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Abstract

Slips and falls represent a serious public safety concern in older adults, with the segment of the 

United States population over the age of 65 accounting for about three quarters of all fall related 

deaths. The majority of falls in older adults are due to trips and slips. The objective of this study 

was to investigate how age affects arm reactions generated in response to unexpected slips. Thirty-

three participants divided into two age groups (16 young, 17 old) participated in this study. 

Participants were exposed to two conditions: known dry walking (baseline) and an unexpected slip 

initiated when stepping onto a glycerol-contaminated floor. The upper extremity parameters of 

interest included the timing and amplitude of the shoulder flexion moment generated in response 

to the slip as well as the resulting angular kinematics (trajectories). The analysis of the kinetic data 

revealed a delayed shoulder flexion reaction to slips in older adults compared to their young 

counterparts, as well as a greater flexion moment magnitude. Knowledge of such upper body 

reaction mechanisms to unexpected slips may help to improve balance recovery training in older 

adults, as well as aid in the implementation of environmental modifications, e.g. handrails, to 

reduce falls-related injuries.
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Introduction

Falls are a serious concern in older adults, with the segment of the United States population 

over the age of 65 years contributing to over 80% of all fall related deaths (Centers for 

Disease Control, 2014). Within this older population, fall-related injuries account for about 

$19 billion in annual medical costs (Hanley et al., 2011). Falls are also a hazard in 

occupational settings. More specifically, in 2014, the Bureau of Labor Statistics estimated 
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that approximately 50% of the total workplace injuries for the over 65 years age group are 

due to accidental environment related falls, such as trips and slips (Bureau of Labor 

Statistics, 2014). Falls incidence in the workplace will continue to rise as the labor force 

ages, with 25% of the workers predicted to be over the age of 55 years in 2022 compared to 

nearly 12% in 1992 (Toossi, 2013).

Upper limb fractures are among the most common fall-related fractures in older adults, with 

nearly 90% of humeral fractures being caused by falling, and the incidence of fractures 

continuously increasing over 45 years old (Kim et al., 2012). This increase in fracture rate is 

likely due to two factors (1) reduced bone density in older adults, and (2) fundamental 

differences in the way arms are used when balance is perturbed, leading to more injurious 

falls in older adults. For example, a shorter body braking time, defined as the period between 

contacting the ground and stopping motion, which leads to increased peak contact forces 

when contacting the ground has been reported in older adults (Kim and Ashton-Miller, 

2003).

The role of upper extremities in balance recovery during perturbed stance or perturbed gait 

is important to understand for two main reasons: (1) this information is needed to understand 

and to reduce the increased incidence of upper extremity fractures in older adults, and (2) 

identify potential fundamental differences in the way arms are used in response to slips and 

trips between young and older adults. The following three potential non mutually-exclusive 

goals of arm responses have been hypothesized in the literature: (1) reaching for an external 

support, such as a hand rail (King et al., 2009; King et al., 2011, McIlroy and Maki, 1995), 

(2) contributing to balance recovery by moving the arms to counteract the effect of the 

perturbation during standing (Allum et al., 2002; Hof, 2007; Maki and McIlroy, 1997; Pozzo 

et al., 2001) or walking, e.g. moving the arms forward and up to counteract a backward slip 

during walking (Misiaszek, 2003; Oates et al., 2005; Pijnappels et al., 2010; Roos et al., 

2008; Tang and Woollacott, 1998) and (3) preparing for impact with the ground as a 

protective measure (Allum et al., 2002; Hsiao and Robinovitch, 1998; McIlroy and Maki, 

1995; O’Neill et al., 1994; Roos et al., 2008). Arm responses and their contribution to a 

postural strategy may be modulated by the nature of the perturbation, e.g. direction and 

severity, and age. More specifically, prior studies have determined that older adults tend to 

show delayed and smaller magnitude reactions than young adults (Allum et al., 2002; Tang 

and Woollacott, 1998). Additionally, the two age groups may exhibit arm movements in 

different directions when exposed to specific types of base of support perturbations such as 

toes-up rotations during standing (Allum et al., 2002), with the young participants moving 

their arms in the opposite direction of the platform tilt, and the older participants moving 

their arms in the same direction as the platform. Another study by Roos et al. (2008) has 

specifically shown age related differences in arm response to trips, with younger adults 

using arm elevation presumably to slow trunk angular momentum, and older adults reaching 

anteriorly for support, suggesting older participants are preparing for impact with the 

ground.

The specific triggering mechanism of arm responses is also a subject of debate. Specifically, 

cues affecting both the upper and lower extremities, e.g. vestibular cues or external cues, 

would cause arm and leg responses to occur simultaneously, but postural cues due to leg 

Merrill et al. Page 2

J Biomech. Author manuscript; available in PMC 2018 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reactions would cause the arm reactions to occur after the leg reactions. For example, in 

studies where perturbations were triggered by treadmill deceleration, waist-jolt application, 

and a simulated slip on rollers, shoulder muscles activated at about the same time as leg 

muscles (Dietz et al., 2001; Marigold et al., 2003; Misiaszek, 2003). Another contrasting 

study found that shoulder muscle activation onsets were noticeably later than leg reactions in 

response to base of support translations during stance (Romick-Allen and Schultz, 1988), i.e 

a leg-to-arm postural strategy was used.

The objective of this study is two-fold, as follows:

1. To determine the impact of age on arm responses to unexpected realistic slips. 

More specifically, the magnitude and timing of shoulder reactive moments and 

angles will be the primary outcome variables. We hypothesize that older adults 

will exhibit a delayed response compared to their younger counterparts.

2. To determine if these responses are modulated by the severity of the slips within 

the younger and older age groups. We hypothesis that arm responses to 

unexpected slips will vary with the severity of the slip.

Methods

Thirty three participants (N=33), still employed and holding full-time jobs, participated in 

this study, which was approved by the University of Pittsburgh Institutional Review Board. 

Written informed consent was obtained prior to any screening and experimental procedures. 

Two age groups were considered: (1) young adults including 16 participants (7 female) aged 

20 to 31 years, and (2) older adults including 17 participants (10 female) aged 50 to 65 years 

(Table 1). While the older adult group included in this study is younger than typical older 

adult groups considered in geriatric research, the age groups of interest in this study 

represent older and young adults that are in the labor force. Participants were subjected to a 

thorough screening clinical exam and vestibular testing performed by a neurologist expert in 

vestibular and balance disorders. Exclusion criteria included clinically significant histories 

or neurological, orthopedic, or cardiovascular conditions that impede normal gait and 

balance.

The experimental set-up consisted of an 8.5m level vinyl tile walkway specially designed for 

gait studies, with two forceplates (4060A, Bertec, Inc.) embedded into the floor. Placement 

of the forceplates was adjusted to maximize the chance of landing each foot on one and only 

one forceplate (based on mean step length/width of young and middle-aged adults). Vinyl 

tile sample floors matching the rest of the walkway’s flooring material covered the force 

platforms. Whole body motion was tracked with a 14-camera Vicon system (Vicon Motion 

Systems Ltd, Oxford, UK). Forceplate and motion capture data were synchronized and 

sampled at 1080 and 120 Hz, respectively. All subjects wore the same brand and model of 

polyvinyl chloride (PVC) sole shoes, a common shoe sole material worn in the workplace. 

For slippery surface conditions, 90 mL of diluted glycerol solution (75% glycerol, 25% 

water by volume) was uniformly applied onto the leading/left foot – forceplate interface. 

The coefficient of friction at the shoe-floor interface during the dry trials was 0.53, 

compared to 0.03 for the glycerol-contaminated trials, as measured with an English XL VIT 
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Slipmeter (Excel Tribometers, LLC). A harness system with an overhead trolley is used to 

catch the subject in case of an irrecoverable fall.

We started the testing procedures with a study team member verbally explaining to the 

subject the overall goal of this study. The subject was reassured that he/she would be caught 

by the harness in a case of an irrecoverable fall, thus emphasizing the importance of walking 

as naturally as possible throughout the experiment. Next, subjects were equipped with the 

safety harness and instrumented with the motion capture markers (body and shoes as 

detailed in Moyer et al., 2009). Subjects were instructed to walk at a comfortable pace and 

allowed to practice walking across the walkway. During these practice trials, an experienced 

researcher adjusted the subject’s starting point and instructed him/her to start walking with 

his/her right or left leg such that he/she contacted the leading forceplate with the left foot. 

Once a natural gait is achieved under these conditions (typically 3–5 practice trials are 

needed), data collection begins. Prior to each trial (dry and slippery), the subject was asked 

to walk to his/her starting line, face away from the walkway, wait for 1–2 minutes while 

listening to loud music, distracting him/her from a possible contaminant application on the 

floor. At the end of the waiting period, the lights were dimmed to prevent the identification 

of the floor’s slipperiness condition. The subject was reminded to walk naturally at a self-

selected pace prior to each trial, then he/she turned around and walked while looking straight 

ahead at the opposite wall. The participants were exposed to two environmental conditions: 

(1) dry floor (baseline condition), and (2) unexpected slippery floor. Three to five baseline 

dry trials were collected followed by the unexpected slippery condition. Because the same 

testing procedures were used for each trial, the subject was not aware of the location or 

timing of the unexpected slip trial, thus minimizing potential anticipation effects. For more 

details related to the experimental research, the reader is referred to prior research by the 

study team (Beschorner and Cham, 2008; Cham and Redfern, 2001; Cham and Redfern, 

2002; Chambers and Cham, 2007; Chambers et al., 2013; Chambers et al., 2014; Moyer et 

al., 2006; Moyer et al., 2009; O’Connell et al., 2016).

The left (ipsilateral to the slipping foot) angular trajectory of the shoulder and the reactive 

shoulder moment (magnitude and timing characteristic) in the sagittal plane were of interest. 

The reason for the focus on the left upper extremity is that the right shoulder is fully flexed 

at the time of slip initiation (left heel contact onto the slippery area). Specific outcome 

variables of interest that were derived include the timing and peak magnitude of the shoulder 

reactive moment and the slip-related deviation of the shoulder flexion angle from the 

baseline trajectory (Table 2). Flexion angles were determined with a 3D Euler 

decomposition of the upper arm relative to the torso (based on reflective markers on the 

shoulder, elbow, and torso), and moments were determined using a custom 3D kinetic 

model. For details regarding the derivation of these outcome variables, the reader is referred 

to the doctoral work of Moyer (2006). During severe slips, participants may have slipped 

beyond the force plate area or used the harness for support later during the slip. The 

kinematic and kinetic data were considered only prior to these times. Additionally, there 

were no nearby supports (such as handrails) for the participants to attempt to grasp.

The onset and peak timing and magnitude measurements for the reactive moment and 

angular deviation were determined by simultaneously plotting the baseline dry and slipping 
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trials for each angle (example in Figure 1), and selecting the point at which the slip trial 

parameter began to deviate from the baseline dry measurement (onset timing) following slip 

initiation (Sandrian, 2006), as well as the maximum value reached during the response to the 

slip (timing and magnitude of the peak following the onset). For the purposes of the plot 

comparison, both the baseline and slip trials were time-normalized to stance duration during 

normal gait (baseline/dry). Timings were reported in seconds following left heel contact, i.e. 

initiation of the slip. After locating the onset and peak reaction times for sagittal plane 

moment and angle deviation, the onset and peak values for each were determined as the 

difference between the slip parameter and baseline parameter at the given reaction point. 

The onset and peak reaction values were reported for the angle in degrees, and for the 

normalized moment in N m kg−1.

Slip severity is assessed using the peak slip velocity (PSV) measured at the heel of the 

slipping foot (Moyer et al., 2006). More specifically, PSV is determined from the total heel 

shear velocity, determined as the resultant of the medial-lateral and anterior-posterior 

velocities of the heel marker on the slipping foot. The peak slip velocity is determined as the 

first local maximum after heel strike (Moyer et al., 2006) (Figure 2).

Two main linear statistical analyses were conducted to (1) determine the age-related 

differences using a t-test between the two age groups, and (2) to determine if slip severity 

modulates arm reaction in young and older adults, using a regression analysis. In the first set 

of analyses, the dependent measure was one of the primary outcome measures of interest 

(Table 3), and the predictor variable was age group (young/older). Statistical significance 

was set at 0.05. In the second set of analyses, each outcome variable of interest included in 

Table 3 was linearly regressed against slip severity. These analyses were conducted within 

age group of participants due to the age-related differences found in the first set of analyses, 

using peak slip velocity as a continuous predictor. Once again, statistical significance was set 

at 0.05.

Results

Overall, the study participants demonstrated a variety of kinetic and kinematic slip 

responses, with the majority (64%) having shoulder flexion moments and angles. 

Representative responses of flexion and extension responses are shown in Figure 3. For both 

of the examples shown, the participants demonstrated shoulder response angles in the same 

directions as their shoulder response moments. Of the participants that showed shoulder 

moments and angles occurring in opposite directions, 12% had flexion moments paired with 

extension response angles, and 15% had extension moments paired with flexion response 

angles.

Statistically significant age-related differences in a number of shoulder kinematic and kinetic 

variables were found. Specifically, the onset of arm reactions was delayed by an average of 

60 ms in older adults (based on kinetic data, Table 3) compared to young adults. The peak 

reactive shoulder moment was also delayed by an average of 110 ms in older adults 

compared to their young counterparts (Table 3, p<0.05). This finding translated into an 
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approximate 200 ms average delay in the peak reactive shoulder kinematics in older adults 

compared to young adults (Table 3, p<0.05).

In addition, an average shoulder extension moment was generated in younger adults, 

whereas in older adults an average shoulder flexion moment was generated in response to a 

slip (Table 3). These differences in average moment values may be due to the greater 

number of older adults who generated a flexion moment compared to young adults. More 

specifically, the majority of older adults (nearly 90%) generated a flexion moment in 

response to the slip perturbation, in contrast to younger participants who generated a flexion 

moment in only about 60% of the slips (Table 4). These age-related differences were 

observed despite the slip severity being similar between young and older adults (p>0.1).

The second set of analyses conducted within age group (due to the age-related differences 

presented in the first set of analyses) was focused on determining whether arm reactions are 

modulated by how severely an individual slips (PSV). Significant effects of PSV on a 

number of arm reaction variables were found in the young age group. More specifically, 

increasing PSV was associated with earlier deviation of the angular shoulder trajectory in 

the slip response compared to baseline data (Figure 4, p=0.032 and Pearson’s r=0.54). Also, 

more severe slips were associated with greater peak slip extension moment (Figure 4, 

p=0.028 and Pearson’s r=0.55). In contrast to young participants, older participants did not 

modulate their arm reactions with slip severity (p>0.1).

Discussion

The findings of this study demonstrate fundamental timing and magnitude differences in arm 

responses to slips between young and older adults. More specifically, first, the arm responses 

were delayed in older adults compared to young adults. Second, while the majority (nearly 

90%) of older adults generated a shoulder flexion moment in response to slips, about 40% of 

the young participants generated an extension moment. Third, young adults modulated their 

arm responses with slip severity in contrast with older adults who did not. Despite the fact 

that older adults walked slower than young adults, slip severity was similar between the two 

age-groups.

The delayed arm responses in older adults may lead to an increase in injury risk for two 

reasons: (1) the likelihood of successfully recovering balance or reaching for support after a 

slip will be reduced if responses in general are delayed (Maki and McIlroy, 2006), and (2) 

quick arm responses are key to minimize the consequences of a possible impact onto the 

floor (DeGoede et al., 2003; Kim and Ashton-Miller, 2009; Lattimer et al., 2016; Lee and 

Ashton-Miller, 2014). Delayed reactions in older adults may be a result of a number of age-

dependent factors including reduced slip sensation, slow central processing and reduced 

motor conduction. Our findings agree with prior published reports related to the timing of 

upper extremity responses to balance perturbations. For example, compared to the findings 

of Allum et al (2002), which found that older adults showed shoulder reactions delayed by 

20–30 ms, the results of this study showed a delay of nearly 60 ms, based on kinetic 

measures. Allum (2002) used EMG data as the measure of response time, while we used 
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moments (EMG data not available), thus the difference between the two studies are most 

likely due to electromechanical delay.

Young adults modulated their arm responses with slip severity. More specifically, the 

shoulder extensors’ activity increased with slip severity. Because this extensor activity is 

measured as the response (reactive) moment, it appears that as slip severity increases, the 

younger group attempts to brace for impact with the ground due to an increased likelihood 

of falling. Previous studies have shown that the extension moments demonstrated by this 

younger group may have a preventative intent, such as reaching for support or breaking the 

fall (Allum et al., 2002; Maki and McIlroy, 1997; McIlroy and Maki, 1995).

Overall, an average extension moment was generated at the shoulder in young adults in 

contrast to a flexion moment in the older group. While the average slip severity was similar 

in young and older adults, there were similar occurrences of severe (PSV > 1.0 m s−1) slips 

in the young participants (56%) compared to 53% in the older participants (Moyer et al., 

2006). As mentioned previously, PSV had a significant effect on peak moment, with 

increasing PSV being correlated with a shift toward shoulder extension moments. This 

evidence points toward increasing slip severity causing an arm reaction aimed toward 

breaking the fall by contacting the ground with the hands first, while less severe slips induce 

flexion reactions that may help recover balance.

Because older adults tend to display delayed reactions to unexpected slips, potential methods 

of reducing fall and injury risk include environmental modifications such as handrails or 

other sources of support in high slip risk areas, and training specifically tailored towards 

regaining balance following a perturbation. Previous research has shown that training 

programs focused on balance recovery in older adults can lead to quicker movement to grasp 

a handrail to avoid falling (Maki et al., 2008; Mansfield et al., 2010; McKay et al., 2013). In 

addition to perturbation-based training, other research has shown that with sufficient 

instruction and practice, individuals can be trained to essentially override their automatic 

responses to recover balance, and instead attempt to fall safely (Weerdesteyn et al., 2007).

A number of limitations to this study are worth noting. First, while all participants were 

employed full time at the time of testing, information on their specific job type (i.e. desk job 

or manual labor) was not collected. Furthermore, we know that participants were healthy, 

however overall physical activity level was not assessed. Finally, while nearly all of the 

participants were right handed (31 of the 33), the handedness of each of the participants was 

not taken into account when determining which foot to slip. Slips were induced on the left 

foot for all participants. Potential future work could consider which arm is dominant in each 

participant, and induce a slip only on the dominant on non-dominant side of the body.
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Figure 1. 
Example of individual shoulder flexion angle trajectory (top) and shoulder reactive flexion 

moment (bottom) for the baseline dry trial (solid line) and slippery trial (dashed line) 

collected from the same participant, specifically from a younger male participant. Time on 

the x-axis is normalized to stride time during the baseline dry trial, with 0% being heel strike 

and 100% being the next heel strike on the same foot. The first vertical bar on each plot 

marks the response onset, and the second bar marks the peak value during slip reaction. 

Positive values (angle and moment) represent a flexion reaction.
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Figure 2. 
Example of heel shear velocity trajectory for a younger male, and determination of the peak 

slip velocity during a slip. Time = 0s refers to the instant of heel strike. The location of the 

peak slip velocity (PSV, second arrow) is determined as the first local maximum of heel 

shear velocity after heel strike (first arrow). In this specific slip, the subject slip with a PSV 

of about 2.4 m/s occurring about 150 ms after heel strike.
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Figure 3. 
Example of individual subject responses for flexion (top) and extension (bottom) reactions, 

both of younger female participants. Positive angles indicate shoulder flexion. The 

participant with the flexion response exhibited minimal arm motion during normal gait 

(solid line), with a large response due to the slip (dashed line). The participant demonstrating 

the extension reaction showed a normal range of sagittal plane motion during normal gait 

(solid line), with a large extension response to the slip (dashed line). For both plots, the solid 

line represents the baseline sagittal plane angle, while the dashed line represents the sagittal 

plane angle during the slip. The solid grey line is the difference (slip – baseline). Time on 

the x-axis is normalized to stride time during the baseline dry trial, with 0% being heel strike 

and 100% being the next heel strike on the same foot.
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Figure 4. 
Peak flexion moment and angle deviation timing plots for the young group. With increasing 

slip severity, as measured by the peak slip velocity (PSV), the angle response timing 

increased, while the sagittal plane reaction moment moved toward the negative (extension) 

direction.
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Table 2

Definitions of left shoulder parameters determined.

Parameter Definition

KINEMATIC VARIABLES

 Timing of angle deviation Time at which the sagittal plane angle during the slip begins to deviate from the angle observed during 
baseline gait.

 Timing of peak angle deviation Time at which the sagittal plane angle during the slip response reaches its maximum deviation.

 Peak deviation angle Difference in sagittal plane angle between the slip response and baseline gait at the timing of peak angle 
deviation.

KINETIC VARIABLES

 Reaction Onset Time at which sagittal plane moment during the slip begins to deviate from the moment observed during 
baseline gait.

 Timing of peak reactive moment Time at which the sagittal plane moment during the slip response reaches its maximum deviation.

 Peak reactive moment Difference in sagittal plane moment between the slip response and baseline gait at the timing of peak 
reactive moment deviation.
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Table 3

Comparison of key biomechanical variables between age groups.

Parameter Young Older page

KINEMATIC VARIABLES

 Timing of angle deviation (s) 0.20±0.08 0.28±0.05 0.0005

 Timing of peak angle deviation (s) 0.41±0.13 0.60±0.14 0.0001

 Peak deviation angle (degrees) 14.8±30.8 29.4±31.3 > 0.1

KINETIC VARIABLES

 Reaction Onset (s) 0.15±0.08 0.21±0.05 0.02

 Timing of peak reactive moment (s) 0.35±0.11 0.46±0.10 0.003

 Peak reactive moment (N m kg−1) −0.02±0.11 0.07±0.08 0.011

OTHER

 Gait speed (m s−1) 1.41±0.18 1.23±0.13 0.003

 Peak slip velocity (m s−1) 1.25±0.67 1.09±0.34 > 0.1

Values are shown as mean ± standard deviation.
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Table 4

Characteristics (direction of moments and kinematics) of arm responses generated when exposed to 

unexpected slips. Results are shown for young (A) and older (B) adults. The moments and angles shown are 

for the peak reaction values (should flexion moment and angle) observed over the course of the response.

A) Young Adults

Angle

Flexion (75%) Extension (25%)

Moment
Flexion (62%) 56% (N=9) 6% (N=1)

Extension (38%) 19% (N=3) 19% (N=3)

B) Older Adults

Angle

Flexion (82%) Extension (18%)

Moment
Flexion (88%) 70% (N=12) 18% (N=3)

Extension (12%) 12% (N=2) 0

J Biomech. Author manuscript; available in PMC 2018 June 14.


	Abstract
	Introduction
	Methods
	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4

