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Abstract

Leukemias are highly immunogenic but have a low mutational load, providing few mutated
peptide targets. Thus, the identification of alternative neoantigens is a pressing need. Here, we
identify 36 MHC class I-associated peptide antigens with O-linked p-A-acetylglucosamine (O-
GIcNACc) modifications as candidate neoantigens, using three experimental approaches. Thirteen
of these peptides were also detected with disaccharide units on the same residues and two contain
either mono- and/or di-methylated arginine residues. A subset were linked with key cancer
pathways, and these peptides were shared across all of the leukemia patient samples tested (5/5).
Seven of the O-GIcNAc peptides were synthesized and five (71%) were shown to be associated
with multifunctional memory T-cell responses in healthy donors. An O-GlcNAc-specific T-cell
line specifically killed autologous cells pulsed with the modified peptide, but not the equivalent
unmodified peptide. Therefore, these post-translationally modified neoantigens provide logical
targets for cancer immunotherapy.
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Introduction

The role of antitumor immunity has been an intense focus of research for many decades (1-
4). Although it is clear from strong correlative clinical data, combined with definitive
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experimental evidence from mouse cancer models, that T cells mediate this protection, the
nature of the antigens targeted remains poorly characterized. Over the past decade the role of
altered-self antigens, termed neoantigens, has become clear (5-9). Tumor-specific
neoantigens act as targets for spontaneously arising adaptive immunity to cancer and thereby
determine the ultimate fate of developing tumors (7). Nonsynonymous mutations in coding
regions of expressed proteins are termed mutational neoantigens and, perhaps critically, are
not subject to central tolerance. In patients with cancers that have high mutational loads,
such as non-small cell lung cancer and melanoma, CD8" T cells can be identified within the
tumor that are specific for MHC class I-restricted neoantigens in response to
immunotherapy (10, 11). However, tumor-resident immunity against mutational neoantigens
occurs at very low frequencies and it would be surprising if this magnitude of immunity
could be responsible for the dramatic reductions in tumor volume seen (7, 12). Additionally,
some of the tumors with the best clinical responses to immunotherapy have some of the
lowest mutational loads, for example, renal cell carcinomas and leukemias (12-14).
Hematological malignancies, in particular, are known to be among the most immunogenic
cancers (15). Therefore, it is likely that the antigens in these malignancies derive from other
classes of antigens.

An alternative source of neoantigens may be the posttranslational modifications (PTMs) that
occur in malignant and not healthy cells, particularly as dysregulated signaling is a hallmark
of cancer (16). Indeed, a number of phosphorylated peptides have been identified as potent
cancer antigens(17). Immunity to these antigens was seen in healthy donors, but lost in a
subset of leukemia patients with poor clinical outcome and restored after stem cell
transplant, suggesting a role for these antigens in the graft-versus-leukemia response.
Dysregulation of cell signaling pathways in cancer is also caused by another PTM, B O-
linked A-acetylglucosamine (O-GIcNAC), which is involved in cross-talk with
phosphorylation (18-20). As such, aberrant O-GIcNAcylation can correlate with augmented
cancer cell proliferation, survival, invasion, and metastasis (21). Synthetic O-GIcNAc—
modified peptides can bind MHC class | complexes, and elicit glycopeptide-specific T-cell
responses in mice, with X-ray structures confirming that the G-GIcNAc group was solvent
exposed and accessible to the T-cell receptor (22-25). However, up until recently, limitations
in proteomic technology made it impossible to characterize O-GIcNAcylated peptides from
biological samples.

Here, we report three experimental approaches that allowed the detection and sequencing of
O-GIcNAcylated peptides from a complex mixture of peptides presented by HLA-B*07:02
molecules on various primary leukemia samples. These methods allowed for the
identification of 36 unique glycopeptides in several different states of glycosylation and,
surprisingly, methylation. We go on to show that healthy donors have heterologous
immunity to a number of these complex neoantigens and that T cells from these donors can
specifically target and kill cells displaying only the modified peptide. Ultimately, we believe
that these glycopeptide antigens will prove pivotal in the design of novel cancer
immunotherapeutics.
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Materials and Methods

Leukemia samples and cell lines

Leukemia samples were the same as those used previously (Supplementary Table S1)(17).
All cell lines were grown at 37°C with 5% CO» in medium consisting of RPMI 1640
supplemented with 10% fetal bovine serum (all from Sigma-Aldrich, St. Louis, MO). The
JY cell line (ECACC - 94022533) was grown continually between 2006 and 2008 with its
authenticity verified by HLA-typing and also in-house peptide profile.

Isolation of HLA-associated peptides

Class I MHC molecules were immunoaffinity-purified from cell lines or tumors and their
associated peptides were extracted as described previously(17). Cells (108-109) were lysed
in 10 mL of CHAPS buffer (Sigma-Aldrich, St. Louis, MO) and the lysate was centrifuged
at 100,000 x g for 1 hour at 4°C. Supernatants were passed over protein A-sepharose
preloaded with HLA-B7 specific antibody (MEL). Peptides were eluted from the purified
MHC class | molecules with 10% acetic acid and separated by ultrafiltration (Ultrafree-MC,
Millipore, Billerica, MA).

Enrichment of HLA-associated peptides

POROS20 AL beads (Applied Biosystems, Carlsbad, CA) were derivatized with amino-
phenyl boronic acid (APBA; Thermo Fisher Scientific, Waltham, MA). Briefly, POROS20
beads (7 mg) were dispersed into 200 puL of PBS (pH 6-7) containing 40 umol of APBA.
Following the addition of NaCNBH3 (1.3 umol in 1 pL of PBS), the reaction was allowed to
proceed with agitation for 2 hr at RT and then quenched by washing the beads with water on
a spin column (pore size < 20 um). Water was removed under vacuum and the dried beads
were stored at 4°C.

Class | MHC peptides from 2 x108-5x108 cells in 0.1% acetic acid were desalted by loading
the solution onto a fused-silica column (360 pm o.d. x 150 ym i.d.) packed in-house with 5
cm of irregular C18 (5-20 um diameter) particles at a flow rate of 0.5 pl/min. After washing
the column with 25 pL of 0.1% acetic acid, peptides were eluted into Eppendorf tubes with a
40 min gradient (0-80%) solvent B (A: 0.1M acetic acid, B: 70% acetonitrile, 0.1M acetic
acid). Fractions were screened by MS and those that contained peptides, but not CHAPS
detergent, were combined, taken to dryness and stored at —35°C.

APBA-beads were washed 3x with 100 pul of anhydrous DMF and then allowed to react with
desalted peptides in 20 pl of anhydrous DMF for 1 hour with agitation. Solvent was removed
by centrifugation and the beads were washed 2x with 100 pL of anhydrous acetonitrile.
Bound peptides were released by agitating the beads in 20 uL of 0.1 M acetic acid for 30
min. Supernatant was collected, taken to dryness, and reconstituted in 10 uL of 0.1M acetic
acid for loading onto an in-house packed C18 column for MS analysis.

RP-HPLC-MS

In-house, packed C18 columns were prepared as previously described(26). Peptides were
eluted by a 2 hour 0-60% B gradient (A: 0.1M acetic acid, B: 70% ACN, 0.1M acetic acid).
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Without enrichment, samples were loaded directly onto the C18 column. The RP-HPLC
elution was electrospray-ionized into an Orbitrap Velos, or Orbitrap Fusion Tribrid mass
spectrometer (Thermo Scientific, San Jose, CA), the former equipped with an in-house
front-end ETD ion source. On the Orbitrap Velos, the instrument method was a top-10 CAD
with ETD only when loss of dehydro-GIcNAc neutral loss of [203]+2 or [203]+3 was
detected. On the Fusion, instrument method was a top speed HCD triggered ETD when three
of six O-GIcNAc fingerprint ions (m/z 204, 186, 168, 144, 138, and 126) were detected at
>5% relative abundance. Peptide sequences were determined by manual interpretation of
HCD, CAD, and ETD mass spectra.

Synthetic Peptides

O-GIcNAc- and O-GalNAc-peptides were synthesized using Fmoc chemistry and purified
by HPLC to >90% purity by Pierce Biotechnology, Rockford, Il. Sequences and purity for
all synthetic peptides were confirmed by on-line HPLC MS/MS and manual interpretation of
the resulting spectra. Immunodominant HLA-B*0702 restricted antigens from human
cytomegalovirus (pp65417-426, TPRVTGGGAM); Epstein-Barr virus (EBNA-3A247_o55,
RPPIFIRRL) and Influenza A virus (PB1l3yg_337, QPEWFRNVL) were synthesized at >90%
purity by Genscript, Piscataway, NJ.

Selective transfer of N-azidoacetylgalactosamine (GalNAz) to O-GIcNAcylated peptides

Intracellular

A solution of the modified p1-4-galactosyltransferase, GalT1 (Invitrogen, Carlsbad, CA),
was dried to 5 pL in a vacuum concentrator at 40°C. Excess synthetic glycopeptides or
tumor peptides (3e8 cell equivalents) were taken to dryness, redissolved in a mixture
containing 1 uL MnCls, 5 L uridinediphosphate N-azidoacetylgalactosamine, UDP-
GalNAz (Invitrogen, Carlsbad, CA), and 5 L enzyme and allowed to react for 5 hours at
RT. After the reaction was quenched by addition of 0.2 uL glacial acetic acid, the solution
volume was increased to 15 uL with 0.1% acetic acid, and then loaded directly onto an
HPLC column for analysis by LC-MS/MS.

cytokine staining

PBMCs were isolated from healthy donors and resuspended (108 cells/ml) in AIM-V
medium (Invitrogen, Carlsbad, CA). Synthetic peptide antigens were added to the wells (10
pg/mL) and cells were expanded for 6 days. The positive control was stimulated with PHA
(1 pg/ml). On day 6, cells were washed and re-stimulated with peptide antigen overnight or,
for the positive control, with PMA/lonomycin (4 ng/ml and 500 ng/ml respectively), in the
presence of anti-CD107a—FITC. Cells were harvested, washed with PBS, and stained with
fixable viability dye (APC-Cy7) and surface antibodies: anti-CD3and anti-CD8. Cells were
fixed using 2% formaldehyde, permeablized using 0.5% saponin, and stained with anti-
IFNy—PE, anti-IL2-Pacific blue, and anti-TNFa—PE-Cy5.5 for 30 minutes at RT. Cells were
washed, lightly fixed, and analyzed on the LSRFortessa x20 flow cytometer (BD
Bioscience, Oxford, UK). A list of antibodies used in the study is shown in Table S2
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Establishment of a peptide-specific T-cell line

PBMCs (107) were stimulated with synthetic peptide and cultured for a week. They were
subsequently restimulated overnight, in the presence of anti-CD107a-FITC and washed and
labelled with anti-CD137-PE (Miltenyi Biotech, Bergisch Gladbach, Germany) and
counterstained with anti-CD8-APC (Biolegend). Cells were sorted using a FACS Aria cell
sorter (BD Bioscience), collected and expanded using the rapid expansion protocol
previously described(27). The T-cell line was subsequently reassessed, using a similar
protocol.

Europium Release Killing Assay

Results

The Delfia EUTDA cytotoxicity assay (Perkin Elmer, Coventry, UK) was used according to
the manufacturer’s instructions. Briefly, autologous transformed B-cell lines were used as
target cells. These were washed and resuspended at 106 cells/ml in RPMI 10% FCS and, the
relevant peptide antigen was added at 10 pug/ml and the mixture was incubated at 37°C, 5%
CO3 in a humidified environment for 40 min. Subsequently, 2.5 pL/ml of the BATDA
fluorescence enhancing ligand was added and the cells were incubated for a further 20 min.
Cells were then washed 5x in excess medium. Target cells (10%) were added to each well of
a V-bottomed 96-well plate. T cells at varying effector to target (E:T) ratios were added to
the test wells. All well volumes were made up to 200 pL. The plate was incubated for 2 hr at
37°C, 20 ul of each supernatant was transferred to a flat bottomed, white, 96 well plate and
200 pL of Europium solution was added, incubated for 15 min, with shaking, at room
temperature. Fluorescence was measured with a time-resolved fluorometer (Tecan Infinite
200 PRO, Tecan, Switzerland).

Experimental approaches that allow identification of O-GIcNAcylated peptide antigens

Three different experimental approaches were used to identify peptides with O-GIcNAc
modifications from leukemia patient samples. The first approach used higher energy
collision—induced dissociation (HCD) mass spectrometry (MS) to visualize the loss of a
dehydro- A-acetyl-glucosamine moiety (203Th) from fragment ions. The HCD mass
spectrum of the first O-GIcNAcylated class | MHC peptide, XPVSSHNSX (where X=I or L),
detected during analysis of HLA B*07:02 peptides presented on ALL, is shown in Fig. 1A.
The amino acid sequence, XPVsSHNSX, is uniquely present as IPVSSHNSL in a single
human protein, myocyte-specific enhancer factor 2C. This approach is limited by the ability
of nonglycosylated peptides to suppress electrospray ionization of co-eluting O-
GlcNAcylated peptides(28).

The second approach overcomes this limitation and allows detection and characterization of
O-GlcNAcylated peptides from attomole quantities, using an enrichment procedure to
selectively pull down the glycosylated peptides from the pool of unmodified peptides. The
enrichment allowed selective esterification of glycosylated peptides, linking them to
aminophenylboronic acid—derivatized POROS AL 20 beads. This G-GIcNAc enrichment
procedure allowed us to achieve quantitative yields from femtomoles of starting material,
and may be critical for efficient identification of these antigens from patient samples. This
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methodology was used in combination with an instrument method that selectively recorded
electron transfer dissociation (ETD) when the collision-activated dissociation (CAD)
spectrum contained a doubly charged ion corresponding to the loss of dehydro-A-acetyl-
glucosamine (203Th)(29).

The third experimental approach extended the sensitivity of the method and allowed the user
to obtain spectral information from extremely low-level peptide species. This was achieved
using an instrument method that triggered an ETD spectrum whenever three of six G-
GIcNAc fingerprint ions (m/z 204, 186, 168, 144, 138, and 126) were detected at >5%
relative abundance in a particular HCD spectrum when the Orbitrap Fusion Tribrid was set
to record HCD spectra at top speed. All of the fingerprint ions in Fig. 1B were the result of
the O-GIcNAc oxonium ion at m/z 204 undergoing further fragmentation as a result of
multiple collisions with the background nitrogen gas in the collision chamber. The use of
multiple fingerprint fragments created a reliable trigger that minimized false positives.

36 O-GIcNAcylated peptides identified on HLA B*07:02 leukemia samples

In total, using the three experimental approaches outlined, 36 O-GlcNAcylated peptides
were identified from leukemia samples (Table 1). 92% (33/36) of the O-GIcNAcs identified
were only found on the leukemia samples tested and not the healthy tissue samples, making
them potential leukemia neoantigens (Table 1, Fig. 1C, Supplementary Fig. S1). Just under a
quarter (7/32) of the proteins that the O-GIcNAcylated peptides derived from were
associated with key cancer pathways (as defined by the NCI pathway interaction database,
which is now accessible via the NDEX database at http://www.ndexbio.org/#/). These
pathways included many classical cancer signaling pathways, involving genes such as p38,
p53, c-Myc, Notch, Wnt, Rb, ErbB1, and MAPK. Of note, IP\VsSHNSL, which derives from
Mef2c, a transcription factor implicated in leukemogenesis(30), was identified on nearly all
of the leukemia samples tested (1/1 ALL, 3/3 CLL, 1/1 AML) and although it could be
detected on healthy B cells, it was present in far lower amounts (Fig. 1D). An incidental, but
significant, finding was that one of the O-GIcNAcylated peptides detected, RPPItQSSL,
contained another PTM — a methylated Arg residue at P1 and was also found with an
asymmetrically dimethylated Arg residue (Supplementary Fig. S2).

Distinguishing O-GIcNAc from O-GalNAc

Because O-GIcNAc and O-GalNAc are isobaric, but have different biological properties, it
was important to confirm that the peptides we identified indeed contained O-GIcNAc
modifications, and not O-GalNAc. Furthermore, some MHC class | peptides we observed
contained disaccharide units (see footnotes for Table 1), so they might have been derived
from degradation of O- and N-linked glycans synthesized in the Golgi and ER, rather than
true cancer neoantigens. To validate that the peptide antigens we had tested were O-
GlcNAcylated, an /n vitro enzyme reaction was used. p1-4-galactosyltransferase (GalT1)
was shown to transfer A-azidoacetylgalactosamine (GalNAZ) to four peptides (IPVsSHNSL
and (me-)RPPItQSSL) in the ALL sample. Additionally, we found that synthetic O-
GlcNAcylated vs. O-GalNAcylated peptides could be differentiated based on the relative ion
abundances observed for fragments derived from the oxonium ion at m/z 204 in the
corresponding fingerprint region of the HCD mass spectra (Fig. 1D)(29). All of the peptides
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observed (Table 1) produced HCD spectra with the necessary fingerprint region to confirm
their identity as O-GIcNAc peptides.

Ten of the peptides detected were also found with disaccharide units attached to the same
residues that were O-GIcNAcylated. It was determined that these correspond to a hexose
bound to a HexNAc, because the oxonium ion observed for all of these peptides occurred at
m/z 366 (204 +162). This was likely the result of the transfer of galactose to the O-
GlcNAcylated peptide by a p-A-acetylglucosamine p1-4 galactosyltransferase; however, the
remote possibility that this instead could involve the O-glycan synthetic pathway, in which
the first residue to be added is a GaINAc and the second is either galactose or GICNAc,
needed to be excluded. Again, using synthetic peptides (IP\VVsSHNSL modified with Gal-
GalNAc and Gal-GIcNAc) the fingerprint patterns for fragmentation of the oxonium ion at
m/z 204 in HCD mass spectra could be distinguished, confirming that none of the
disaccharide- modified peptides in Table 1 were derived from the O-glycan synthetic
pathway.

Two of the glycosylated peptides in Table 1, APRGnVTSL and KPTLLYNnVSL, have
disaccharide units, Hexose-HexNAc, attached to Asn residues. Both peptides have consensus
sequences, NX(S/T), for attachment of N-linked oligosaccharides. We conclude, therefore,
that the observed Hexose-GIcNAc disaccharide units attached to Asn in these peptides
probably result from degradation of the N-linked oligosaccharide structures to a single N-
linked GIcNAc that then accepts a hexose such as galactose (from a p-/A-acetylglucosamine
B1-4 galactosyl- transferase). This is a novel finding, as the enzyme A-glycanasel is
responsible for removing all N-linked glycosylation prior to loading onto MHC class |
molecules, potentially suggesting a new source of neoantigens in leukemia(31).

Leukemic glycopeptides elicited potent memory T-cell responses in healthy donors

Previous studies have highlighted how post-translationally modified antigens can be
immunogenic, with immunity against leukemia-associated MHC class | phosphopeptides
having been shown to be present in healthy individuals. Immunity against naturally
processed MHC class-1 O-GIcNAc or methylated peptides has not been studied, but we
hypothesized that it may exist in healthy individuals. Immunogenicity in healthy donors was
assessed using seven of the O-GIcNAcylated peptides discovered on leukemic cells (Fig.
2A-E and Supplementary Figs. S2-S5). Five of the seven (71%) HLA-B*0702
glycopeptides were immunogenic—heterogeneous responses were seen, with both intra- and
inter-donor variation (Fig. 2B and C). The responses were further validated using IFNy
ELISpot (Supplementary Fig. S5). All healthy donors had immunity to at least one of the
glycopeptides and two had strong responses, similar to the magnitude of responses against
chronic viral antigens. Degranulation was assessed as a proxy for killing (Fig. 2C) and
despite some background staining, degranulation significantly correlated with
multifunctional cytokine responses (Fig. 2D), suggesting that these T cells targeting -
GlcNAcylated peptide antigens have a cytotoxic phenotype. Furthermore, these T cells
appeared to be largely the memory phenotypes (Fig. 2E).
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Modifications of a methylated glycopeptide specifically targeted by cytotoxic T cells

As responses were seen against the intriguing methylated glycopeptide ((me-R)PPI(GIcNAc-
T)QSSL) in 4/5 (80%) of healthy donors tested, two being potent, these responses were
further analyzed using peptides that were either methylated or glycosylated. Whereas no T-
cell responses were seen against the unmodified peptide, responses in different individuals
were seen targeting either the glycosylated or the methylated peptide (Fig. 3A and S6). In
the two donors with potent responses to the methylated glycopeptides,\fewer T cells
recognized the glycopeptide alone, suggesting that the methylation may somehow increase
immunogenicity. To assess this further, a T-cell line was initiated using the methylated
glycopeptide. After culture, around 18% of T cells were shown to be specific for the
methylated glycopeptide (Fig. 3B and Supplementary Fig. S6). Autologous transformed B
cells were pulsed with modified and unmodified peptides and killing by the T-cell line
assessed. Specific killing was seen of the B cells pulsed with methylated, O-GIcNAcylated
and doubly modified peptide, but not with the unmodified peptide (Fig. 3C). These results
suggest that we may have identified modified peptides targeted by the endogenous anti-
leukemia T-cell response, which may lead to fruitful targets for novel immunotherapeutics.

Discussion

We outline here three methodologies for the identification of MHC class | peptides
containing a little-known PTM, O-GIcNAc, a potential class of cancer neoantigens. Utilizing
these methods, we identified 36 GIcNAcylated peptides from primary leukemia samples, and
showed that a memory T-cell response against a subset of these antigens could be found in
healthy donors. We also have identified peptides that contained other moieties—not
previously seen on MHC class | peptides from cancer samples—namely methyl,
disaccharide, and N-linked GICNAc groups. Peptides containing these PTMs offer a hitherto
untapped source of neoantigens in leukemia.

These neoantigens created by PTMs may be found on leukemic cells because of their
aberrant cell signaling. This has been reported for phosphopeptide leukemia antigens and C-
GIcNAcylation sites are usually identical, or in close proximity, to those that get
phosphorylated(17, 20). Aberrant G-GIcNAcylation has been shown to correlate with
augmented cancer cell proliferation, survival, invasion, and metastasis (21). The essential
nature of these pathways to the leukemic cells suggests that these PTM neoantigens may not
be patient-specific, as seen with the mutated neoantigens, but common across patients of the
same HLA-type (7, 8). Indeed, we identified many of them on multiple samples from
leukemia patients, even those with different clinical types. Around a quarter (7/32) of the
proteins that the PTM peptides derived from are associated with key cancer pathways (as
defined by the NCI pathway interaction database). Antigens from these key signaling
pathways are ideal targets for immunotherapies since the leukemic cell is unlikely to be able
to survive without these pathways, reducing the risk of immune escape. Although further
work is required to ensure that these PTM peptides are truly cancer neoantigens and not
found in healthy tissues, they may provide an attractive new avenue for immunotherapeutic
targeting.

Cancer Immunol Res. Author manuscript; available in PMC 2018 May 01.
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Not only are these neoantigens present on leukemia samples, but positional analysis
indicates that the GIcNAc residues may be optimally positioned for T-cell recognition. The
GIcNAc group is in the middle of the peptide (up to 34/36; 62% P4, 18% P5, 21% equivocal
P4/P5; Supplementary Fig. S7), identical to the preferred position of phosphate groups in
phosphopeptides, and where structural studies have revealed that the CDR3 regions of the
TCR loops around the center of the peptide(32). Indeed, previous structural studies in mouse
of TCR binding have demonstrated that GIcNAc modified antigens are recognized in this
manner (22).

We saw potent multifunctional memory T-cell responses against these O-GlcNAcylated
leukemia antigens in healthy donors, suggesting that these neoantigens may reflect an
endogenous immunosurveillance system against leukemia). Not only did healthy donor T
cells recognize the PTM neoantigen, but we also showed that they could specifically kill
cells presenting modified peptides. Therefore, we would not expect targeting of these
antigens to be compromised by self-tolerance, as may be seen with overexpressed antigens.
What is more, if healthy donors have cytotoxic memory T cells targeting these PTM
neoantigens without autoimmunity, targeted therapies against these neoantigens may have
low toxicity. The most immunogenic peptide identified was me-RPPItQSSL, containing both
a methylated arginine and O-GIcNAcylated serine. It is tempting to speculate that combined
modifications lead to the most dramatic structural change and, therefore, peptides more
antigenically distinct from self. We showed that T cells may recognize and kill cells
presenting this peptide with either the methylation, or the O-GIcNAc modification, but not
the unmodified peptide. This potent antigen, targetable by T cells from several healthy
donors, is an attractive target for the development of immunotherapeutics. We are expanding
this work to identify O-GIcNAcylated antigens from patients with other HLA-types and
cancers and in the process of developing methods that allow for the identification of
methylated peptide antigens from MHC class I.

Overall, this work identified both glycosylated and methylated residues as potent classes of
tumor antigens, broadening the availability of immunotherapy targets, and potentially
yielding safe and effective therapeutics for leukemia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The discovery of MHC class I-associated glycopeptides on primary leukemia cells
(A) HCD mass spectrum of the first O-GIcNAcylated peptide detected in ALL,

IPVSSHNSL. Fragment ions that define the complete amino acid sequence are labelled as b
and y. Those that have lost the O-GIcNAc moiety are labelled with an asterisk. (B)
Fingerprint ions in the HCD spectra of O-GIcNAcylated and O-GalNAcylated peptides.
Relative abundances of fragment ions derived from secondary fragmentation of the oxonium
ion at m/z 204 are substantially different for O-GlcNAcylated and O-GalNAcylated peptides.
(C) Distribution of 36 HLA-B*07:02-restricted glycopeptides among the different leukemia
and healthy cells analysed. ALL = acute lymphoblastic leukemia. Healthy cells = healthy
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donor tonsil/spleen cells. LCL = lymphoblastoid cell line. AML = acute myeloid leukemia.
CLL = chronic lymphocytic leukemia. (D) Number of copies per cell of the O-
GlcNAcylated peptides identified on ALL versus healthy B cells (purified from a healthy
spleen).
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Figure 2. Healthy donor immunity to leukemia-associated posttranslationally-modified
neoantigens

(A) Flow cytometry plots showing the gating strategy used in the ICS protocol to determine
healthy donor immunity to the O-GIcNAcylated peptides (Fig. S4 contains additional plots).
Immunity to viral antigens was used as an internal control, for comparison. Collated results

of cytokine production (B) and degranulation (C) by healthy donor T cells in response to
stimulation with posttranslationally-modified leukemia neoantigens. (D) The correlation

between the percentage of cells producing cytokine and degranulating for HD1. (E) HD1 T
cells that produced cytokine in response to stimulation with peptides were also stained with
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surface antibodies for phenotyping (CD27 and CD45RA; Supplementary Fig. S5). CM -
central memory, N - naive, EM - effector memory and TEMRA - terminal effector memory.
Responses were independently verified at least twice.
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Figure 3. Investigating T-cell recognition of the methylated O-GIcNAc peptide
(A) Healthy donor immunity to the unmodified, O-GIcNAcylated, methylated and both O-

GlcNAcylated and methylated peptide, measured by cytokine production and degranulation.
(B) A T-cell line was grown from HD5 against the methylated RPPItQSSL peptide. The
percentage of cells recognizing the peptide were assessed by overnight stimulation with the
peptide and detection of CD137 and CD107a surface markers. (C) This T-cell line was using
a europium release killing assay to assess killing of autologous transformed B cells pulsed
with different modifications of the peptide. Responses were independently verified at least
twice.
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