber. 

Recall that n1 and n2 are the number of cells in strains 1 and 2, respectively, so that n1 + n2 = 

N is constant. Left on their own, the two strains would grow exponentially with rates β1n1 

and β2n2, respectively. To keep the total population size constant, we set the total rate at 

which cells are removed from the population to β1n1 + β2n2. If all cells are equally likely to 

be removed, the probability that a cell is removed from strain i is ni/N , giving a death rate of 

. The deterministic birth-death process of the strain 1 can then be described 

by the differential equation

(3)

Substituting n1 = rN and n2 = (1 − r)N into (3), we obtain the logistic equation

(4)

for the ratio r of the strain 1 in the chamber.

2.1 Bistability in the absence of metabolic loading

There are many reasons why protein production might influence the growth rate of a cell. 

For instance, heterologous protein expression may slow growth due to metabolic loading 

[12, 13], or transcription of a suicide gene may be linked to one of the two states [20, 21]. 
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For simplicity, we will refer to these phenomena collectively as “metabolic loading” – a 

burden imposed by the production of heterologous protein.

In the absence of metabolic loading, the growth rates of the two strains are not affected by 

the production of the enzymes and hence will remain constant. If the two strains grow at the 

same rate β1 = β2, Eq. (4) implies that the ratio r will remain fixed at its initial value. Then 

we can treat r as a parameter in Eq. (1) and the equilibria  and  are given by

(5)

Indeed, the equilibria are the solutions of , where hi = αfi/βi. Since h1 and h2 

are monotonically decreasing sigmoidal functions, h1 ∘ h2 is a monotonically increasing 

sigmoidal function and it intersects the diagonal in 1, 2, or 3 points which correspond to the 

equilibria.

Fig. 2a shows a typical example of how  changes with the ratio r. If the ratio r is high or 

low, there exists a unique equilibrium (solid line) and one of the strains dominates the trap; 

the dominant strain will be expressed and the opposite strain repressed. For mid values of r, 
the system is bistable with two stable equilibria (solid lines) and an unstable equilibrium in 

the middle (dashed line). This region of bistability is bounded by bifurcations at which two 

of the equilibria disappear in a saddle–node collision. That is, the consortium behaves like a 

toggle switch for a range of strain ratios. Unlike switches that operate on the level of single 

cells, bistability in the present case depends on the ratio of the strains in the trap.

Fig. 2b shows simulations of Eq. (1) with equal growth rates β1 = β2 for two different sets of 

initial conditions where the ratio r is chosen from the bistable domain. If the initial 

conditions fall below the gray dashed separatrix (given by the stable manifold of the unstable 

equilibrium denoted by ), the system approaches the equilibrium denoted by . The 

simulations starting above the separatrix approach the other stable equilibrium denoted by . 

Note that the slope of the separatrix is equal to 1 for ratio r = 0.5, and decreases with 

decreasing r.

When the difference β1 − β2 between the growth rates of the two strains is small, r changes 

slowly according to Eq. (4). Let us assume that

(6)

where ε reflects the relative difference between the growth rates of the two strains. We only 

consider ε ≥ 0, since if ε < 0 the roles of strains 1 and 2 can be reversed. When ε is small, 

Eqs. (1), (2), and (4) form a slow-fast system. Thus the concentrations x1 and x2 track a 

stable equilibrium until it disappears in a sadddle-node bifurcation [22] (see Fig. 2a). Once 
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an equilibrium disappears, the system jumps to the other stable equilibrium, and a switch in 

expression levels occurs. For example, as shown in Fig. 3b,c, when ε > 0 and r is initially 

close to 0, the concentration x1 initially approaches the lower equilibrium value (repressed 

state) and stays close to it as r increases slowly due to the larger growth rate of the first 

population. After the ratio r passes through the critical value at which the lower equilibrium 

disappears, x1 switches to the higher equilibrium (expressed state). Fig. 3b,c show such 

transitions for small and intermediate differences in growth rates. Notice that the transition 

occurs earlier in time as ε increases. On the other hand when the growth rates are equal, no 

transition occurs as the ratio r remains constant; see Fig. 3a. While the dynamics for 

different values of ε > 0 are similar, the slow-fast approach is valid only when ε is small.

When the two strains have identical growth rates, the two-strain microbial consortium 

behaves like a single-strain toggle switch: gene expression in the two strains is bistable for a 

range of population ratios r. However, if one strain has a larger growth rate, the opposite 

strain eventually disappears from the trap. Even before it is driven to extinction, the less 

numerous strain becomes fully repressed.

2.2 Impact of metabolic loading on population toggle dynamics

We next investigate the dynamics of the co-repressive consortium in the presence of 

metabolic loading, i.e., when the growth rates of the two strains depend on their 

transcriptional states. If a balance of population sizes is necessary to maintain a particular 

behavior then any change in the growth rates can affect the dynamics of the consortium. To 

gain insight as to how metabolic loading in the two-strain toggle consortium can lead to 

relaxation oscillations, assume that the cells with higher expression rate experience an 

increased metabolic burden, and thus grow slower. This, in turn, allows cells in the repressed 

state to increase their relative population size. Once these cells dominate the trap, they are no 

longer repressed. As they reach high expression levels, they experience higher metabolic 

load and the process repeats.

To demonstrate such relaxation oscillations in the co-repressive consortium, we assume that 

the growth rates of both strains depend on the rate of expression of each gene, f1 and f2 

defined in Eq. (2). In particular Eq. (6) is replaced by

(7)

where the parameter 0 < ρ < 1 determines the impact of the metabolic load on the growth 

rates, such that ρ ≈ 0 corresponds to a low and ρ ≈ 1 corresponds to a high impact. The 

growth rate of a strain is therefore largest when gene expression is at its minimum. Here the 

parameter e determines the difference between the maximal growth rates of the two strains.

Fig. 4 shows solutions of Eqs. (1), (4), and (7) for different values of the parameters ε and ρ. 

When ε = 0, the system exhibits oscillations for all values of ρ > 0, see Fig. 4a-c (recall that 

for ρ = 0 case, we have the bistable system shown in Fig. 2a). The frequency and amplitude 
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of these oscillations increase with the impact of the metabolic loading ρ. Fig. 5a–c show the 

bifurcation diagrams while using ρ as the bifurcation parameter for the case ε = 0. In Fig. 5a, 

three unstable equilibria are shown as a function of ρ. Fig. 5b shows the value of the 

population ratio r for these unstable equilibria. Fig. 5c shows the amplitude of the 

oscillations as a function of ρ.

Fig. 4d–f shows numerical simulations of (1), (4), and (7) for different ρ values where ε = 

0.25 is kept fixed. We observe that when ε > 0, oscillations occur only when metabolic 

loading is sufficiently large. The bifurcation diagrams for the case ε = 0.25 are shown in Fig. 

5d–f. When ρ is close to zero the equilibrium r* = 1 is stable. An increased metabolic load, 

ρ, leads to the appearance of a stable equilibrium for which 0 < r* < 1 (red line in Fig. 5d,e) 

that emerges via a transcritical bifurcation indicated by × in Fig. 5d,e. This equilibrium is 

stable over a small range of the parameter ρ, then undergoes a supercritical Hopf bifurcation 

(marked by *) leading to stable oscillations. Note that if we continue the equilibrium shown 

by the red branch to lower ρ values, the corresponding population ratio r* is larger than 1 

and physically not meaningful. Therefore, this branch section is not shown here. The 

amplitude of the periodic orbit is shown in Fig. 5f. The middle equilibrium (red branch) is 

also included in Fig. 5f as a steady state with zero amplitude. The amplitude of the 

oscillations arising from the Hopf bifurcation grows explosively over a small parameter 

range after the bifurcation. We conjecture that this is due to a canard explosion [23].

3 Small population effects

In smaller traps, or confined geometries, the number of cells may be sufficiently small for 

stochastic fluctuations in population size and gene expression to become appreciable. We 

therefore describe a full stochastic model of the dynamics of intracellular proteins, as well as 

the birth and removal of cells in the two strains. We work under the same assumptions as in 

the previous section: the number of cells, n1 + n2 = N, in the trap is fixed, and is maintained 

by following each birth by a removal of a randomly chosen cell. We again neglect spatial 

effects.

We model protein dynamics separately in each cell. Let xi,j be the number of proteins in cell 

j of strain i, so that i ∈ {1,2}, and j ∈ {1, 2, ⋯, ni}. We therefore have a set of N birth 

processes modeling protein production

(8)

The rate of protein production in each cell in strain i is αfi, where
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(9)

cf. (2). Note that we do not model protein degradation explicitly, as we assume that proteins 

are relatively stable. Approximately fixed concentrations are maintained by dilution through 

division, as explained further below.

We separately model the division (birth) and removal (death) of cells from the trap. The rates 

of these processes are as described in the derivation of Eq. (3). The number of cells n1 and 

n2 in each strain is governed by the coupled birth and death processes

(10)

The two population sizes therefore follow Moran dynamics [24, 25]: whenever a cell 

divides, another randomly chosen cell is removed.

We use Gillespie algorithm to sample trajectories from the processes described by Eqs. (8) 

and (10). At each step of the Gillespie algorithm, the possible events and their probabilities 

are given by these two equations. There are N + 2 possible events that can occur in each step 

of the algorithm: a birth (division) in either strain, accompanied by the removal of a random 

cell, and a birth (formation) of a protein in one of the N cells. The rate at which a division 

occurs in strain i is given by βini where βi are given by Eq. (7), i.e.,

(11)

where the protein production rates, f1 and f2, are defined in Eq. (9).

When a cell divides, its cellular material, including all proteins, is divided between the two 

daughter cells. Let the index pair (i, j) correspond to cell j in strain i, so that i ∈ {1, 2} and j 
∈ {1, 2, …, ni}. If an event corresponds to division in strain 1, we pick a random cell in that 

strain with index (1, b), to be divided into two. If the cell to be removed comes from the 

same strain, say it has index (1, d), we replace cell (1, d) with a new cell, and divide the 

proteins from cell (1, b) into two groups by sampling from a binomial distribution. One of 

the two groups is assigned to cell (1, b), while the other is transferred to the new cell with 
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index (1, d). In this case, the cell counts n1 and n2 remain constant. If one of the cells in the 

strain 2 is chosen to be removed, say cell (2, d), we add an additional cell with index (1, n1 

+ 1) to strain 1. We again partition the proteins from the dividing cell (1, b) between the 

mother and daughter cell. We then remove the cell (2, d) from strain 2 and renumber the 

remaining cells in strain 2 to close the resulting gap, that is x2,j ← x2,j+1, for j = d, d + 1, …, 

n2. In this second case, n1 increases by 1 and n2 decreases by 1. The algorithm is equivalent 

if a cell divides in strain 2. Also a modeling assumption in this algorithm is that the birth and 

removal of cells happen concurrently, not allowing for the cell that is just born to be 

removed.

Next we explore the effects of stochasticity on the dynamics of the two-strain toggle 

consortia.

3.1 Stochastic dynamics in the absence of metabolic loading

With no metabolic loading, i.e., when ρ = 0, the growth rates of the two strains are constant. 

The slower growing strain is more likely to disappear from the trap. However, even if the 

two growth rates are equal, random fluctuations eventually lead to the extinction of one 

strain.

When the two strains of bacteria have equal growth rates, the probability of a strain 

dominating the whole population is equal to the initial proportion of that strain in the trap 

[25]. For example, the probability that the strain 1 will take over is n1(0)/N. Fig. 6 shows 

simulations of the stochastic model described by Eqs. (8)-(11) with ρ = 0 and when the two 

strains have equal growth rates, i.e., ε = 0, for different population sizes N. In Fig. 6a,b, the 

blue and green curves show the mean number of proteins in strains 1 and 2, respectively. The 

gray curves represent the solutions of corresponding deterministic system described by Eqs. 

(1) and (4) with the same parameters. When the population size is smaller the effects of 

random fluctuations are more pronounced. This can be observed when comparing Fig. 6a 

and Fig. 6b. In Fig. 6a, where the total cell number N is larger, the protein concentrations x1 

and x2 follow the deterministic model (shown by the gray curves) fairly close so that x1 

approaches the repressed state and x2 approaches the expressed state. The ratio r oscillates 

around the initial value of r = 0.4. In Fig. 6b, initially the genes in strain 2 are expressed 

while the genes in strain 1 are repressed. However, as the total cell population is smaller, the 

fluctuations in the population ratio r are larger and the likelihood of a switch taking place in 

the gene expression states is bigger. Therefore, we observe more switches between the gene 

expression states in Fig. 6b. This behavior cannot be predicted by the deterministic model. In 

larger cell populations, the fluctuations in the population ratio are not strong enough and a 

swicth in the gene expression states is less likely to occur. Furthermore, in a stochastic 

model random fluctuations always drive one population to extinction. However, in the 

deterministic model when growth rates are equal, no extinctions occur as the ratio remains 

constant.

Fig. 6c,d show the time evolution of the population ratio r obtained by running 50 

simulations of the stochastic model from Eqs. (8)-(11). For N = 200, the variability in the 

population ratio is observed to be smaller than that observed in for N = 40. In the bottom 

plots in Fig. 6c,d, the standard deviation of the population ratio (σr) and the mean (μr) are 
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shown versus time. In the case that the total population size is smaller (panel d), the variance 

of population ratio r grows faster with time.

When the two strains have different growth rates, the likelihood that the strain with a lower 

growth rate goes extinct increases. Fig. 7 shows the simulations of the stochastic model from 

Eqs. (8)-(11) for cases ε = 0.1 and ε = 0.25 each with population sizes N = 200 and N = 40. 

Simulations of the deterministic model using the same parameters are also shown as gray 

curves. As predicted by the deterministic model, starting from 0.1, the population ratio r 
increases and crossing a critical value a switch happens in the gene expression states. 

However, the time at which this switch occurs depends on the random fluctuations in the 

population ratio and could be either before or after the time predicted by the deterministic 

model. It can also be the case that strain 1 goes extinct (r becomes 0) and no switches occur. 

When ε is larger (Fig. 7c,d), the switch occurs faster and the stochastic dynamics are closer 

to those of the deterministic model.

3.2 The impact of metabolic loading on stochastic growth dynamics

We next simulate the stochastic model given by Eqs. (8)-(11) taking into account the effect 

of metabolic loading on the growth rates of the bacterial strains by setting 0 < ρ < 1 in Eq. 

(11). As Fig. 8 shows, the oscillations occur when the metabolic load is taken into account. 

However, when the total population size is small, the likelihood that one of the strains goes 

extinct increases. Therefore, as shown in Fig. 8(b), the oscillations can stop early due to 

extinction.

Next we ask whether metabolic loading affects the extinction time. Our deterministic 

analysis showed that metabolic loading increases the frequency of the oscillations in the 

population ratio r. Therefore, for smaller populations, one expects that the chance of 

extinction increases as the population ratio gets close to 0 or 1 more frequently. To test this 

hypothesis numerically, for each of the cases ρ = 0 (no metabolic loading), ρ = 0.5, and ρ = 

0.9, we run 500 simulations of the stochastic model from Eqs. (8)-(11). The histograms of 

the extinction times are shown in Fig. 9. Note that the extinction time is determined when 

either one of the populations goes extinct, i.e., the time at which r = 0 or r = 1. We see that 

the distribution of the extinction times gets narrower as the metabolic load increases. For 

higher metabolic loads, the change in the mean and variance of the distribution is more 

pronounced.

4 Discussion

We have shown that population growth can significantly alter the dynamics of synthetic 

microbial consortia. Differential growth between the strains which constitute the consortium, 

whether due to random fluctuations or changes in growth rate due to protein production, can 

lead to an imbalance in population sizes and alter the strength of signals between cells. 

Further, when the growth rates of cells are directly affected by protein production, “hidden” 

feedback loops arise that can change the dynamical landscape of the consortium. For 

instance, the regulatory structure of the two-strain co-repressive consortium forms a positive 

feedback loop. Positive feedback loops generally do not permit oscillatory solutions. 

However, we showed that growth rate changes due to metabolic load can create a hidden 
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negative feedback loop that acts on a slow time scale. Therefore, the entire system has a fast 

positive feedback loop (due to signaling) and a slow negative feedback loop (due to 

metabolic loading) – the hallmark of relaxation oscillators [26]. A two-strain toggle 

consortium where the growth rates of the strains are affected by the metabolic load on the 

cells can therefore exhibit relation oscillations, a behavior that cannot be observed in the 

single-strain toggle switch. It is also shown that under the circumstances where the strains 

have an identical growth rate not affected by metabolic loading, the consortium shows 

bistability similar to the single-strain counterpart.

The perturbations due to the random partitioning of proteins at the time of cell division can 

have a strong effect on internal cell dynamics [27]. With metabolic loading internal and 

external fluctuations are even more strongly coupled. Variations in the ratio between the 

strains can change the expression within each cell. On the other hand, internal fluctuations 

within cells can affect growth, and thus the ratio between strains. Our model captures this 

interaction of fluctuations across scales, and can be extended to describe more details of 

local and global processes, or different dynamical behaviors.

In particular, our analysis could be extended to include spatial effects. Such effects will be 

most important for consortia that are not well-mixed or are large enough to limit intercellular 

signaling. As strains grow and compete for space within the colony, their spatial 

arrangement within the colony will change in time. Therefore, the regulatory “topology” of 

such a system will depend on both time and space, significantly complicating resulting 

dynamics. Any model that accurately recapitulates such a situation must include the internal 

dynamics of proteins within cells, the spatiotemporal dynamics of intercellular signals, the 

growth rate dynamics of the strains, and the time-dependent rearrangement of boundaries 

between cell types.
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Figure 1. 
Single- and two-strain toggle switch. (a) Gene circuit diagram of a single cell co-repressive 

toggle switch [15]. (b) Proposed synthetic microbial consortium with a co-repressive 

network. Each strain contains a transcriptional inverter (mediated by LacI) and an enzyme 

that creates a quorum sensing molecule. Repression occurs when the quorum sensing 

molecule from one strain diffuses into the other strain, up-regulating the target 

transcriptional inverter (green dashed arrows). That inverter down-regulates production of 

the second, orthogonal quorum sensing molecule.
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Figure 2. 

Two-strain population toggle with equal growth rates. (a) The equilibrium  as a function of 

population ratio r. The dashed and solid lines correspond to unstable and stable equilibria, 

respectively. (b) Two trajectories of Eq. (1) approaching one of the two stable equilibria 

marked by ( ) and ( ) based on the initial conditions. The third, unstable equilibrium is 

denoted by ( ). The gray dashed line shows the separatrix between the two basins of 

attraction of the stable equilibria. The parameters are chosen as β1 = β2 = 0.023 min−1 

corresponding to E. coli's cell cycle of approximately 30 minutes, α = 10 min−1, θ = 500, N 
= 200, and n = 2. The simulations are carried out for constant population ratio r = 0.4 and 

initial conditions (x1(0), x2(0)) = (100, 200) proteins per cell and (x1(0), x2(0)) = (300, 100) 

proteins per cell.
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Figure 3. 
Two-strain population toggle with different growth rates. Simulations of Eqs. (1), (4), and 

(6) with β0 = 0.023 min−1 and different ε values as indicated. Other parameters are the same 

as in Fig. 2. Initial protein concentrations are (x1(0), x2(0)) = (100, 200) proteins per cell and 

initial population ratio is r(0) = 0.1.
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Figure 4. 
Metabolic loading leading to relaxation oscillations. Simulations of Eqs. (1),(4), and (7) for 

different values of ε and ρ as indicated. Parameters are β0 = 0.023 min−1, α = 10 min−1, θ = 

500, N = 200, and n = 2. Initial conditions are (x1(0), x2(0)) = (100, 200) proteins per cell 

and r(0) = 0.4.
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Figure 5. 
Bifurcation diagrams for the two-strain toggle under metabolic load. In panels (a,b,d,e), 

solid and dashed lines denote stable and unstable equilibria, respectively. In panels (d,e,f), 
the markers × and * indicate transcritical and Hopf bifurcations, respectively. The solid 

magenta line in panels (c,f) shows the amplitude of the periodic solution. In panel (f) the 

periodic solution emerges from a Hopf bifurcation. Parameters are the same as in Fig. 4.
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Figure 6. 
Stochasticity in the dynamics of the two-strain toggle consortium. (a,b) Simulations of Eqs. 

(8)-(11) with no metabolic loading (ρ = 0) and equal growth rates (ε = 0) for different 

population sizes as indicated. The blue and green curves show the mean number of proteins 

in strains 1 and 2, respectively. The red curve shows the population ratio. Simulations of the 

deterministic system from Eqs. (1) and (4) are also shown using gray curves. Parameters are 

the same as in Fig. 4. Initial protein counts are x1,i(0) = 100, i = 1, …, n1, x2,j(0) = 200, j = 

1, …, n2, and initial ratio of strain 1 is r(0) = 0.4. (c,d) Different stochastic simulations of 

the population ratio corresponding to panels (a,b), respectively, as well as the mean (μr) and 

the standard deviation (σr).
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Figure 7. 
Simulations of Eqs. (8)-(11) with unequal growth rates of the strains and no metabolic 

loading (ρ = 0) with different ε and N values as indicated. The gray curves show the 

corresponding simulations of the deterministic model. Parameters are the same as in Fig. 4. 

Initial conditions are x1,i(0) = 100 proteins, i = 1 …, n1, x2,j(0) = 200 proteins, j = 1, …, n2, 

and initial ratio of strain 1 is r(0) = 0.1.
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Figure 8. 
Effects of the metabolic load on the stochastic dynamics of the two-strain toggle. 

Simulations of Eqs. (8)-(11) with metabolic loading ρ = 0.5 and ε = 0 for different 

populations sizes as indicated. The gray curves show the simulations of the deterministic 

model. Parameters are the same as in Fig. 4. Initial conditions are x1,i(0) = 100 proteins, i = 

1, …, n1, x2,j(0) = 200 proteins, j = 1, …, n2, and initial ratio of strain 1 is r(0) = 0.4.
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Figure 9. 
Effects of the metabolic load on the extinction times of the two-strain consortium. 

Normalized histograms of the extinction times for different values of ρ obtained from 500 

simulations of the stochastic model from Eqs. (8)-(11) with N = 40 and ε = 0. Parameters are 

the same as in Fig. 4. Initial conditions are x1,i(0) = 100 proteins, i = 1, …, n1, x2,j(0) = 200 

proteins, j = 1, …, n2, and initial population ratio is r(0) = 0.5.
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